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Some Extensions of Horrecks Criterion to Vector Bundles
on Grassmannians and Quadries (*).

GIORGIO OTTAVIANI (**)

Summary. — In this paper we prove that a vector bundle E on a grassmannion (resp. on ¢ quadric)
splits as a direct sum of line bundles if and only if certain cohomology groups involving E
and the quotient bundle (resp. the spinor bundle) are zero. When rank B = 2 a better cri-
terion is obtained considering only finilely many suitably chosen cohomology groups.

A well known criterion of Horrocks ([13], [14], 17 ]) says that a vector bundle £
on the complex projective space P+ splits (i.e. is isomorphie to a direct sum of line
bundles) if and only if the cohomology groups H:(P», E(t)) are zero for 0 <i<n =
= dim P» and for all t € Z, where E({) denotes E® Op.(t).

Op"

Let Gr (k, ) be the Grassmannian of linear k-planes in P» and let @, be the
smooth quadric hypersurface in P+,

In this paper we obtain some extensions of Horrocks criterion and some related
result on Gr (k, ») and @,.

Gr (k, ») and @, (»>3) are the simplest rational homogeneous manifolds of rank
one [23] besides P~

Most of the results contained in this paper have been announced in [19].

I wish to thank Prof. V. Ancona, who posed to me this problem, for all his
encouragement and for many helpful conversations.

The paper is divided as follows.

In section 1 we fix basic notations and in particular we recall the Bott theorem
for homogeneous vector bundles on Grassmannians.

In section 2 our main result is theorem 2.1. In particular we have the following
splitting criterion:

Let B be a vector bundle on Gr (k, #). Then F splits if and only if

i1

Hi{(Gr (k, n), \Q*® ...@}{Q*@E(t)) =0 Vi .,
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such that 0<ty, ., b, <n— k, s<k; Y€ Z; Vi guch that 0 <i< (k + 1)(n— k) =
= dim Gr (k, n) where @ = quotient bundle on Gr (%, n), @*= dual of Q.

When £ =0 or ¥ =n—1 then Gr (k, #n) =~ P and we get exactly the Hor-
rocks criterion. Obviously in the statement above we can replace Q* by @ (it is suf-
ficient to apply Serre duality and observe that K splits if and only if E* splits).

Then we specialize to the case: rank # = 2. In this case, by a simple argument
involving the Koszul complex of & line in the Grassmannian, we are able to prove
that the bundle E is uniform when finitely many suitably chosen ecohomology groups
are zero (theorem 2.9). On the projective plane this result was proved in [18]. Uni-
form 2-bundles on Grassmannians have been classified by VAN b VEN [24] and
Guyor [11]. So our result implies a strong improvement of the splitting criterion
quoted above. When the Grassmannian is & projective space, we get another proof
of a result of Chiantini and Valabrega [7].

In gection 3 we use some results from [20]. In {20] we have defined some vector
bundles on the quadric ¢, which are the natural generalization of the universal
bundle and the dual of the quotient bundle on @, ~ Gr (1, 3). We have ecalled
them spinor bundles.

Spinor bundles appear in the main result of this section which is theorem 3.3.

In particular we have the following splitting criterion:

Let E be a vector bundle on @, {(n>3), let § be & spinor bundle on §,: Then ¥
splits if and only if

HQ., Et) =0 for 2<i<n—1
Hi{Q,,SQE@) =0 for l<i<n—2, foralltecZ.

When rank # = 2, the analog of theorem 2.9 for quadrics is theorem 3.8,

1. — Notations and preliminaries.

For basic facts about vector bundles we refer to [17]. When X = Gx (%, n) or
X =@, (n>3) we have Pic (Gr (k, n)) = Pic (Q,) = Z. So it is natural to keep
the notation E(f) = E ® Ox(t) for t € Z when K is a vector bundle on a Grassmannian
or on a quadric. Ox

The first Chern class of B can be considered as an integer.

We use the definition of stability of Mumford-Takemoto.

We denote by E* the dual of the vector bundle Z.

It Z is a subvariety of X we denote B(X) 0, by E|;. J,is the ideal sheaf of Z.

Ox

If F is a sheaf on X, we denote by hi(F) the dimension of the complex vector
space Hi{(X, F). We shall need the following lemma:

Lmwyara 1.3, — (i) Let
0—>4,»>..—->4,—>B—>0

be an exact sequence of sheaves on a variety X, let » be an integer > 0.
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If H+-4X, A,) =0 for ¢ =1, ...,n then H'(X, B) = 0.
(ii) Let

0 ——>Ana—"> —>A1g‘—>B—>O

0—>A,2 ... ——>A1a—’> B =0

be two exact sequences of sheaves on a variety X.

If
HiX,A)=0 fori=1,..,n—2
and
HYX,4,)=0 or H*YX,4,4)=0
then

HY(B) = HYB').

ProoF. — We get (i) cutting the sequence into short exact sequences, or by a
spectral argument.
Curting the first sequence of (ii) into short exact sequences, we get:

(1) 0 - Kera, - A4,"> B -0
(2) 0 — Kera, = 4, - Kera, -0

and so on until: 0 — A,%> 4, , — Coker (a,) — 0. Then

1*(B) = (from (1))

= 1%(4;) — h(Ker a;) + h'(Ker a,) = (from (2))

= h*(A,) — ho(d,) + hY(4,) - BO(Ker a,) — h*(Ker a,) + h*(Ker a,) .
Thus, after n steps, we get h(B) as a sum involving only some cohomology groups
of the sheaves 4, (in fact Kera,= 4,).

This gives the thesis.
In the ecase (ii) of lemma 1.1 we can prove in the same way a little more:

Levma 1.2. ~ Leb

(3i) 054, % .. >4,% B->0
(3i) 0>A4,% .. > A,% B >0

be two exact sequences of sheaves on a variety X.
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Then:

10(B) — 19(B))| < 3 h(4)

i=1

n—2
[18(B) — W(B")| < 3 Wi(4.) + b (4,).

ProOF. — Set yi(F) = Y (— 1)'h/(¥F) for a sheaf F.
i=0

Then, cutting (3i) and (3ii) into short exact sequences as in lemma 1.1 we have:

W(B) — (B < y!(Ker a,) — y*(Ker a,) + h*(4,)

and:
1 (Ker a;) — yi(Ker a,) < g+ (Ker a:,) — g+ (Kera,,,) + bt (d)

fori=1,..,2— 1.
The same inequalities are true interchanging «; and a,,:,.
As Kera, ;= Kera, ,= A,, it follows that

n—1
W(B) — 1(B')| < 3 hi(A.) .

d=1
In the same way we can prove the other inequality.

On, the Grassmannian Gr (k, #) we have the canonical exact sequence
4) 0>8—>09"" >0 —>0.

The universal bundle 8 has rank &k + 1, the quotient bundle ¢ has rank » — k.
We have ¢(8)=—1, ¢(@)= -+ 1. Considering the isomorphism Gr (%, n) ~
~ Gr (n -~ &k — 1, n), the canonical exact sequence on Gr (n — k — 1, ) is the dual
sequence of (4).

We consider Gr (k, n) as the complex homogeneous manifold SL(n - 1)/P where

P= {[zl 2 ] € 8L{(n + 1): hye GL(k + 1)} (see [26]) .
3 4,

Blm +1)={Ade Mn +1):tr A = 0} is the simple Lie algebra of SL(n + 1)
and ) = {Ae8l(n 4 1): 4 is diagonal} is a Cartan subalgebra of 3l(n + 1).
Let e;; € gl(n 4 1) be the matrix with the (i, j) entry equal to 1 and all other

entries equal to zero, {e;].} the dual basis of {e;}. Then: x;= 6€;;— €411 fOT
i=1,..,n give a basis for ). We call 4,,..., 4, €hH* the dual basis of #, ..., @,
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and set

! f
0= €;,i— €111 € HF .

It is well known that (1;, a;) = 8,; where 1/(2(n + 1))(, ) is the Killing form in h*
and &, is the Kronecker symbol.
®yy .oy 06, ZiVes @ basis of the root system @ of 3{(n 4 1) with respect to ¥.
It is well known that @ = &+ U @~ where

Ot = {o; 4 otz + - - 1 1< <0}

is the set of positive roots and ¢ = — O+

n
A weight 4= Y n;4; (n,€ Z) is called singular if (4, «) = 0 for at least one
i=1
o€ @D, and regular with index p if it is not singular and there exists exactly p roots

o€ @ such that (4, a)<<0. We set: 6 =3 L,=%1> «

. i=1 aedt
A homogeneous vector bundle £, of rank r on Gr (k,n) =~ SL(n + 1)/P is by
definition & bundle arising from a representation ¢: P — GL(r). In particular a
homogeneous bundle satisfies the condition: f*H, ~ H, Vfe Aut (Gr (k, »))°, where
Aut (Gr (k, n))* is the connected component of the group of all automorphisms of
Gr (&, n).
We recall the fundamental theorem of Bott ([5], th. IV’, [26])

THrorREM (Bott). -~ Let E, be a homogeneous vector bundle on Gr (k, n) ~
~ 8L(n + 1)/P, defined by an irreducible representation g, and let A be the highest
weight of Dg: p — gl(r).

(i) If A - ¢ is singular then H(Gr (k, ), B,) = 0 Vi.
(ii) If A + 0 is regular with index p then Hi(Gr (k, n), Ho) = 0 for all i~ p

and the dimension of Hr(Gr (k, »), Ho) is the dimension of the representation of
8l(n + 1) with highest weight s(1 4 §) — 8. Here, s(4 -}- §) denotes the uniquely
determined element of the Weyl chamber of 3{(» + 1) which is congruent to A + §
under the action of the Weyl group of reflections #; with respect to the hyperplane
orthogonal to «;. _|
We have
, REZ 1]
rilh) = { Aim1— Ay Aita t=7j

where we set Ay = A, == 0.

K3
The bundle A@ (i-th exterior power of @) belongs to the irreducible representa-
tion with highest weight 2.
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Levmma 1.3, - Let 0 < i< dim Gr (k, n) = (k - 1){(n— k).
If s<k

Hi(Gr (k, n),/tQ@ ...®KQ(t)) =0 VteZ, for 0<iy, ..., —k

C i hy= = iy = J;
@ ihez t=—mn-+7j—1;
HGr (b, 2, \ @D - O\ QW) = i =(n—k—j)k+1) for 0<j<n—k;

0 otherwise

ProOF. — The bundle A @& ... ® A @ belongs to a representation not irreducible
but fully reducible. In fact @ is given by the representation

P — GL(n—%)
by O
[hs h4] > hy
which is a surjective projection. So we limit ourselves to studying the representa-

tions belonging to A @ ® ...® A\ @ as GL(n — k)-representations (i.e. homomorphisms
GL(n— k) — Aut (V), V a vector space).
The bundle @ belongs to the standard representation ¢ of GL(n— k) and

N is i1 is
AQ® ...RQA\Q belongs to A¢p® ... A¢. By Littlewood-Richardson rule we can
decompose these representations into a direct sum with each summand isomorphic
to Q™" for some n,>...>n,. We have found in [4] (pag. 879) a clear explana-
tion of how to handle Littlewood-Richardson rule.

We consider Q™" ags a bundle on Gr (k, »). It corresponds to & Young diagram

with the i-th row given by n, elements.
i times

In particular QV'~'= AQ, @°= §7Q (p-th symmetric power of @). As
-k
det @ = A @ = 0(1), we have:

n—Fk—r times

Qn""""'(t) — in-i—t,...,nrH, [ 790N .

It is convenient to set n,= 0 for ¢ > r.
[ is
If Q™ is a direct summand of AQ® ...® AQ then n;<s Vi. This follows
i
by Littlewood-Richardson rule. In fact A @ corresponds to a Young diagram with 4,

rows each of them with only one element. AQ® A @ decomposes in some summands,
e-ch of them corresponds to a Young diagram consisting of rows with at most two

elements.
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is in

Thus, AQ® ... ® \@ decomposes into summands, each corresponding to a Young
diagram consisting of rows with at most s elements.

Tt is well known that the highest weight of the irreducible representation Q"
is A= A(ny— my) + As(ng— mg) + ... + A,m,. A reference for this fact is [12] theo-
rem A7, where h, is, in our notation, equal to A,— 1.

Observe that r<n— k = rank . We recall that the line bundle O(f) (e Z)
belongs to the representation with highest weight t4,;.

Let first s<k. Then n;<Fk, in particular n;— #;.4,<k. Then we claim that
A+ th,p -+ 8 is a singular weight for — n — n,<ft<— 1 — ni, is regular of index 0
for t>— n,, is regular of index (k¥ 4 1)(n — k) for i<—n—n,—1.

For, let first — n — m<t<— n -+ k—n;. Then,

(A =+ tApez =+ 0y 0ts 4 oo + “—t—-nl) = (A &+ ... + a——i—nl) +
+ (FApzy 01+ oo a—i—nl) + (0, o+ oo + “—t—nl) =m+t4(—t—mn)=0,

g0 that A4 - 1A, -+ J is singular.
Let now —n -+ k— n, + 1<t<—1— n,. Consider the following decreasing se-
quence of integers:

a, = A+ thhatdout+ . Fop)=m+t+n—F
oy = (A+thrt Oyoat it opy) =mt+t+n—-k—1

Qp-p = (;L + t}-n—k + 6’ “n—k) = Hpp + ? + 1
We have ,
0<tsy— =0,y —n;+1<s 1<k 41

By hypothesis: a,>>1, @,,<0. Let a,., be the first element of the sequence which
is nonpositive. Then a;>1, so that:

—k<a;,<0.
Thus

(}“ "l" tln—k_}_ a’ Oty + _I" Kp—r—a ) = (2' + tln—k'i_ 6, Xjt + + ‘xn—k) +

41

=01 —CGj+1
+ le (A F P+ Oy Opiory) = Gja + Z l=aun— =20,
= F=1
so that A + tAd,—.+ 9 is singular.

Ift>—n,, then (A -+ td,+ 6, ®) > 0 for each ae P+, so that A+ td,r+ 0
is regular of index 0 (for all s}, If t<— n— n;— 1, then (A + td,p- §, ) <O
exactly for o« = a;-- ... + a; with 1<i<n — k<j<n, and positive otherwise. Then
A+ thp-r+ 6 is regular of index (kK + 1)(n— k) (for all s).
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Thus, if s<k, we get the result from Bott theorem.

If s=%+ 1, we point out that when — n — %, <t<— 1 — #n, the proof above
shows that 4 -+ ¢4, § is singular for @, ., — k— 1.

When a;.,= — k—1, then ¢,=1 and

Wj— Ny = Kk + 1,

80 that the corresponding Young diagram has a row with exactly ¥ -+ 1 elements
more than the above one.
After twisting by some line bundle, the corresponding bundle Q™" gatisfies
the condition:
{ 0<n,<k+1 Vi
Ny — Mg =k + 4
80 that
" — P10 1gigy
i 10 j4+1<i
k+1 times

7 j
@™ +" is then a direct summand of A Q® .0 A @.
Consider the corresponding weight:

A= (b +1) A+ they with teZ.

When t changes, 4 - & is regular of index different from 0, (k4 1)(n — k) ounly
when t = — n + j— 1, and in this case ((k + )4+ (—n 4+ j—1)Ansit 6, 1) <O
exactly when o = a; + g+ ... + &, with j+1<i<n—k<p<n, so that the
index of (6 -+ V)4, +(—n+-j—DA, -+ dis (n—k— (k1)
By applying Bott theorem again, it remains only to show that (k- 1)4,-+
+{—n-+j—1)Ar- 8 is congruent to 4 under the action of the Weyl group.
This is explained by the following example:

Let n =6, k=2, j =1 so that:
f+Dd+(—n+i—Dhp+ 0=4h+ bt =5kt b+ 4.
We apply to this weight a sequence of reflections (elements of the Weyl group)
obtaining:
(apply #): 4+ A— 4k -+ 54— 4h+ A
step 1) (apply 75): 4A, -+ A— 4ds+ A+ 44— 3
(apply 76): 4l A—4hb+ A+ A+ 34
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(apply 7'3): 4:21 - 3}.2 + 413 - 32,4 + 2.5 + 316
step 2) (apply 7.): 44— 3A+ A+ 34,— 24,4+ 34
(apply 75): 44 —3k+ AL+ AL+ 24+ 4
(apply r): A +34— 2L+ A+24+ A

step 3) (apply 73): A4 42— A+24+ A
| (@pply 71): At At b+ W+ A+ A=94.

In general, if j = »n— k the claim is obvious.
It j<n—Fk we apply to (k-+-1)4;+ (—n +j—1)As+ 6 the following se-
quence of reflections:

step 1) 71000y 1107, (this is sufficient if j =n— kF—1)

step 2) Tpe10+0eOF 00—y (this is sufficient if § = n— k— 2)

step Bn—k— ) #54p10...07:490% 4.

In the end we obtain 6, as the reader can convince himself.

This completes the proof of lemma 1.3.

As a corollary of lemma 1.3 we get the following well known statement (look
at the duality Gr(k,n) ~ Gr(n—k—1,n)):

Prop. 1.4. — Let 0 < i < dim Gr (k, )

(i) We have H(Gr (k,n), O(t)) =0 Vie Z

C k=0t=—m i=n—1

(i) H¥(Gr (k, n), Q1)) 0  otherwise

fl

C kt=n—-1t=—mn t=n—1

H¥(Gr (k, n), 8*(t)) = {0 otherwise .

2. - Splitting criteria on Grassmannians.

Consider now the problem of finding some cochomological conditions for a vector
bundle F on Gr (k, #) that are equivalent to the splitting of .

By prop. 1.4 we get that the condition H¥(Gr (k, n), E(t)) = 0 for all ¢{e Z, for
0 < i< dim Gr (k, ») is always necessary but is sufficient only when the Grass-
mannian Gr (k, #) is isomorphic to a projective space (i.e. k=0, n—1). So it is
natural to look for more vanishing conditions. '

The answer is given by the following theorem.
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TaroREM 2.1. — Let ¥ be a vector bundle on Gr (%, »).
The following conditions are equivalent:
a) B splits

b) HY(Gr (ky n)y AQ*® ... ® A Q*® B(t) = 0 Yiy, ..., 4, such that 0<iy, ..., is<
<n—Uk, s<k, Ve Z, Vi: 0 <i<(k + 1){(n— k) = dim Gr (k, n)

0) HA{Gr (b, my AQ*® . @ A Q* @ T(W) = 0, V€ Z, Vi, oy iy 6 5t

Din<i< Y tp+ dimGr (k— s, n— )

L n=1 n=1

0<i, 0<éy,..,t,<n—Fk
0
where we set, \@Q*= 04, dimGr(p,¢) =0 if p < 0.

Proor. — a) = b) It follows from lemma 1.3 and Serre duality as cohomology
commutes with direct surns.

b) = ¢) is trivial, because if s> & condition ¢) is empty.

¢) = a) The proof is by induction on % and follows the pattern of the proof
of Horrocks criterion given in [3].

For & = 0 the implication is exactly the Horrocks criterion on P». Consider
now a generie section s of § (@ is globally generated): it has zero locus Z ~
~ Gr{(k—1,n—1). Observe that @|; ~ Q,. The first step in our proof is to show
that E|; splits. In order to use the induction hypothesis, we claim that

H(Z,ANPR..QNQ*QEBEW)) =0, VteZ, Vii..j,i st
{zjn<i< S ju-t dimGr(h—1—s,n—1— s)
i>0.

S

For, we consider the Koszul complex of s, after tensoring it by H(t):

k-1

6) 0 NQPREO > A CREH) .
2
- \@*® E(t) - @*® E(t) — E(t)|]z— 0.
This sequence is exact.

71 is
We tensor (5) by N@*® ...® A @*.
Our hypothesis together with lemma 1.1, (i) proves our claim. So we can con-



GIORGIO OTTAVIANI: Some extensions of Horrocks criterion, efe. 327

struct & splitting bundle F on Gr (k, ») and a isomorphism o4t F|; — B, o€
€ HYZ, (F'* ® B)|z).

Our second step is to show that «, can be extended to an isomorphism
o€ H(Gr (k, n), F*®@ E). The obstruction to this extension lies in H(Gr (k, n),
1, ® F*® E).

The Koszul complex of s gives an exact sequence:

n—i 2

(6) 0> A\NQ*—> .. N\NQ@*—>Q*—>J,—0.

We tensor (6) by F*& E.
Our hypothesis together with lemma 1.1, (i) gives:

HY(Gr (%, m), 3, Q F*@ B) = 0.

Then there exists a morphism o: F' — E, and then a morphism: det «: det F' —
— det E. We obtain

det o € H(Gr (k, n), (det F)* ) det B) =

= HY(Gr (k, n), O(0,(E) — a:(F))) = HYGr (k, n), Ogyem) = C .

Then det « is a constant; as it is nonzero on Z, it is nonzero everywhere on Gr (k, ).
Thus « must be an isomorphism. q.e.d.

REMARK 2.2. — Theorem 2.1 is useful if & + 1<n — k. Otherwise we can perform
the duality Gr (n — k— 1, n) =~ Gr (k, n) and use the dual of theorem 2.1 with §
at the place of Q*.

REMARK 2.3. — The computation in lemma 1.3 for s = & 4- 1 shows that the bound
s<k in (b) of theorem 2.1 is sharp.

ExAmPLE 2.4. — Let F be a vector bundle on Gr (1, 4). Theorem 2.1 says that E
splits if and only if:

Hi(Gr (1, 4), B(t)) = 0 for 1<i<5, for all te Z
HiGr (1, 4), 9*® B(t)) = 0 for 1<i<3, for all teZ

2

HiGr(1,4), AQ*Q®E@®) =0 for 2<i<4, for all te Z.

On Gr (1, 3) = @, a better criterion will be found in section 3 (theorem 3.3).
EvAxs and GRIFFITH have proved in [8], th. 2.4, that if F is a vector bundle on P»
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and H( P~ B(t)) = 0 for all ¢€ Z, for all 4 such that 0 < i < rank F, then B splits.

This improves Horrocks criterion when rank ¥ is small.

Using the result of Evans and Griffith, by & proof similar to that of theorem 2.1,
we obtain the following:

THEOREM 2.5. — Let ¥ be a vector bundle on Gr (k, »). The following conditions
are equivalent:

a) H splits

b) H{(Gr (b, n), NQ*R...® /{Q*@E(t)) = 0 for all teZ, Y4y, ..., 14,, ¢ such that:

S in<t < Y i, -+ min {rank B, dim Gr (k— s, n — s)}
n=1

#=1
0<, 0<ty,y vy ts<n—1Fk.
i
We recall now that Horrocks gave the following characterization of the bundle A @*
on P (recall that @ ~ TP*(—1) = (2'(1))* on Pr):

i
B~ (A @*)® if and only if (n>2):

E does not contain any line subbundle as direct summand, and

G ifi=j, t=—]

mi(®r, B) = { 0  otherwise.

We obtain the following result (for %>>2) exactly in the same way we obtained
theorem 2.1:

THEOREM 2.6. ~ Let j such that 1<j<n— k— 1, and let k>2. Let H be a vector
bundle on Gr (k, n). The following conditions are equivalent:

i
a) B = (A\QH®;
b) E does not contain any line subbundle as direct summand and:
0 Yiy, ..., i, such that s<k,

0<iy,y ny to<n— k, for all 1€ Z,
Vi: 6 < ¢ < dim Gr (%, »)

A b @ with the only exception s = k,
HH(Gr (&, n)y AQ*D .. DN\ Q* @ B() = i= ==y 1 = j( + 1),
t=—j
C it a.=i=d, s =h

i=jk+1), t=—79;
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¢) B does not contain any line subbundle as direet summand and:

Hi(Gr (k, n), /\Q*Q O/\Q*QE )) =0 Viy, .., 4,4 such that:

i, <t< D i+ dimGr(k—s,n—s)
n=1

n=1
0<id, 0<iyy vuny ts<n — k&,

with the only exception s =F&, i,= ...=¢,=§, i =jk + 1), t =—j

k times

H®D(Gr (k, n) /\Q*Q Q/\Q*@E —j)=Cr

n=-T—3i

Hi(Gr (k, n), /\ RO N @PRE) =0 for l<i<n—k.

n—k—1

ReMARK 2.7. — As @ = A Q*(1), theorem 2.6 gives also a cohomological char-
acterization of the quotient bundle.

From now on, we specialize to the case rank F = 2. We point out that in this
case: B* ~ FH(— ¢,(B)), regarding ¢,(F) as an integer.

It is well known that if 7 is a line on Gr (k, n) (i.e. a Schubert cycle of dimen-
sion 1, consisting of all P* such that P¥~'c P*c PE*! with P!, P! fixed sub-
spaces of P7) then Ef, ~ 0,(p)® O.(g) with p + q = ¢,(E).

When p, ¢ do not depend on the line I, the bundle ¥ is called uniform. VAN DE
VEN[24] and Guyor [11] have shown that uniform 2-bundles always split on Gr (%, n)
(n>3), except in the case k = 1 when also the 2-bundle 8(f) is uniform, and k =
= n— 2 when also the 2-bundle @(¢) is uniform.

Let us consider the bundle

F = Q®k® Oa)@n—k—l

F iy a globally generated vector bundle of rank (k¥ +1)(n — k) — 1. Note that
det 7 = O(n — 1).

A generic section of F vanishes on a line I, and the following Koszul complex
is exact (we set d = (k -+ 1)(n — k)):

d-—1

() 0 - A\F*— .. ——>/\F*~>F*~—>OGE->Ol—>O

We recall also that twisting by O(f), we can suppose that ¢(F)=0 or
6 (F) = — 1. In fact F iy uniform if and only if E(t) is uniform. A 2-bundle with
¢(F) =0 or — 1 is called normalized.

Observe that an iterated application of the canonical decomposition

n

/\ (4@ B) =P ( /\ A® /\ B) where A, B are vector spaces,

=0
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i

shows that /\ I'* is the direct sum of some bundles isomorphic to

/\Q*O QKQ*(% 7) With0<§rj<i.

i=1 i=1

Lemma 2.8. -~ On Gr (1, n), we have, for all 4,j such that 0 <7< 2n— 2,
Ij<n—2, for all te Z:

H¥{Gr (1, n) /\Q*QS )) =
with the only exceptions:

HY(Gr (1, n), Q*® 8) = H3(Gr (1, ), /\ Q*® 8(1 — n)) =

Proor. - It is convenient to use Serre duality first. Then the lemma is a stan-
dard application of Bott theorem. In fact 8* belongs to the irreducible representation
with highest weight 1,. )

We get the following

THEOREM 2.9. — Let F be a normalized 2-bundle on Gr (&, n) (n>3).
(i) If ¢,(&) = 0, F splits if and only if either one of the following holds:
a) Hi(Gr (%, n) i/—\lp*®E~ 1)) =0 for i =1,..., d— 2;
o'y H(Gr (k, n), /\F*@E 1)) =0 for i=2,..,d—1.
(ii) If ¢,(E) = — 1, F splits if and only if either one of the following holds:
b) Hi(Gr (&, n) /\F*QE(— 1)) =0for i=1,..,d—1;
b') HY(Gr (k, n), /\ F*@E) =0 for i =1,..,d—1.

({ii) If e (F) = — 1, ¥ splits or k = 1 and F ~ § if and only if either one of
the following holds:

b1) HYGr (k, n), /\F*@E 1)) =0for i=1,..,d—2;
HoY(Gr (k, n), B(—n)) = 0

bl') Hi(Gr (k, n) /\F*QE) =0 for ¢ =2, ..,d—1;
HY(Gr(k,n), B) =0

(iv) If ¢,(B) = — 1, E is uniform if and only if either one of the following
holds:

¢y Hi{Gr (k, n), /\F*@E)wofor@._l yd—1
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i

o) H{Gr (b, n), A\ F*@ B(—1)) = 0 for i =1,..,d—1

d)y Hi(Gr (k, n):;\lp*@E) =0 for i=1,..,d—2;
H+YGr (k, n), B(—n 4+ 1)) =0

@) HY(Gr (k, n), ;\F*®E(— 1)) =0 for i = 2, ..., d—1;
HY(Gr (k, n), B(— 1)) = 0

Proor. — First observe that «) and «'), b) and b') and so on, are equivalent
i d—i—1
by Serre duality and by the isomorphism A F*~ A F® det F* (we recall that
Kggom = 0(— n—1) is the canonical bundle).

If E splits, all conditions hold by theorem 2.1. If k=1 and F ~ §, condi-
tion b1) holds by lemma 2.8. If E is uniform, conditions ¢) and d) hold by theo-
rem 2.1 and lemma 2.8.

Let now ¢, (%) = 0. If a) holds, we want to show that ¥ is uniform. We ten-
sor (7) by E(— 1). Then from our hypothesis and from lemma 1.1 (ii) we get that
if 1,1 are any two lines in Gr (k, n):

He(l, B(— 1)|,) =~ H(V, B(— L),,) .

This means exactly that Z is uniform.

Since the bundles S(tf), @(f) have odd first Chern class, then they are not iso-
morphic to E. So F must split, as claimed.

Let now ¢,(E) == — 1. The proof is similar, but in order to show that ¥ is uni-
form, it is sufficient to verify that:

®) H(l, B|,) = B, B,
or:
9) Ho(l, B(— 1)})) = BV, B(—1)|2)

for ,1' any two lines in Gr (k, »). From b) or bl) we get (9). From c) or d) we
get (8). In case b) the possibilities F ~ S for k=1 or E =~ Q* for k =n— 1 are
excluded by lemma 2.8 and lemma 1.3. q.e.d.

By the well known Hartshorne-Serre correspondence between veetor bundles
of rank 2 and 2-codimensional subeanonical smooth subvarieties (see [25] theorem 2.1
and 2.2) we can state Theorem 2.9 in the following equivalent form (for simplicity
we state only the cases a), b) and b1)).

THEOREM 2.10. — Let X c Gr (k, ) be a smooth subvariety of codimension 2.
Suppose that Ky~ Oy, @)|x for some aeZ (ie. X is a-subcanonical).
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(i) If & + n 4 1 is even, then X is a complete intersection if and only if one
of the following holds:

0 fori=1,..,d—2

i—1 O |
a) H (Gr ey m)y \ F*Q Iy (“_tf_:))
0 fori=2,..,d—2;

HI(Gr (k, m), Iz (ﬁ%:ji)) =0

I

a') Hi(Gr (k, n),/i\F*’@ Iz (?’ig‘b:}’))

(i) If @ + » - 1 is odd, then X is a complete intersection if and only if one
of the following holds:

a+n—2

3 )):0 for i=1,...,d—2;

b) H (G—r (&, ), A F*® JX(

Hl((Gr, ky ), F*® 3 (“ ;'f ")) =0

by H (Gr ey m), \ F*® Iy (“ ;f “)) =0 fori=1,.., d—2;
HI( Gr (T, n), s (f”i?—"z)) =0
(iii) If @ -~ n -+ 1 is odd then X is a complete intersection or k=1 and X
is the zero locus of a section of S(7) if and only if one of the following holds:

& +n—2

3 )):0 for i =1,...,d—2;

Hl(Gr (k, 1), Iz (i{iﬁ)) —0

i—1
b1) H (Gr (I, n)y A F*® sx(

2

2

—2
i (Grr (k, n), 3x (a n)) = H! (Gr (b, n), Jx (a_tg_“_)) —)|

b2) Hi(Gr(k, m)y A F*Q JX(“ T ")): 0 fori=2,..,d—2;

2

ProoF®. — The normal bundle of X in Gr (%, n) extends to a 2-bundle E on Gr (%, n),
with ¢,(B) = a 4+ » + 1, Blx = Nyjgeem-
We have an exact sequence

(10) 0>05q—FE—>da+n—1)—0.

We normalize B after twisting by O(— (a + n + 1)/2) when a - n 41 is even,
and by O(— (@ -+ # + 2)/2) when a 4 » - 1 is odd. Then, we can tensor (10) by
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suitable wedge powers of F*, and then we apply theorem 2.9, lemma 1.3 and Serre
duality.

REMARK 2.11. — When k= 0 or k= n— 1, the Grassmannian Gr (%, #) is iso-
morphic to the projective space Pr. In this case F*= O(—1)®""! and in theo-

rems 2.9 and 2.10 we can read Op.(— ¢) in place of A\ F*

Condition @) is exactly Cor. 1.8 (i) of [7] (our proof is different).

On P conditions b) and b1) of theorem 2.9 are equivalent (observe that in this
case we can ask that b or bl) be fulfilled only for i = 1, ..., [#/2] by Serre duality),
and are exactly Cor. 1.8 (ii) of [7]. '

Condition ¢) is weaker than Cor. 1.8 (iii) of [7].

Condition &) is apparently new for n>4.

We want to point out the following

THEOREM 2.12 (Sommese). — Let X c Gr (k, ») be a smooth subvariety of codi-
mension 2.

If n>6 then Pic (X) is generated by the hyperplane section. In particular X is
subcanonical.

ProoF. — In [21] ((3.5) and (3.6.3)) is proved that, if x, € X:

7;(Gr (ky n), X, ) =0 for j<n 4+ 1— 2 codim X
Then, by the relative Hurewicz theorem ([22] ch. 7 sect. 5.4)
H,(Gr (k,n), X, Z) =0 for j<n + 1— 2 codim X .

By (10), cor. 23.14, it follows that H(Gr (k, n), X, Z) = 0 for j<n + 1 — 2 codim X.

So in our hypothesis Hi(Gr (k, n), X, Z) = 0 for j<n— 3. As n>6, we get in
particular H¢(Gr (%, n), X, Z) = 0 for j<3. From the exact cohomology sequence
of the pair (Gr (k, n), X) it follows that HYX, Z) = 0 and that H*X, Z) = Z is
generated by the hyperplane section. Observe that by Hodge decomposition
HY{X, O5) = H¥X, O4) = 0. Now from the cohomology sequence associated to
the exponential sequence

0>Z—>0,->0%->0
we get the result.

Let E be a 2-bundle and let Ic Gr (k, n) be a line. If E|, ~ O,(a)® O,(b) we
define, as usual: :

15— a] if ¢,(¥) is even

1
e 2
dZ(E) = { %(lb _al __I_ 1) if CI(E) iS Odd

and d(E):= d,(E) for generic I
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THEOREM 2.13. —~ Let B be a 2-bundle on Gr (k, n). Let I, I’ be any two lines on
Gr (k,n). Let F = Q% @® 0(1)®*~1 Then the following inequalities hold:
d—1 ‘7;-—1
[d(B) — dy(E) <X b\ F*Q E(L))
=1

@

0E) — 2ol B)] < 3 W(A F* @ B(R) -+ 19=(p 7*© B(k)
1=1

Proor. — It is easy to check that, if
) ’lc ol 1’ <@,
then
h(H(E)]) = dy(B) + &k + [01(217})] 41,

Thus, for % in the range of (11) we have
|a(B) — d,(B)| = |ho(B(R)|:) — ho(E(R)]-)] -

Now it is sufficient to look at the Koszul complexes of I (which is (7)) and I’ and
apply lemma 1.2.

REMARK 2.14. ~ If s is the minimum integer such that h%(E(s)) = 0, then

_ [01<2E>] — s <d(B) <d(B)

for each line ! c Gr (k, n). This means that when # is « very unstable» (i.e. s < 0)
then the inequalities of theorem 2.13 hold for % in a wide range. Observe that
when E is not uniform, the theorem says that the right-hand sides of the inequal-
ities are nonzero.

3. — Splitting criteria on quadries.

We recall now from [20] the definition and some properties of spinor bundles onQ,.

Let 8, be the spinor variety which parametrizes the family of (& — 1)-planes
in @y, or one of the two disjoint families of k-planes in @,;.

We have dim 8, = (k(k + 1))/2, Pic (8;) = Z and h*(8, O(1)) = 2*. Spinor va-
rieties are rational homogeneous manifolds of rank 1[23]. When #n = 2k — 1 is
odd, consider Vo€ @y, the variety {P* e Gr (k— 1, 2k)|# € ** C Qu—}. This va-
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riety is isomorphic to S, and we denote it by (8;-;),. Then we have a natural
embedding

(Bp-1)e 2> 8 -

Considering the linear spaces spanned by these varieties, we have Yo € @y, a
natural inclusion H%(Sy-1)., O(1))* — H*(S:, O(1))* and then an embedding

81 Qgpmq — Gr (21— 1,2k — 1},
In the same way, when n = 2k is even, we have two embeddings:

8"t Qg — Gr (261 — 1, 26— 1)
8": @y —> Gr (2F1—1, 2v— 1)

If U is the universal bundle of Gr (2*1—1,2%*— 1) we call

s* U the spinor bundle on @y,

§'*U, "™ U the two spinor.bundles on @, .

As 8= P, 8,= P, it is easy to verify that on Q,~Gr(1,3) the two spinor
bundles are the universal bundle and the dual of the quotient bundle.

We summarize the results that we need in the following theorem (see [20]
theorems 1.4 and 2.3).

TEEOREM 3.1. — (i) Let &, 8” be the spinor bundles on @y, let i: Qs —> Qu
be a smooth hyperplane section. Then ¢*8' ~ i*§8" ~ § spinor bundle on Q..

(ii) Let S8 be the spinor bundle on Quyy, let i: Qu —> Qi be a smooth
hyperplane section. Then *8 ~ 8'® 8", where 8, 8" are the spinor bundles
on ng:

(iii) Let S be a spinor bundle on @,
Then:
Hi(@.,80) =0 for0<i<mn, forall teZ.
Consider now the problem of finding some cohomological conditions for a vector

bundle ¥ on @, (n>3) that are equivalent to the splitting of E.
It is well known that if & splits on @, then:

(12) HiQ,, B(t)) =0 for0<i<mn, ViecZ.

As in the case of Grassmannians, by theorem 3.1 (iii) we get that condition (12)
is too weak to force E to split.
So also in this ease it is natural to look for more vanishing conditions.
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LEMMA 3.2. — Let E be a vector bundle on @, (#>3), let 8 be a spinor bundle
on @,. Then F splits if and only if

Hi{Q., B(t)) = Hi(@., EQR/(P) =0 for 0<i<n ViecZ.

PROOF. ~ If B splits, we have see that Hi(Q,, B(t)) = H'(Q., E® 8(t)) = 0 for
1<ig<n— 1, for all 1€ Z.

For the converse, we prove first the result on ;.

If 1 is a line on Q,, then E|; splits by Grothendieck theorem, so there exists a
splitting bundle 7 on @, and a isomorphism «: F|;,— E[;, «€ H(l, (F*® B)|,).

We have the following exact sequence of sheaves on ¢, (it is the Koszul complex
of a section of 8%, § spinor bundle on ¢;):

(13) 0—+>9(—1)>8—=>3—>0.

The obstruction to extend « to HY(Q,, F*® E) lies in HY{Q;, F*Q E® J;). We
tensor (13) by F*X® E and we obtain the exact sequence:

0 >F*RQE(—1) >F*RERS +FRER I 0.
As F splits, by hypothesis:
HYQ,, F*QEQ@8) =0 HQs, F*Q@ E(—1)) =0
so that H(Qs, F*Q E®I,) = 0 and we can choose a homomorphism o': F — F
which restriets to « on I
As F and E have the same first Chern class,
det o€ H(Qs, O(61(B) — o(F))) = H*(Qs, 0) = C.
As det o is nonzero on I, it must be nonzero everywhere. Then « is an iso-

morphism, as we wanted.
If #>3 the result follows by induction on ». In fact, if

Hi(Qur, B(t)) =0 for 1<i<n, VieZ
H{(Qu, FQ 8() =0 for 1<i<n, VieZ

then from the exact sequences on @, (@, is a smooth hyperplane section):

0 — B(@E—1) - B(t) - Et)|g,—~0

0>EBi—1)@8 »>Bt)Q8 - HE)Q 8lg,~0  (or all teZ)
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and theorem 3.1 it follows that if S, is & spinor bundle on @, then:

H{(Q,, Bly,(t) =0 for 1<i<n—1 VteZ
HiQuy E® Solg, (1)) =0 for 1<i<n—1 VieZ.
By the induction hypothesis E|, splits then there exists a splitting bundle B on

Qn+: and a isomorphism «: B, — Hl|,,. As in the previous cases, the vanishing of
HY(Q .11, B(t)) Vte Z allows to extend « on @,., in such a way that F splits.

COROLLARY 3.3. — Let H be a vector bundle on @, and let @, c @, be a smooth
plane section. Then E splits if and only if E|,, splits.

Proor. — Cut @, with hyperplanes and use theorems 3.1, 3.2 and theorem B.
We can prove now our main result:

THEOREM 3.4. — Let E be a vector bundle on @, {(n>3), let § be a spinor bundle
on @,. Then FE splits if and only if
(i) H(Qn, B(t)) = 0 for 2<i<n—1 Vte Z;
(i) H(Qn, E® 8(t)) = 0 for 1<i<n—2 Vie Z.

ProoF. — It suffices to observe that in the proof of Theorem 3.2 the hypothesis
H'(Q,, E® 8(t)) = 0 is not needed and the hypothesis H(@,, B(!)) = 0 is needed
only to prove that if |, __splits then also £ splits, but this assured by Corollary 3.3.

REMARK. ~ Lemma 3.2 follows also from the following result, proved by KNGR-
RER, BUCHWEITZ, GREUEL and SCHREIER in [6], [15] conj. B remark 2 with com-
pletely different techniques.

THEOREM 3.5. — Let B be a vector bundle on @,. H¥(Q,, E(t))=0for 0 <i<n
Yte Z if and only if # is isomorphic to a direct sum of line bundles and spinor
bundles twisted by some O() (for » = 2 the line bundles must be of type O(, ¢)).

Looking at the previous theorem, we can give an elementary proof of the weaker:

THEOREM 3.6. — Let F be a vector bundle on @,,
(i) If n>3 and Hi(Q,, E()) = 0 for 1<i<n— 1, Yie Z, then E is uniform.
(ii) If » = 2 and HYQ,, B(t)) = 0 for all t€ Z, then F is uniform separately

on each family of lines on Q,.

Proor. — Let 8 be the spinor bundle on @,. For each line ! on , there is a
section of 8% which vanishes exactly on I. For any two lines 7, I’ tensoring by H(f)
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the respective Koszul complexes, we get the exact sequences:

0 —> Bt —1) - 8® B(t) - B(t) — E@)], 0,
0 = B(t—1) - 8S® E(t) — B(t) ~ B#)}, 0.

Considering the associated exact sequences of cohomology groups, it is an easy
matter to check from our hypothesis that (see lemma 1.1 (ii)):

Ho(l, Bt)),) ~ BV, BQ)|,) VieZ.

This means exactly that F is uniform, as we wanted.

For n>8 the result follows by induction on #» using the fact that a bundle on @,
which is uniform on every smooth hyperplane section is uniform.

For n == 2 the proof is similar.

We now specialize to the case: rank F = 2.

THEOREM 3.7. — Let E be a 2-bundle on @,, n>3, let § be a spinor bundle.
(@) I ¢(B) = 0, E splits if and only if

Hi(Qn, B(—i)) =0 for 1<fz<[g].

(0) Ife(E) = — 1, B splits if and only if

Hi(Q,, B(— 1)) =0 for 1<i<n— 2
H{Q., B(—i-+-1)®8) =0 for 2<i<n—1.

(¢) It ¢,(B) = — 1, E is uniform (and hence splits for »>5) if and only if:
Hi(Qw, B(—14) =0 for 1<i<n—1

Proor. — If ¥ splits or is uniform, all conditions hold. In fact, by [9], all uniform
2-bundles on @, (n>3) either split or are spinor bundles (up to tensoring by some
line bundle).

Observe that by Serre duality the vanishing of H¥(Q., B(— 1)) for 1<i<[n/2]
in, case {(a) is equivalent to the same condition for 1<i<n — 1. In fact, if ¢,(F) = 0
and ¥ is a 2-bundle, then F ~ ¥,

First we prove the result on @,: As in the proof of theorem 3.5, for each line
Ic @ we have an exact sequence:

0 —B(—2) > B(—1)® 8 - B(—1) > B(— 1), > 0.

Then each one of our hypothesis implies that A°(l, B(— 1)|,) = ho(V, B(— 1)},,) for
each lines 7, I’. This means that ¥ is uniform.
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It remaing to show that if ¢(#) = — 1 and
HYQ;, B(— 1)) = H*Qs, FQ 8(—1)) =0

then E splits (in fact the spinor bundle has odd first Chern class, so that there are
no problems in the case o(E) = 0).

It is sufficient to note that H*(Q;, S® 8(— 1)) = C (e.g. by Bott theorem) and
so the case F ~ 8 must be excluded.

If n>3 the proof is by induction on #, in the same way as in the proof of lem-
ma 3.2, using corollary 3.3. _|

As in the case of Gragsmannians, theorem 3.7 can be stated in the following
equivalent form (for simplicity we state only the case (a), (b)):

THEOREM 3.8. — Let X c @, be a smooth subvariety of codimension 2. Suppose
that Kz~ O (a)|x for some a € Z (i.e. X is a-subcanonical).
Let 8 be a gpinor bundle on @Q,.

(i) If # 4- @ is even then X is a complete intersection if and only if

Hi(Qn, Jx(” : “4)):0 for 1<i<[n2].

(ii) If » 4+ @ is odd then X is a complete intersection if and only if the fol-
lowing hold:

H"(Qn,i‘x(ﬁg—j—«i))zo for 1<i<n —2;
H"(Qm 3x(ﬁgj—lwi)®8) =0 for 2<i<n—1.

Proor. - By the Hartshorne-Serre correspondence [25], the normal bundle of X
in @, extends to a 2-bundle ¥ on Q,. As K, = O(—n), we have ¢(E)=n+ a.
We get an exact sequence

0 >0, —E —>Jx(n+ a)—~0.

We normalize E after twisintg by O(— (n + @)/2) when # -+ a is even and by
O(— (n 4 & 4 1)/2) when n 4 a is odd. Then, we apply theorem 3.7 and Serre
duality.

We want to point out the following:

THEOREM 3.9 (Barth-Larsen). — Let X c @, be a smooth subvariety of codi-
mension 2. If #>7 then Pic (X) = Z is generated by the hyperplane section. In
particular, X is subcanonical.
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Proor. ~ X is a codimension 3 smooth subvariety of P+,
Then, apply the Barth-Larsen theorem for subvarieties of P+ [16].

Exampre 3.10. — Let C be a smooth subcanonical curve in P* which is embedded
in a smooth quadric hypersurface Q.

If ;= Opi(a)|, with a odd, then € is a complete intersection of @, and two
other hypersurfaces of P* if and only if the restriction map

wfoo(5Y) ~m{eo(*5)

is surjective (i.e. C is ((& + 1)/2)-normal in Qa).

If K is & 2-bundle on @,, and I c @, is a line, define now d,(E) and d(F) exactly
as before theorem 2.13.

The proofs of the following two theorems are completely analogous to the proof
of theorem 2.13 and are omitted.

TEEOREM 3.11. ~ Let ¥ be a 2-bundle on @,. Let I, I’ be any two lines in @, and
let § be the spinor bundle on @;. Then the following inequalities hold:

4(B) — 4,(B)| < W(B(R)) + (B0 @ )

0u(1) — @, (B)| < B(B(R)) + BBk — 1))
for

Pt L <a(m).

!

THEOREM 3.12. — Let E be a 2-bundle on @,. Let [, I’ be any two lines in @, let §
be a spinor bundle on @, and let F = §*® O(1). Then the following inequalities
hold:

((E) — & (B)| < W B(R)) + W(F*@ B(R) + WA F*@ B()

du(B) — du(B)|<h*(E(k)) + h*(F*@ B(k)) + h*(B(k— 1))
for
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