Some Extensions of Horrocks Criterion to Vector Bundles on Grassmannians and Quadrics (*).

Giorgio Ottiaviani (**)

Abstract

Summary. - In this paper we prove that a vector bundle E on a grassmannian (resp. on a quadric) splits as a direct sum of line bundles if and only if certain cohomology groups involving E and the quotient bundle (resp. the spinor bundle) are zero. When rank $E=2$ a better criterion is obtained considering only finitely many suitably chosen cohomology groups.

A well known criterion of Horrocks ([13], [14], [17]) says that a vector bundle E on the complex projective space \boldsymbol{P}^{n} splits (i.e. is isomorphic to a direct sum of line bundles) if and only if the cohomology groups $H^{i}\left(\boldsymbol{P}^{n}, E(t)\right)$ are zero for $0<i<n=$ $=\operatorname{dim} \boldsymbol{P}^{n}$ and for all $t \in Z$, where $E(t)$ denotes $E \bigotimes_{\mathcal{O}_{P^{n}}} \mathcal{O}_{\boldsymbol{P}_{n}}(t)$.

Let $\operatorname{Gr}(k, n)$ be the Grassmannian of linear k-planes in \boldsymbol{P}^{n} and let Q_{n} be the smooth quadric hypersurface in \boldsymbol{P}^{n+1}.

In this paper we obtain some extensions of Horrocks criterion and some related result on $\operatorname{Gr}(k, n)$ and Q_{n}.

Gr (k, n) and $Q_{n}(n \geqslant 3)$ are the simplest rational homogeneous manifolds of rank one [23] besides \boldsymbol{P}^{n}.

Most of the results contained in this paper have been announced in [19].
I wish to thank Prof. V. Ancona, who posed to me this problem, for all his encouragement and for many helpful conversations.

The paper is divided as follows.
In section 1 we fix basic notations and in particular we recall the Bott theorem for homogeneous vector bundles on Grassmannians.

In section 2 our main result is theorem 2.1. In particular we have the following splitting criterion:

Let E be a vector bundle on $\operatorname{Gr}(k, n)$. Then E splits if and only if

$$
H^{i}\left(\operatorname{Gr}(k, n), \bigwedge_{1} Q^{*} \otimes \ldots \otimes \bigwedge_{\Delta}^{i_{s}} Q^{*} \otimes E(t)\right)=0 \quad \forall i_{1}, \ldots, i_{s}
$$

(*) Entrata in Redazione il 27 febbraio 1988.
Indirizzo dell'A.: Istituto Matematico «U. Dini», Viale Morgagni 67/A, 50134 Firenze, Italia.
(**) This paper has been written while the author was enrolled in the Research Doctorate of the University of Florence. Partially supported by MPI 40% funds.
such that $0 \leqslant i_{1}, \ldots, i_{s} \leqslant n-k, s \leqslant k ; \forall t \in Z ; \forall i$ such that $0<i<(k+1)(n-k)=$ $=\operatorname{dim} \operatorname{Gr}(k, n)$ where $Q=$ quotient bundle on $\operatorname{Gr}(k, n), Q^{*}=$ dual of Q.

When $k=0$ or $k=n-1$ then $\operatorname{Gr}(k, n) \simeq \boldsymbol{P}^{n}$ and we get exactly the Horrocks criterion. Obviously in the statement above we can replace Q^{*} by Q (it is sufficient to apply Serre duality and observe that B splits if and only if E^{*} splits).

Then we specialize to the case: $\operatorname{rank} E=2$. In this case, by a simple argument involving the Koszul complex of a line in the Grassmannian, we are able to prove that the bundle E is uniform when finitely many suitably chosen cohomology groups are zero (theorem 2.9). On the projective plane this result was proved in [18]. Uniform 2-bundles on Grassmannians have been classified by Van de Ven [24] and Guyor [11]. So our result implies a strong improvement of the splitting criterion quoted above. When the Grassmannian is a projective space, we get another proof of a result of Chiantini and Valabrega [7].

In section 3 we use some results from [20]. In [20] we have defined some vector bundles on the quadric Q_{n} which are the natural generalization of the universal bundle and the dual of the quotient bundle on $Q_{4} \simeq \operatorname{Gr}(1,3)$. We have called them spinor bundles.

Spinor bundles appear in the main result of this section which is theorem 3.3.
In particular we have the following splitting criterion:
Let E be a vector bundle on $Q_{n}(n \geqslant 3)$, let S be a spinor bundle on Q_{n} : Then E splits if and only if

$$
\begin{array}{ll}
H^{i}\left(Q_{n}, E(t)\right)=0 & \text { for } 2 \leqslant i \leqslant n-1 \\
H^{i}\left(Q_{n}, S \otimes E(t)\right)=0 & \text { for } 1 \leqslant i \leqslant n-2, \quad \text { for all } t \in Z .
\end{array}
$$

When rank $\#=2$, the analog of theorem 2.9 for quadrics is theorem 3.8.

1. - Notations and preliminaries.

For basic facts about vector bundles we refer to [17]. When $X=G r(k, n)$ or $X=Q_{n}(n \geqslant 3)$ we have $\operatorname{Pic}(\operatorname{Gr}(k, n))=\operatorname{Pic}\left(Q_{n}\right)=Z$. So it is natural to keep the notation $E(t)=E \bigotimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(t)$ for $t \in Z$ when E is a vector bundle on a Grassmannian or on a quadric.

The first Chern class of E can be considered as an integer.
We use the definition of stability of Mumford-Takemoto.
We denote by E^{*} the dual of the vector bundle E.
If Z is a subvariety of X we denote $E \bigotimes_{\mathcal{O}_{x}} \mathcal{O}_{Z}$ by $\left.E\right|_{Z} . J_{Z}$ is the ideal sheaf of Z.
If F is a sheaf on X, we denote by $h^{i}(F)$ the dimension of the complex vector space $H^{i}(X, F)$. We shall need the following lemma:

Liemma 1.1. - (i) Let

$$
0 \rightarrow A_{n} \rightarrow \ldots \rightarrow A_{1} \rightarrow B \rightarrow 0
$$

be an exact sequence of sheaves on a variety X, let r be an integer $\geqslant 0$.

If $H^{r+i-1}\left(X, A_{i}\right)=0$ for $i=1, \ldots, n$ then $H^{r}(X, B)=0$.
(ii) Let

$$
\begin{aligned}
& 0 \rightarrow A_{n} \xrightarrow{a_{n}} \ldots \rightarrow A_{1} \xrightarrow{a_{1}} B \rightarrow 0 \\
& 0 \rightarrow A_{n} \xrightarrow{a_{n}} \ldots \rightarrow A_{1} \xrightarrow{a_{1}} B^{\prime} \rightarrow 0
\end{aligned}
$$

be two exact sequences of sheaves on a variety X.
If

$$
H^{i}\left(X, A_{i}\right)=0 \quad \text { for } i=1, \ldots, n-2
$$

and

$$
H^{n-1}\left(X, A_{n}\right)=0 \quad \text { or } H^{n-1}\left(X, A_{n-1}\right)=0
$$

then

$$
H^{0}(B)=H^{0}\left(B^{\prime}\right)
$$

Proof. - We get (i) cutting the sequence into short exact sequences, or by a spectral argument.

Curting the first sequence of (ii) into short exact sequences, we get:

$$
\begin{equation*}
0 \rightarrow \text { Ker } a_{1} \rightarrow A_{1} \xrightarrow{a_{1}} B \rightarrow 0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
0 \rightarrow \text { Ker } a_{2} \rightarrow A_{2} \rightarrow \text { Ker } a_{1} \rightarrow 0 \tag{2}
\end{equation*}
$$

and so on until: $0 \rightarrow A_{n} \xrightarrow{a_{n}} A_{n-1} \rightarrow \operatorname{Coker}\left(a_{n}\right) \rightarrow 0$. Then

$$
\begin{aligned}
& h^{0}(B)=(\text { from }(1)) \\
& =h^{0}\left(A_{1}\right)-h^{0}\left(\operatorname{Ker} a_{1}\right)+h^{1}\left(\operatorname{Ker} a_{1}\right)=(\text { from }(2)) \\
& =h^{0}\left(A_{1}\right)-h_{0}\left(A_{2}\right)+h^{1}\left(A_{2}\right)+h^{0}\left(\operatorname{Ker} a_{2}\right)-h^{1}\left(\operatorname{Ker} a_{2}\right)+h^{2}\left(\text { Ker } a_{2}\right)
\end{aligned}
$$

Thus, after n steps, we get $h_{0}(B)$ as a sum involving only some cohomology groups of the sheaves A_{i} (in fact Ker $a_{n}=A_{n}$).

This gives the thesis.
In the case (ii) of lemma 1.1 we can prove in the same way a little more:
Lemma 1.2. - Let

$$
\begin{equation*}
0 \rightarrow A_{n} \xrightarrow{a^{n}} \ldots \rightarrow A_{1} \xrightarrow{a_{1}} B \rightarrow 0 \tag{3i}
\end{equation*}
$$

$$
\begin{equation*}
0 \rightarrow A_{n} \xrightarrow{a_{n}^{\prime}} \ldots \rightarrow A_{1} \xrightarrow{a_{1}^{\prime}} B^{\prime} \rightarrow 0 \tag{3ii}
\end{equation*}
$$

be two exact sequences of sheaves on a variety X.

Then:

$$
\begin{aligned}
& \left|h^{0}(B)-h^{0}\left(B^{\prime}\right)\right| \leqslant \sum_{i=1}^{n-1} h^{i}\left(A_{i}\right) \\
& \left|h^{0}(B)-h^{0}\left(B^{\prime}\right)\right| \leqslant \sum_{i=1}^{n-2} h^{i}\left(A_{i}\right)+h^{n-1}\left(A_{n}\right)
\end{aligned}
$$

Proof. - Set $\chi^{i}(F)=\sum_{j=0}^{i}(-1)^{i} h^{j}(F)$ for a sheaf F.
Then, cutting (3i) and (3ii) into short exact sequences as in lemma 1.1 we have:

$$
h^{0}(B)-h^{0}\left(B^{\prime}\right) \leqslant \chi^{1}\left(\operatorname{Ker} a_{1}^{\prime}\right)-\chi^{1}\left(\operatorname{Ker} a_{1}\right)+h^{1}\left(A_{1}\right)
$$

and:

$$
\chi^{i}\left(\operatorname{Ker} a_{i}^{r}\right)-\chi^{i}\left(\operatorname{Ker} a_{i}\right) \leqslant \chi^{i+1}\left(\operatorname{Ker} a_{i+1}\right)-\chi^{i+1}\left(\operatorname{Ker} a_{i+1}^{i}\right)+h^{i+1}\left(A_{i+1}\right)
$$

for $i=1, \ldots, n-1$.
The same inequalities are true interchanging a_{i} and a_{i}^{\prime}.
As Ker $a_{n-1}=\operatorname{Ker} a_{n-1}^{\prime}=A_{n}$, it follows that

$$
\left|h^{0}(B)-h^{0}\left(B^{\prime}\right)\right| \leqslant \sum_{i=1}^{n-1} h^{i}\left(A_{i}\right)
$$

In the same way we can prove the other inequality.
On the Grassmannian $\operatorname{Gr}(k, n)$ we have the canonical exact sequence
(4)

$$
0 \rightarrow S \rightarrow \mathcal{O}_{\mathrm{Gr}}^{\oplus n+1} \rightarrow Q \rightarrow 0
$$

The universal bundle δ has rank $k+1$, the quotient bundle Q has rank $n-k$. We have $c_{1}(S)=-1, \quad c_{1}(Q)=+1$. Considering the isomorphism $\operatorname{Gr}(k, n) \simeq$ $\simeq \operatorname{Gr}(n-k-1, n)$, the canonical exact sequence on $\operatorname{Gr}(n-k-1, n)$ is the dual sequence of (4).

We consider Gr (k, n) as the complex homogeneous manifold $S L(n+1) / P$ where

$$
P=\left\{\left[\begin{array}{ll}
h_{1} & 0 \\
h_{3} & h_{4}
\end{array}\right] \in \mathcal{S} L(n+1): h_{4} \in G L(k+1)\right\}(\text { see }[26])
$$

$\mathfrak{l l}(n+1)=\{A \in M(n+1): \operatorname{tr} A=0\}$ is the simple Lie algebra of $S L(n+1)$ and $\mathfrak{Y}=\{A \in \mathfrak{g l}(n+1): A$ is diagonal $\}$ is a Cartan subalgebra of $\mathfrak{g l}(n+1)$.

Let $e_{i j} \in \mathfrak{g l}(n+1)$ be the matrix with the (i, j) entry equal to 1 and all other entries equal to zero, $\left\{e_{i j}^{\prime}\right\}$ the dual basis of $\left\{e_{i j}\right\}$. Then: $x_{i}=e_{i, i}-e_{i+1, i+1}$ for $i=1, \ldots, n$ give a basis for \mathfrak{h}. We call $\lambda_{1}, \ldots, \lambda_{n} \in \mathfrak{h}^{*}$ the dual basis of x_{1}, \ldots, x_{n}
and set

$$
\alpha_{i}=e_{i, i}^{\prime}-e_{h+1, i+1}^{\prime} \in \mathfrak{h}^{*}
$$

It is well known that $\left(\lambda_{i}, \alpha_{j}\right)=\delta_{i j}$ where $1 /(2(n+1))($,$) is the Killing form in \mathfrak{Y}^{*}$ and $\delta_{i j}$ is the Kronecker symbol.
$\alpha_{1}, \ldots, \alpha_{n}$ gives a basis of the root system Φ of $\mathfrak{I l}(n+1)$ with respect to \mathfrak{H}.
It is well known that $\Phi=\Phi^{+} \cup \Phi^{-}$where

$$
\Phi^{+}=\left\{\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j}: 1 \leqslant i \leqslant j \leqslant n\right\}
$$

is the set of positive roots and $\Phi^{-}=-\Phi^{+}$.
A weight $\lambda=\sum_{i=1}^{n} n_{i} \lambda_{i}\left(n_{i} \in Z\right)$ is called singular if $(\lambda, \alpha)=0$ for at least one $\alpha \in \Phi$, and regular with index p if it is not singular and there exists exactly p roots $\alpha \in \Phi^{+}$such that $(\lambda, \alpha)<0$. We set: $\delta=\sum_{i=1}^{n} \lambda_{i}=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$.

A homogeneous vector bundle E_{e} of rank r on $\operatorname{Gr}(k, n) \simeq S L(n+1) / P$ is by definition a bundle arising from a representation $\varrho: P \rightarrow G L(r)$. In particular a homogeneous bundle satisfies the condition: $f * E_{\varrho} \simeq E_{\varrho} \forall f \in \operatorname{Aut}(\operatorname{Gr}(k, n))^{0}$, where Aut $(\operatorname{Gr}(k, n))^{0}$ is the connected component of the group of all automorphisms of Gr (k, n).

We recall the fundamental theorem of Bott ([5], th. IV', [26])
Theorem (Bott). - Let E_{ϱ} be a homogeneous vector bundle on $\operatorname{Gr}(k, n) \simeq$ $\simeq S L(n+1) / P$, defined by an irreducible representation ϱ, and let λ be the highest weight of $D_{\varrho}: \mathfrak{p} \rightarrow \mathfrak{g l}(r)$.
(i) If $\lambda+\delta$ is singular then $H^{i}\left(\operatorname{Gr}(k, n), E_{Q}\right)=0 \forall i$.
(ii) If $\lambda+\delta$ is regular with index p then $H^{i}\left(\operatorname{Gr}(k, n), E_{\varrho}\right)=0$ for all $i \neq p$
and the dimension of $H^{p}\left(\operatorname{Gr}(k, n), E_{\varrho}\right)$ is the dimension of the representation of $\mathfrak{3 l}(n+1)$ with highest weight $s(\lambda+\delta)-\delta$. Here, $s(\lambda+\delta)$ denotes the uniquely determined element of the Weyl chamber of $\bar{s}(n+1)$ which is congruent to $\lambda+\delta$ under the action of the Weyl group of reflections r_{i} with respect to the hyperplane orthogonal to α_{i}.

We have

$$
r_{j}\left(\lambda_{j}\right)= \begin{cases}\lambda_{j} & i \neq j \\ \lambda_{i-1}-\lambda_{j}+\lambda_{j+1} & i=j\end{cases}
$$

where we set $\lambda_{0}=\lambda_{n+1}=0$.
The bundle $\wedge_{\wedge}^{\wedge} Q$ (i-th exterior power of Q) belongs to the irreducible representation with highest weight λ_{i}.

Lemma 1.3. - Let $0<i<\operatorname{dim} \operatorname{Gr}(k, n)=(k+1)(n-k)$.
If $s \leqslant k$

$$
\begin{aligned}
& H^{i}\left(\operatorname{Gr}(k, n), \bigwedge_{i_{1}}^{i_{1}} Q \otimes \ldots \otimes \stackrel{i_{s}}{\Lambda} Q(t)\right)=0 \quad \forall t \in Z, \quad \text { for } 0 \leqslant i_{1}, \ldots, i_{s} \leqslant n-k \\
& H^{i}(\operatorname{Gr}(k, n), \wedge Q \otimes \ldots \otimes \wedge Q(t))= \begin{cases}C & \text { if } i_{1}=\ldots=i_{k+1}=j ; \\
& t=-n+j-1 ; \\
& i=(n-k-j)(k+1) \text { for } 0<j<n-k ; \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Proof. - The bundle $\bigwedge_{i_{1}} Q \otimes \ldots \otimes \bigwedge^{i_{s}} Q$ belongs to a representation not irreducible but fully reducible. In fact Q is given by the representation

$$
\begin{aligned}
& P \rightarrow G L(n-k) \\
& {\left[\begin{array}{ll}
h_{1} & 0 \\
h_{3} & h_{4}
\end{array}\right] \mapsto h_{1} }
\end{aligned}
$$

which is a surjective projection. So we limit ourselves to studying the representations belonging to $\xlongequal{i_{1}} Q \otimes \ldots \otimes \wedge Q$ as $G L(n-k)$-representations (i.e. homomorphisms $G L(n-l) \rightarrow \operatorname{Aut}(V), V$ a vector space $)$.

The bundle Q belongs to the standard representation φ of $G L(n-k)$ and $\bigwedge_{i_{1}} Q \otimes \ldots \otimes \wedge_{s}^{i_{s}} Q$ belongs to $\bigwedge_{i_{1}}^{\wedge} \varphi \otimes \ldots \otimes \bigwedge_{s}^{i_{s}} \varphi$. By Littlewood-Richardson rule we can decompose these representations into a direct sum with each summand isomorphic to $Q^{n_{1}, \ldots, n_{r}}$ for some $n_{1} \geqslant \ldots \geqslant n_{r}$. We have found in [4] (pag. 879) a clear explanation of how to handle Littlewood-Richardson rule.

We consider $Q^{n_{1}, \ldots, n_{r}}$ as a bundle on $\operatorname{Gr}(k, n)$. It corresponds to a Young diagram with the i-th row given by n_{i} elements.

In particular $Q^{\frac{i \text { times }}{1,1, \ldots, 1}}=\stackrel{i}{\wedge} Q, Q^{p}=S^{\varphi} Q \quad(p$-th symmetric power of $Q)$. As $\operatorname{det} Q=\stackrel{n-k}{\wedge} Q=\mathcal{O}(1)$, we have:

$$
Q^{n_{1}, \ldots, n_{r}}(t)=Q^{n_{1}+i, \ldots, n_{r}+t, \overbrace{t, \ldots, t}^{n-k}}
$$

It is convenient to set $n_{i}=0$ for $i>p$.
If $Q^{n_{1}, \ldots, n_{r}}$ is a direct summand of $\bigwedge_{i_{1}} Q \otimes \ldots \otimes \xlongequal{i_{s}} Q$ then $n_{i} \leqslant s \quad \forall i$. This follows by Littlewood-Richardson rule. In fact $\wedge i_{1} Q$ corresponds to a Young diagram with i_{1} rows each of them with only one element. $\bigwedge_{i_{2}} Q \otimes \bigwedge^{i_{2}} Q$ decomposes in some summands, $e \cdot c h$ of them corresponds to a Young diagram consisting of rows with at most two elements.

Thus, $\stackrel{i_{1}}{\wedge} Q \otimes \ldots \otimes \stackrel{i_{s}}{\wedge} Q$ decomposes into summands, each corresponding to a Young diagram consisting of rows with at most s elements.

It is well known that the highest weight of the irreducible representation $Q^{n_{1}, \ldots, n_{r}}$ is $\lambda=\lambda_{1}\left(n_{1}-n_{2}\right)+\lambda_{2}\left(n_{2}-n_{3}\right)+\ldots+\lambda_{r} n_{r}$. A reference for this fact is [12] theorem A7, where h_{i} is, in our notation, equal to $\lambda_{i}-\lambda_{i-1}$.

Observe that $r \leqslant n-k=\operatorname{rank} Q$. We recall that the line bundle $\mathcal{O}(t)(t \in Z)$ belongs to the representation with highest weight $t \lambda_{n-k}$.

Let first $s \leqslant k$. Then $n_{i} \leqslant k$, in particular $n_{i}-n_{i+1} \leqslant k$. Then we claim that $\lambda+t \lambda_{n-k}+\delta$ is a singular weight for $-n-n_{1} \leqslant t \leqslant-1-n \mathrm{i}$, is regular of index 0 for $t \geqslant-n_{r}$, is regular of index $(k+1)(n-k)$ for $t \leqslant-n-n_{1}-1$.

For, let first $-n-n_{1} \leqslant t \leqslant-n+k-n_{1}$. Then,

$$
\begin{aligned}
& \left(\lambda+t \lambda_{n-k}+\delta, \alpha_{1}+\ldots+\alpha_{-t-n_{1}}\right)=\left(\lambda, \alpha_{1}+\ldots+\alpha_{-t-n_{1}}\right)+ \\
& \quad+\left(t \lambda_{n-k}, \alpha_{1}+\ldots+\alpha_{-t-n_{1}}\right)+\left(\delta, \alpha_{1}+\ldots+\alpha_{-t-n_{1}}\right)=n_{1}+t+\left(-t-n_{1}\right)=0
\end{aligned}
$$

so that $\lambda+t \lambda_{n-k}+\delta$ is singular.
Let now $-n+k-n_{1}+1 \leqslant t \leqslant-1-n_{r}$. Consider the following decreasing sequence of integers:

$$
\begin{aligned}
& a_{1}:=\left(\lambda+t \lambda_{n-k}+\delta, \alpha_{1}+\ldots+\alpha_{n-k}\right)=n_{1}+t+n-k \\
& a_{2}:=\left(\lambda+t \lambda_{n-k}+\delta, \alpha_{2}+\ldots+\alpha_{n-k}\right)=n_{2}+t+n-k-1 \\
& \vdots \\
& a_{n-k}:=\left(\lambda+t \lambda_{n-k}+\delta, \alpha_{n-k}\right)=n_{n-k}+t+1
\end{aligned}
$$

We have

$$
0 \leqslant a_{i-1}-a_{i}=n_{i-1}-n_{i}+1 \leqslant s+1 \leqslant k+1
$$

By hypothesis: $a_{1} \geqslant 1, a_{n-k} \leqslant 0$. Let a_{s+1} be the first element of the sequence which is nonpositive. Then $a_{j} \geqslant 1$, so that:

$$
-k \leqslant a_{j+1} \leqslant 0
$$

Thus

$$
\begin{aligned}
& \left(\lambda+t \lambda_{n-k}+\delta, \alpha_{j+1}+\ldots+\alpha_{n-k-a_{j+1}}\right)=\left(\lambda+t \lambda_{n-k}+\delta, \alpha_{j+1}+\ldots+\alpha_{n-k}\right)+ \\
& \quad+\sum_{f=1}^{-a_{j+1}}\left(\lambda+t \lambda_{n-k}+\delta, \alpha_{n-k+j}\right)=a_{j+1}+\sum_{f=1}^{-a_{j+1}} 1=a_{j+1}-a_{j+1}=0
\end{aligned}
$$

so that $\lambda+t \lambda_{n-k}+\delta$ is singular.
If $t \geqslant-n_{r}$, then $\left(\lambda+t \lambda_{n-k}+\delta, \alpha\right)>0$ for each $\alpha \in \Phi^{+}$, so that $\lambda+t \lambda_{n-k}+\delta$ is regular of index 0 (for all s). If $t \leqslant-n-n_{1}-1$, then $\left(\lambda+t \lambda_{n-k}+\delta, \alpha\right)<0$ exactly for $\alpha=\alpha_{i}+\ldots+\alpha_{j}$ with $1 \leqslant i \leqslant n-k \leqslant j \leqslant n$, and positive otherwise. Then $\lambda+t \lambda_{n-k}+\delta$ is regular of index $(k+1)(n-k)$ (for all $\left.s\right)$.

Thus, if $s \leqslant k$, we get the result from Bott theorem.
If $s=\pi+1$, we point out that when $-n-n_{1} \leqslant t \leqslant-1-n_{r}$ the proof above shows that $\lambda+t \lambda_{n-k}+\delta$ is singular for $a_{j+1} \neq-k-1$.

When $a_{j+1}=-k-1$, then $a_{j}=1$ and

$$
n_{j}-n_{j+1}=k+1,
$$

so that the corresponding Young diagram has a row with exactly $k+1$ elements more than the above one.

After twisting by some line bundle, the corresponding bundle $Q^{n_{1}^{\prime}, \ldots, n_{r}^{\prime}}$ satisfies the condition:

$$
\left\{\begin{array}{l}
0 \leqslant n_{i}^{\prime} \leqslant k+1 \quad \forall i \\
n_{j}^{\prime}-n_{j+1}^{\prime}=k+i
\end{array}\right.
$$

so that

$$
n_{i}^{\prime}= \begin{cases}k+1 & 1 \leqslant i \leqslant j \\ 0 & j+1 \leqslant i\end{cases}
$$

$Q^{n_{1}^{\prime}, \ldots, n_{r}^{\prime}}$ is then a direct summand of $\frac{k+1 \text { times }}{\substack{\wedge} \otimes \ldots \otimes \wedge} \wedge^{j} Q$.
Consider the corresponding weight:

$$
\lambda=(k+1) \lambda_{s}+t \lambda_{n-k} \quad \text { with } t \in Z .
$$

When t changes, $\lambda+\delta$ is regular of index different from $0,(k+1)(n-k)$ only when $t=-n+j-1$, and in this case $\left((k+1) \lambda_{j}+(-n+j-1) \lambda_{n-k}+\delta, \alpha\right)<0$ exactly when $\alpha=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{p}$ with $j+1 \leqslant i \leqslant n-k \leqslant p \leqslant n$, so that the index of $(k+1) \lambda_{j}+(-n+j-1) \lambda_{n-k}+\delta$ is $(n-k-j)(k+1)$.

By applying Bott theorem again, it remains only to show that $(k+1) \lambda_{3}+$ $+(-n+j-1) \lambda_{n-k}+\delta$ is congruent to δ under the action of the Weyl group.

This is explained by the following example:
Let $n=6, k=2, j=1$ so that:

$$
\left(k_{1}+1\right) \lambda_{6}+(-n+j-1) \lambda_{n-k}+\delta=4 \lambda_{1}+\lambda_{2}+\lambda_{3}-5 \lambda_{4}+\lambda_{5}+\lambda_{6}
$$

We apply to this weight a sequence of reflections (elements of the Weyl group) obtaining:
step 1) $\begin{cases}\left(\text { apply } r_{4}\right): & 4 \lambda_{1}+\lambda_{2}-4 \lambda_{3}+5 \lambda_{4}-4 \lambda_{5}+\lambda_{6} \\ \left(\text { apply } r_{5}\right): & 4 \lambda_{1}+\lambda_{2}-4 \lambda_{3}+\lambda_{4}+4 \lambda_{5}-3 \lambda_{6} \\ \left(\text { apply } r_{6}\right): & 4 \lambda_{1}+\lambda_{2}-4 \lambda_{3}+\lambda_{4}+\lambda_{5}+3 \lambda_{6}\end{cases}$
step 2) $\begin{cases}\left(\text { apply } r_{3}\right): & 4 \lambda_{1}-3 \lambda_{2}+4 \lambda_{3}-3 \lambda_{4}+\lambda_{5}+3 \lambda_{6} \\ \left.\text { (apply } r_{4}\right): & 4 \lambda_{1}-3 \lambda_{2}+\lambda_{3}+3 \lambda_{1}-2 \lambda_{5}+3 \lambda_{6} \\ \left.\text { (apply } r_{5}\right): & 4 \lambda_{1}-3 \lambda_{2}+\lambda_{3}+\lambda_{4}+2 \lambda_{5}+\lambda_{6}\end{cases}$
step 3) $\begin{cases}\left(\text { apply } r_{2}\right): & \lambda_{1}+3 \lambda_{2}-2 \lambda_{3}+\lambda_{4}+2 \lambda_{5}+\lambda_{6} \\ \left.\text { (apply } r_{3}\right): & \lambda_{1}+\lambda_{2}+2 \lambda_{3}-\lambda_{4}+2 \lambda_{5}+\lambda_{6} \\ \left.\text { (apply } r_{4}\right): & \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}+\lambda_{6}=\delta .\end{cases}$

In general, if $j=n-k$ the claim is obvious.
If $j<n-k$ we apply to $(k+1) \lambda_{j}+(-n+j-1) \lambda_{n-k}+\delta$ the following sequence of reflections:

```
step 1) \(\quad r_{n} \circ \ldots \circ r_{n-k+1} \circ r_{n-k} \quad(\) this is sufficient if \(j=n-k-1)\)
step 2) \(\quad r_{n-1} \circ \ldots \circ r_{n-k} \circ r_{n-k-1}\) (this is sufficient if \(j=n-k-2\) )
step \(n-k-j) \quad r_{j+k-1} \circ \ldots \circ r_{j+2} \circ r_{j+1}\).
```

In the end we obtain δ, as the reader can convince himself.
This completes the proof of lemma 1.3.
As a corollary of lemma 1.3 we get the following well known statement (look at the duality $\operatorname{Gr}(k, n) \simeq \operatorname{Gr}(n-k-1, n))$:

Prop. 1.4. - Let $0<i<\operatorname{dim} \operatorname{Gr}(k, n)$
(i) We have $H^{i}(\operatorname{Gr}(k, n), \mathcal{O}(t))=0 \quad \forall t \in Z$
(ii) $H^{i}(\operatorname{Gr}(k, n), Q(t))= \begin{cases}C & k=0, t=-n, i=n-1 \\ 0 & \text { otherwise }\end{cases}$

$$
H^{i}\left(\operatorname{Gr}(k, n), S^{*}(t)\right)= \begin{cases}C & k=n-1, t=-n, i=n-1 \\ 0 & \text { otherwise } .\end{cases}
$$

2. - Splitting criteria on Grassmannians.

Consider now the problem of finding some cohomological conditions for a vector bundle E on $\operatorname{Gr}(k, n)$ that are equivalent to the splitting of E.

By prop. 1.4 we get that the condition $H^{i}(\operatorname{Gr}(k, n), E(t))=0$ for all $t \in Z$, for $0<i<\operatorname{dim} \mathrm{Gr}(k, n)$ is always necessary but is sufficient only when the Grassmannian $\operatorname{Gr}(k, n)$ is isomorphic to a projective space (i.e. $k=0, n-1$). So it is natural to look for more vanishing conditions.

The answer is given by the following theorem.

Theorem 2.1. - Let E be a vector bundle on $\operatorname{Gr}(k, n)$.
The following conditions are equivalent:
a) A splits
b) $H^{i}\left(\operatorname{Gr}(k, n), \wedge_{i_{1}}^{\wedge} Q^{*} \otimes \ldots \otimes \wedge_{s}^{i_{s}} Q^{*} \otimes E(t)\right)=0 \forall i_{1}, \ldots, i_{s}$ such that $0 \leqslant i_{1}, \ldots, i_{s} \leqslant$ $\leqslant n-k, s \leqslant k, \forall t \in Z, \forall i: 0<i<(k+1)(n-k)=\operatorname{dim} \operatorname{Gr}(k, n)$
c) $H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i}{1}^{\wedge} Q^{*} \otimes \ldots \otimes \bigwedge_{s}^{i_{s}} Q^{*} \otimes E(t)\right)=0, \forall t \in Z, \forall i_{1}, \ldots, i_{s}, i$ s.t.:

$$
\left\{\begin{array}{l}
\sum_{n=1}^{s} i_{n} \leqslant i<\sum_{n=1}^{s} i_{n}+\operatorname{dim} \operatorname{Gr}(k-s, n-s) \\
0<i, \quad 0 \leqslant i_{1}, \ldots, i_{s} \leqslant n-k
\end{array}\right.
$$

where we set, $\stackrel{0}{\wedge} Q^{*}=\mathcal{O}_{\mathrm{Gr}}, \operatorname{dim} \operatorname{Gr}(p, q)=0$ if $p<0$.
Proof. - $a) \Rightarrow b$) It follows from lemma 1.3 and Serre duality as cohomology commutes with direct sums.
$b) \Rightarrow c$) is trivial, because if $s>k$ condition c) is empty.
$c) \Rightarrow a$) The proof is by induction on k and follows the pattern of the proof of Horrocks criterion given in [3].

For $k=0$ the implication is exactly the Horrocks criterion on \boldsymbol{P}^{n}. Consider now a generic section s of $S(Q$ is globally generated): it has zero locus $Z \simeq$ $\simeq \operatorname{Gr}(k-1, n-1)$. Observe that $\left.Q\right|_{z} \simeq Q_{z}$. The first step in our proof is to show that $\left.E\right|_{z}$ splits. In order to use the induction hypothesis, we claim that

$$
\begin{gathered}
H^{i}\left(Z,\left.\stackrel{i_{1}}{\wedge} Q^{*} \otimes \ldots \otimes{ }^{j_{s}} \wedge Q^{*} \otimes E(t)\right|_{Z}\right)=0, \quad \forall t \in Z, \quad \forall j_{1} \ldots j_{s}, i \text { s.t.: } \\
\left\{\begin{array}{l}
\sum_{i>0} j_{n} \leqslant i<\Sigma j_{n}+\operatorname{dim} \operatorname{Gr}(k-1-s, n-1-s) \\
i>0 .
\end{array}\right.
\end{gathered}
$$

For, we consider the Koszul complex of s, after tensoring it by $E(t)$:
(5) $0 \rightarrow \wedge^{n-k} Q^{*} \otimes E(t) \rightarrow \bigwedge^{n-k-1} Q^{*} \otimes E(t) \rightarrow \ldots \rightarrow$

$$
\left.\rightarrow \wedge_{\wedge}^{2} Q^{*} \otimes E(t) \rightarrow Q^{*} \otimes E(t) \rightarrow E(t)\right|_{Z} \rightarrow 0
$$

This sequence is exact.
We tensor (5) by $\wedge_{i_{1}}^{i^{*}} Q^{*} \otimes \ldots \otimes \wedge_{i_{s}}^{i^{*}} Q^{*}$.
Our hypothesis together with lemma 1.1, (i) proves our claim. So we can con-
struct a splitting bundle F on $\operatorname{Gr}(k, n)$ and a isomorphism $\alpha_{0}:\left.\left.E\right|_{Z} \rightarrow E\right|_{Z}, \alpha_{0} \in$ $\in H^{9}\left(Z,\left.\left(F^{*} \otimes E\right)\right|_{Z}\right)$.

Our second step is to show that α_{0} can be extended to an isomorphism $\alpha \in H^{0}\left(\operatorname{Gr}(k, n), F^{*} \otimes E\right)$. The obstruction to this extension lies in $H^{1}(\operatorname{Gr}(k, n)$, $\left.J_{z} \otimes F^{*} \otimes E\right)$.

The Koszul complex of s gives an exact sequence:

$$
\begin{equation*}
0 \rightarrow \wedge{ }_{n}^{n-k} Q^{*} \rightarrow \ldots \rightarrow \bigwedge^{2} Q^{*} \rightarrow Q^{*} \rightarrow J_{Z} \rightarrow 0 \tag{6}
\end{equation*}
$$

We tensor (6) by $F^{*} \otimes E$.
Our hypothesis together with lemma 1.1, (i) gives:

$$
H^{1}\left(\operatorname{Gr}(k, n), J_{z} \otimes F^{*} \otimes E\right)=0
$$

Then there exists a morphism $\alpha: F \rightarrow E$, and then a morphism: $\operatorname{det} \alpha: \operatorname{det} F \rightarrow$ $\rightarrow \operatorname{det} I$. We obtain

$$
\begin{aligned}
& \operatorname{det} \alpha \in H^{0}\left(\operatorname{Gr}(k, n),(\operatorname{det} F)^{*} \otimes \operatorname{det} E\right)= \\
& \quad=H^{0}\left(\operatorname{Gr}(k, n), \mathcal{O}\left(c_{1}(E)-c_{1}(F)\right)\right)=H^{0}\left(\operatorname{Gr}(k, n), \mathcal{O}_{\operatorname{Gr}(k, n)}\right) \simeq \boldsymbol{C}
\end{aligned}
$$

Then $\operatorname{det} \alpha$ is a constant; as it is nonzero on Z, it is nonzero everywhere on $\mathrm{Gr}(k, n)$. Thus α must be an isomorphism. q.e.d.

Remark 2.2. - Theorem 2.1 is useful if $k+1 \leqslant n-k$. Otherwise we can perform the duality $\operatorname{Gr}(n-k-1, n) \simeq \operatorname{Gr}(k, n)$ and use the dual of theorem 2.1 with S at the place of Q^{*}.

Remark 2.3. - The computation in lemma 1.3 for $s=k+1$ shows that the bound $s \leqslant k$ in (b) of theorem 2.1 is sharp.

Example 2.4. - Let E be a vector bundle on $\operatorname{Gr}(1,4)$. Theorem 2.1 says that E splits if and only if:

$$
\begin{array}{ll}
H^{i}(\operatorname{Gr}(1,4), E(t))=0 & \text { for } 1 \leqslant i \leqslant 5, \text { for all } t \in Z \\
H^{i}\left(\operatorname{Gr}(1,4), Q^{*} \otimes E(t)\right)=0 & \text { for } 1 \leqslant i \leqslant 3, \text { for all } t \in Z \\
H^{i}\left(\operatorname{Gr}(1,4), \bigwedge Q^{*} \otimes E(t)\right)=0 & \text { for } 2 \leqslant i \leqslant 4, \text { for all } t \in Z
\end{array}
$$

On $\operatorname{Gr}(1,3) \simeq Q_{4}$ a better criterion will be found in section 3 (theorem 3.3).
Evans and Griffith have proved in [8], th. 2.4, that if E is a vector bundle on \boldsymbol{P}^{n}
and $\mathbb{B}^{i}\left(\boldsymbol{P}^{n}, A(t)\right)=0$ for all $t \in Z$, for all i such that $0<i<\operatorname{rank} E$, then E splits.
This improves Horrocks criterion when rank E is small.
Using the result of Evans and Griffith, by a proof similar to that of theorem 2.1, we obtain the following:

Theorem 2.5. - Let E be a vector bundle on $\mathrm{Gr}(k, n)$. The following conditions are equivalent:
a) E splits
b) $H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i_{1}}{\wedge} Q^{*} \otimes \ldots \otimes \bigwedge_{s}^{i_{s}} Q^{*} \otimes E(t)\right)=0$ for all $t \in Z, \forall i_{1}, \ldots, i_{s}, i$ such that:

$$
\left\{\begin{array}{l}
\sum_{n=1}^{s} i_{n} \leqslant i<\sum_{n=1}^{s} i_{n}+\min \{\operatorname{rank} E, \operatorname{dim} \operatorname{Gr}(k-s, n-s)\} \\
0<i, 0 \leqslant i_{1}, \ldots, i_{s} \leqslant n-k
\end{array}\right.
$$

We recall now that Horrocks gave the following characterization of the bundle ${ }_{\wedge}^{j} Q^{*}$ on $\boldsymbol{P}^{n}\left(\right.$ recall that $Q \simeq T \boldsymbol{P}^{n}(-1)=\left(\Omega^{1}(1)\right)^{*}$ on $\left.\boldsymbol{P}^{n}\right)$:
$E \simeq\left(\stackrel{j}{\wedge} Q^{*}\right)^{\oplus r}$ if and only if $(n \geqslant 2)$:
E does not contain any line subbundle as direct summand, and

$$
H^{i}\left(\boldsymbol{P}^{n}, B(t)\right)= \begin{cases}C^{r} & \text { if } i=j, t=-j \\ 0 & \text { otherwise } .\end{cases}
$$

We obtain the following result (for $k \geqslant 2$) exactly in the same way we obtained theorem 2.1:

Theorem 2.6. - Let j such that $1 \leqslant j \leqslant n-k-1$, and let $k \geqslant 2$. Let E be a vector bundle on $\mathrm{Gr}(k, n)$. The following conditions are equivalent:
a) $E \simeq\left(\stackrel{i}{\wedge} Q^{*}\right)^{\oplus r} ;$
b) E does not contain any line subbundle as direct summand and:
c) E does not contain any line subbundle as direct summand and:

$$
\begin{aligned}
& H^{i}\left(\operatorname{Gr}(k, n), \bigwedge_{1}^{i_{1}} Q^{*} \otimes \ldots \otimes \wedge^{i s} Q^{*} \otimes E(t)\right)=0 \quad \forall i_{1}, \ldots, i_{s}, i \text { such that: } \\
& \left\{\begin{array}{l}
\sum_{n=1}^{s} i_{n} \leqslant i<\sum_{n=1}^{s} i_{n}+\operatorname{dim} \operatorname{Gr}(k-s, n-s) \\
0<i, 0 \leqslant i_{1}, \ldots, i_{s} \leqslant n-k, \\
\text { with the only exception } s=k, i_{1}=\ldots=i_{s}=j, i=j(k+1), t=-j
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
H^{j(k+1)}\left(\operatorname{Gr}(k, n), \bigwedge_{j}^{k \text { times }} Q^{*} \otimes \ldots \otimes \bigwedge \Lambda^{j}\right. \\
\left.Q^{*} \otimes E(-j)\right)=C^{r} \\
H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i}{\bigwedge} Q^{*} \otimes \bigwedge^{n-k-j} Q^{*} \otimes E\right)=0 \quad \text { for } 1 \leqslant i \leqslant n-k .
\end{gathered}
$$

REMARK 2.7. - As $Q \simeq{ }^{n-k-1} Q^{*}(1)$, theorem 2.6 gives also a cohomological characterization of the quotient bundle.

From now on, we specialize to the case rank $E=2$. We point out that in this case: $E^{*} \simeq E\left(-c_{1}(E)\right)$, regarding $c_{1}(E)$ as an integer.

It is well known that if l is a line on $\operatorname{Gr}(k, n)$ (i.e. a Schubert cycle of dimension 1, consisting of all \boldsymbol{P}^{k} such that $\boldsymbol{P}_{0}^{k-1} \subset \boldsymbol{P}^{k} \subset P_{0}^{k+1}$ with $\boldsymbol{P}_{0}^{k-1}, \boldsymbol{P}_{0}^{k+1}$ fixed subspaces of \boldsymbol{P}^{n}) then $\left.E\right|_{l} \simeq \mathcal{O}_{l}(p) \oplus \mathcal{O}_{l}(q)$ with $p+q=c_{1}(E)$.

When p, q do not depend on the line l, the bundle E is called uniform. VAN De Ven [24] and Guyot [11] have shown that uniform 2-bundles always split on $\operatorname{Gr}(k, n)$ $(n \geqslant 3)$, except in the case $k=1$ when also the 2 -bundle $S(t)$ is uniform, and $k=$ $=n-2$ when also the 2 -bundle $Q(t)$ is uniform.

Let us consider the bundle

$$
F=Q^{\oplus k} \oplus \mathcal{O}(1)^{\oplus n-k-1}
$$

F is a globally generated vector bundle of rank $(k+1)(n-k)-1$. Note that $\operatorname{det} F=\mathcal{O}(n-1)$.

A generic section of F vanishes on a line 7 , and the following Koszul complex is exact (we set $d=(k+1)(n-k))$:

$$
\begin{equation*}
0 \rightarrow \stackrel{d-1}{\wedge} F^{*} \rightarrow \ldots \rightarrow \bigwedge_{\Lambda}^{2} R^{*} \rightarrow F^{*} \rightarrow \mathcal{O}_{\mathrm{Gr}} \rightarrow \mathcal{O}_{l} \rightarrow 0 \tag{7}
\end{equation*}
$$

We recall also that twisting by $\mathcal{O}(t)$, we can suppose that $c_{1}(E)=0$ or $c_{1}(E)=-1$. In fact E is uniform if and only if $E(t)$ is uniform. A 2-bundle with $c_{1}(E)=0$ or -1 is called normalized.

Observe that an iterated application of the canonical decomposition

$$
\wedge(A \oplus B)=\oplus_{i=0}^{n}(\bigwedge \wedge \otimes \stackrel{n-i}{\wedge} B), \quad \text { where } A, B \text { are vector spaces }
$$

shows that $\stackrel{i}{\wedge} F^{*}$ is the direct sum of some bundles isomorphic to

$$
\stackrel{r_{1}}{\wedge} Q^{*} \otimes \ldots \otimes \bigwedge^{r_{k}} Q^{*}\left(\sum_{j=1}^{k} r_{j}-i\right) \quad \text { with } 0 \leqslant \sum_{j=1}^{k} r_{j} \leqslant i
$$

Lemma 2.8. - On $\operatorname{Gr}(1, n)$, we have, for all i, j such that $0<i<2 n-2$, $1 \leqslant j \leqslant n-2$, for all $t \in Z$:

$$
H^{i}\left(\operatorname{Gr}(1, n), \stackrel{i}{\wedge} Q^{*} \otimes S(t)\right)=0
$$

with the only exceptions:

$$
H^{1}\left(\operatorname{Gr}(1, n), Q^{*} \otimes S\right) \simeq H^{2 n-3}\left(\operatorname{Gr}(1, n), \stackrel{n-2}{\wedge} Q^{*} \otimes S(1-n)\right)=C
$$

Proof. - It is convenient to use Serre duality first. Then the lemma is a standard application of Bott theorem. In fact S^{*} belongs to the irreducible representation with highest weight λ_{n}.

We get the following
Theorem 2.9. - Let E be a normalized 2 -bundle on $\operatorname{Gr}(k, n)(n \geqslant 3)$.
(i) If $e_{1}(E)=0, E$ splits if and only if either one of the following holds:
a) $H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i-1}{\wedge} F^{*} \otimes E(-1)\right)=0$ for $i=1, \ldots, d-2$;
$\left.a^{\prime}\right) H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i}{\wedge} E^{*} \otimes E(-1)\right)=0$ for $i=2, \ldots, d-1$.
(ii) If $c_{1}(E)=-1, E$ splits if and only if either one of the following holds:
b) $H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i-1}{\wedge} F^{*} \otimes E(-1)\right)=0$ for $i=1, \ldots, d-1$;
$\left.b^{\prime}\right) H^{i}\left(\operatorname{Gr}(k, n), \wedge_{\wedge}^{i} F^{*} \otimes E\right)=0$ for $i=1, \ldots, d-1$.
(iii) If $c_{1}(E)=-1, E$ splits or $k=1$ and $E \simeq S$ if and only if either one of the following holds:
b1) $H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i-1}{\wedge} F^{*} \otimes E(-1)\right)=0$ for $i=1, \ldots, d-2$; $H^{d-1}(\operatorname{Gr}(k, n), E(-n))=0$
b1) $H^{i}\left(\operatorname{Gr}(k, n), \bigwedge_{\wedge}^{i} F^{*} \otimes E\right)=0$ for $i=2, \ldots, d-1$; $H^{1}(\operatorname{Gr}(k, n), E)=0$
(iv) If $c_{1}(E)=-1, E$ is uniform if and only if either one of the following holds:
c) $H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i-1}{\wedge} F^{*} \otimes E\right)=0$ for $i=1, \ldots, d-1$

$$
\begin{aligned}
&\left.c^{\prime}\right) H^{i}\left(\operatorname{Gr}(k, n), \bigwedge_{\wedge} F^{*} \otimes E(-1)\right)=0 \text { for } i=1, \ldots, d-1 \\
& \text { d) } H^{i}\left(\operatorname{Gr}(k, n), \bigwedge M^{i-1} \otimes E\right)=0 \text { for } i=1, \ldots, d-2 ; \\
& H^{d-1}(\operatorname{Gr}(k, n), E(-n+1))=0 \\
&\text { d }) H^{i}\left(\operatorname{Gr}(k, n), \bigwedge^{i} F^{*} \otimes E(-1)\right)=0 \text { for } i=2, \ldots, d-1 ; \\
& H^{1}(\operatorname{Gr}(k, n), E(-1))=0
\end{aligned}
$$

Proof. - First observe that a) and a^{\prime}), b) and b^{\prime}) and so on, are equivalent by Serre duality and by the isomorphism $\wedge_{\wedge}^{i} F^{*} \simeq \bigwedge_{\Lambda-i-1} F \otimes \operatorname{det} F^{*}$ (we recall that $\bar{K}_{\operatorname{Gr}(k, n)} \simeq \mathcal{O}(-n-1)$ is the canonical bundle $)$.

If E splits, all conditions hold by theorem 2.1. If $k=1$ and $E \simeq S$, condition $b 1$) holds by lemma 2.8. If E is uniform, conditions c) and d) hold by theorem 2.1 and lemma 2.8 .

Let now $c_{1}(E)=0$. If a) holds, we want to show that E is uniform. We tensor (7) by $E(-1)$. Then from our hypothesis and from lemma 1.1 (ii) we get that if l, l^{\prime} are any two lines in $\operatorname{Gr}(k, n)$:

$$
H^{0}\left(l,\left.E(-1)\right|_{l}\right) \simeq H^{0}\left(l^{\prime},\left.E(-1)\right|_{v^{\prime}}\right) .
$$

This means exactly that E is uniform.
Since the bundles $S(t), Q(t)$ have odd first Chern class, then they are not isomorphic to E. So E must split, as claimed.

Let now $c_{1}(E)=-1$. The proof is similar, but in order to show that E is uniform, it is sufficient to verify that:

$$
\begin{equation*}
H^{0}\left(l,\left.E\right|_{l}\right)=H^{0}\left(l^{\prime},\left.E\right|_{l^{\prime}}\right) \tag{8}
\end{equation*}
$$

or:

$$
\begin{equation*}
H^{0}\left(l,\left.E(-1)\right|_{l}\right)=H^{0}\left(l^{\prime},\left.E(-1)\right|_{u^{\prime}}\right) \tag{9}
\end{equation*}
$$

for l^{\prime}, l^{\prime} any two lines in $\operatorname{Gr}(k, n)$. From b) or $b 1$) we get (9). From c) or d) we get (8). In case b) the possibilities $E \simeq S$ for $k=1$ or $E \simeq Q^{*}$ for $k=n-1$ are excluded by lemma 2.8 and lemma 1.3. q.e.d.

By the well known Hartshorne-Serre correspondence between vector bundles of rank 2 and 2-codimensional subcanonical smooth subvarieties (see [25] theorem 2.1 and 2.2) we can state Theorem 2.9 in the following equivalent form (for simplicity we state only the cases $a), b$) and $b 1)$).

Theorem 2.10. - Let $X \subset \operatorname{Gr}(k, n)$ be a smooth subvariety of codimension 2. Suppose that $\left.K_{X} \simeq \mathcal{O}_{\operatorname{Gr}(k, n)}(a)\right|_{X}$ for some $a \in Z$ (i.e. X is a-subcanonical).
(i) If $a+n+1$ is even, then X is a complete intersection if and only if one of the following holds:
a) $H^{i}\left(\operatorname{Gr}(7, n), \stackrel{i-1}{\wedge} H^{*} \otimes J_{X}\left(\frac{a+n-1}{2}\right)\right)=0 \quad$ for $i=1, \ldots, d-2$
$\left.a^{\prime}\right) H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i}{\wedge} I^{*} \otimes J_{X}\left(\frac{a+n-1}{2}\right)\right)=0 \quad$ for $i=2, \ldots, d-2$;

$$
H^{1}\left(\operatorname{Gr}(k, n), J_{X}\left(\frac{a+n-1}{2}\right)\right)=0
$$

(ii) If $a+n+1$ is $o d d$, then X is a complete intersection if and only if one of the following holds:
b) $H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i-1}{\wedge} F^{*} \otimes J_{x}\left(\frac{a+n-2}{2}\right)\right)=0 \quad$ for $i=\overline{1}, \ldots, a-2$;

$$
H^{1}\left((\mathrm{Gr}, k, n), F^{*} \otimes J_{x}\left(\frac{a+n}{2}\right)\right)=0
$$

$\left.b^{\prime}\right) H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i}{\wedge} P^{*} \otimes J_{x}\left(\frac{a+n}{2}\right)\right)=0 \quad$ for $i=1, \ldots, d-2 ;$

$$
H^{1}\left(\operatorname{Gr}(k, n), J_{x}\left(\frac{a+n-2}{2}\right)\right)=0
$$

(iii) If $a+n+1$ is odd then X is a complete intersection or $k=1$ and X is the zero locus of a section of $S(t)$ if and only if one of the following holds:
b1) $H^{i}\left(\operatorname{Gr}(k, n), \stackrel{i-1}{\wedge} F^{*} \otimes J_{X}\left(\frac{a+n-2}{2}\right)\right)=0 \quad$ for $i=1, \ldots, d-2$;

$$
H^{1}\left(\operatorname{Gr}(k, n), J_{X}\left(\frac{a+n}{2}\right)\right)=0
$$

b2) $H^{i}\left(\operatorname{Gr}(k, n), \wedge^{i} F^{*} \otimes J_{X}\left(\frac{a+n}{2}\right)\right)=0 \quad$ for $i=2, \ldots, \bar{d}-2$;

$$
H^{1}\left(\operatorname{Gr}(k, n), \mathfrak{J}_{x}\left(\frac{a+n}{2}\right)\right)=H^{1}\left(\operatorname{Gr}(k, n), J_{X}\left(\frac{a+n-2}{2}\right)\right)=0
$$

Proof. - The normal bundle of X in $\operatorname{Gr}(k, n)$ extends to a 2 -bundle E on $\operatorname{Gr}(k, n)$, with $e_{1}(E)=a+n+1,\left.m\right|_{X} \simeq N_{X \mid \operatorname{Gr}(k, n)}$.

We have an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathrm{Gr}} \rightarrow E \rightarrow \mathfrak{J}_{X}(a+n-1) \rightarrow 0 \tag{10}
\end{equation*}
$$

We normalize E after twisting by $\mathcal{O}(-(a+n+1) / 2)$ when $a+n+1$ is even, and by $\mathcal{O}(-(a+n+2) / 2)$ when $a+n+1$ is odd. Then, we can tensor (10) by
suitable wedge powers of F^{*}, and then we apply theorem 2.9, lemma 1.3 and Serre duality.

Remark 2.11. - When $k=0$ or $k=n-1$, the Grassmannian $\operatorname{Gr}(k, n)$ is isomorphic to the projective space \boldsymbol{P}^{n}. In this case $F^{*}=\mathcal{O}(-1)^{\ominus n-1}$, and in theorems 2.9 and 2.10 we can read $\mathcal{O}_{P_{n}}(-i)$ in place of $\wedge^{i} F^{*}$.

Condition a) is exactly Cor. 1.8 (i) of [7] (our proof is different).
On P^{n} conditions b) and $b 1$) of theorem 2.9 are equivalent (observe that in this case we can ask that b or $b 1$) be fulfilled only for $i=1, \ldots,[n / 2]$ by Serre duality), and are exactly Cor. 1.8 (ii) of [7].

Condition e) is weaker than Cor. 1.8 (iii) of [7].
Condition d) is apparently new for $n \geqslant 4$.
We want to point out the following
Theorein 2.12 (Sommese). - Let $X \subset \operatorname{Gr}(k, n)$ be a smooth subvariety of codimension 2.

If $n \geqslant 6$ then Pic (X) is generated by the hyperplane section. In particular X is subcanonical.

Proof. - In [21] ((3.5) and (3.6.3)) is proved that, if $x_{0} \in X$:

$$
\pi_{j}\left(\operatorname{Gr}(k, n), X, x_{0}\right)=0 \quad \text { for } j \leqslant n+1-2 \operatorname{codim} X
$$

Then, by the relative Hurewicz theorem ([22] ch. 7 sect. 5.4)

$$
H_{j}(\operatorname{Gr}(k, n), X, Z)=0 \quad \text { for } j \leqslant n+1-2 \operatorname{codim} X
$$

By (10), cor. 23.14, it follows that $H^{j}(\operatorname{Gr}(k, n), X, Z)=0$ for $j \leqslant n+1-2 \operatorname{codim} X$.
So in our hypothesis $H^{j}(\operatorname{Gr}(k, n), X, Z)=0$ for $j \leqslant n-3$. As $n \geqslant 6$, we get in particular $H^{j}(\operatorname{Gr}(k, n), X, Z)=0$ for $j \leqslant 3$. From the exact cohomology sequence of the pair ($\operatorname{Gr}(k, n), X)$ it follows that $H^{1}(X, Z)=0$ and that $H^{2}(X, Z)=Z$ is generated by the hyperplane section. Observe that by Hodge decomposition $H^{1}\left(X, \mathcal{O}_{X}\right)=H^{2}\left(X, \mathcal{O}_{X}\right)=0$. Now from the cohomology sequence associated to the exponential sequence

$$
0 \rightarrow Z \rightarrow \mathcal{O}_{x} \rightarrow \mathcal{O}_{x}^{*} \rightarrow 0
$$

we get the result.
Let E be a 2 -bundle and let $l \subset \operatorname{Gr}(k, n)$ be a line. If $\left.E\right|_{l} \simeq \mathcal{O}_{l}(a) \oplus \mathcal{O}_{l}(b)$ we define, as usual:

$$
d_{l}(E):= \begin{cases}\frac{1}{2}|b-a| & \text { if } c_{1}(E) \text { is even } \\ \frac{1}{2}(|b-a|+1) & \text { if } c_{1}(E) \text { is odd }\end{cases}
$$

and $d(E):=d_{l}(E)$ for generic l.

Theorem 2.13. - Let E be ar 2-bundle on $\operatorname{Gr}(k, n)$. Let l, l^{\prime} be any two lines on $\operatorname{Gr}(k, n)$. Let $F=Q^{\oplus k} \oplus \mathcal{O}(1)^{\oplus n-k-1}$. Then the following inequalities hold:

$$
\begin{aligned}
& \mid d_{l}(E)-d_{l^{\prime}}(E) \leqslant \sum_{i=1}^{d-1} h^{i}\left(\bigwedge^{i-1} F^{*} \otimes E(l)\right) \\
& \left|d_{l}(E)-d_{l^{2}}(E)\right| \leqslant \sum_{l=1}^{d-2} h^{i}\left(\bigwedge^{i-1} H^{*} \otimes E(k)\right)+h^{d-1}\left(\bigwedge^{d-1} F^{*} \otimes E(k)\right)
\end{aligned}
$$

$$
\text { for }\left|k+\frac{c_{1}(E)}{2}+1\right| \leqslant d(E)
$$

Proof. - It is easy to check that, if

$$
\begin{equation*}
\left|k+\frac{c_{1}(E)}{2}+1\right| \leqslant d(E) \tag{11}
\end{equation*}
$$

then

$$
h^{0}\left(\left.E(k)\right|_{l}\right)=d_{l}(E)+k+\left[\frac{c_{1}(\boldsymbol{E})}{2}\right]+1
$$

Thus, for k in the range of (11) we have

$$
\left|d_{\imath}(E)-d_{l^{\prime}}(E)\right|=\left|h_{0}\left(\left.E(k)\right|_{\imath}\right)-h_{0}\left(\left.E(k)\right|_{\imath^{\prime}}\right)\right|
$$

Now it is sufficient to look at the Koszul complexes of l (which is (7)) and l^{\prime} and apply lemma 1.2.

Remark 2.14. - If s is the minimum integer such that $h^{0}(E(s)) \neq 0$, then

$$
-\left[\frac{c_{1}(E)}{2}\right]-s \leqslant d(E) \leqslant d_{l}(E)
$$

for each line $l \subset \operatorname{Gr}(k, n)$. This means that when E is "very unstable» (i.e. $s \ll 0$) then the inequalities of theorem 2.13 hold for k in a wide range. Observe that when E is not uniform, the theorem says that the right-hand sides of the inequalities are nonzero.

3. - Splitting criteria on quadrics.

We recall now from [20] the definition and some properties of spinor bundles on Q_{n}.
Let S_{k} be the spinor variety which parametrizes the family of ($k-1$)-planes in $Q_{2 k-1}$ or one of the two disjoint families of k-planes in $Q_{2 k}$.

We have $\operatorname{dim} S_{k}=(k(k+1)) / 2$, Pic $\left(S_{k}\right)=Z$ and $h^{0}\left(S_{k}, \mathcal{O}(1)\right)=2^{k}$. Spinor varieties are rational homogeneous manifolds of rank 1 [23]. When $n=2 k-1$ is odd, consider $\forall x \in Q_{2 k-1}$ the variety $\left\{\boldsymbol{P}^{k-1} \in \operatorname{Gr}(k-1,2 k) \mid x \in{ }^{k-1} \subset Q_{2 k-1}\right\}$. This va-
riety is isomorphic to S_{k-1} and we denote it by $\left(S_{k-1}\right)_{x}$. Then we have a natural embedding

$$
\left(S_{k-1}\right)_{x} \xrightarrow{i_{x}} S_{k}
$$

Considering the linear spaces spanned by these varieties, we have $\forall x \in Q_{2 \dot{k}-1} a_{a}$ natural inclusion $\left.H^{0}\left(S_{k-1}\right)_{x}, \mathcal{O}(1)\right)^{*} \rightarrow H^{0}\left(S_{k}, \mathcal{O}(1)\right)^{*}$ and then an embedding

$$
s: Q_{2 k-1} \rightarrow \operatorname{Gr}\left(2^{k-1}-1,2^{k}-1\right)
$$

In the same way, when $n=2 k$ is even, we have two embeddings:

$$
\begin{aligned}
& s^{\prime}: Q_{2 k} \rightarrow \operatorname{Gr}\left(2^{k-1}-1,2^{k}-1\right) \\
& s^{\prime \prime}: Q_{2 k} \rightarrow \operatorname{Gr}\left(2^{k-1}-1,2^{k}-1\right)
\end{aligned}
$$

If U is the universal bundle of $\operatorname{Gr}\left(2^{k-1}-1,2^{k}-1\right)$ we call

$$
\begin{gathered}
s^{*} U \text { the spinor bundle on } Q_{2 k-1} \\
s^{\prime *} U, s^{\prime \prime *} U \text { the two spinor. bundles on } Q_{2 k}
\end{gathered}
$$

As $S_{1}=\boldsymbol{P}^{1}, \mathcal{S}_{2}=\boldsymbol{P}^{3}$, it is easy to verify that on $Q_{4} \simeq \operatorname{Gr}(1,3)$ the two spinor bundles are the universal bundle and the dual of the quotient bundle.

We summarize the results that we need in the following theorem (see [20] theorems 1.4 and 2.3).

Theorem 3.1. - (i) Let $S^{\prime}, S^{\prime \prime}$ be the spinor bundles on $Q_{2 k}$, let $i: Q_{2 k-1} \rightarrow Q_{2 k}$ be a smooth hyperplane section. Then $i^{*} S^{\prime} \simeq i^{*} S^{\prime \prime} \simeq S$ spinor bundle on $Q_{2 k-1}$.
(ii) Let S be the spinor bundle on $Q_{2 k+1}$, let $i: Q_{2 k} \rightarrow Q_{2 k+1}$ be a smooth hyperplane section. Then $i^{*} S \simeq S^{\prime} \oplus S^{\prime \prime}$, where $S^{\prime}, S^{\prime \prime}$ are the spinor bundles on $Q_{2 k}$:
(iii) Let S be a spinor bundle on Q_{n}.

Then:

$$
\Psi^{i}\left(Q_{n}, S(t)\right)=0 \quad \text { for } 0<i<n, \quad \text { for all } t \in Z
$$

Consider now the problem of finding some cohomological conditions for a vector bundle E on $Q_{n}(n \geqslant 3)$ that are equivalent to the splitting of E.

It is well known that if E splits on Q_{n} then:

$$
\begin{equation*}
H^{i}\left(Q_{n}, E(t)\right)=0 \quad \text { for } 0<i<n, \quad \forall t \in Z \tag{12}
\end{equation*}
$$

As in the case of Grassmannians, by theorem 3.1 (iii) we get that condition (12) is too weak to force E to split.

So also in this case it is natural to look for more vanishing conditions.

Lemma 3.2. - Let $\#$ be a vector bundle on $Q_{n}(n \geqslant 3)$, let \mathbb{S} be a spinor bundle on Q_{n}. Then E splits if and only if

$$
H^{i}\left(Q_{n}, E(t)\right)=H^{i}\left(Q_{n}, E \otimes S(t)\right)=0 \quad \text { for } 0<t<n \quad \forall t \in Z
$$

Proof. - If E splits, we have see that $H^{i}\left(Q_{n}, E(t)\right)=H^{i}\left(Q_{n}, E \otimes S(t)\right)=0$ for $1 \leqslant i \leqslant n-1$, for all $t \in Z$.

For the converse, we prove first the result on Q_{3}.
If l is a line on Q_{3}, then $\left.E\right|_{z}$ splits by Grothendieck theorem, so there exists ab splitting bundle F on Q_{3} and a isomorphism $\alpha:\left.\left.F\right|_{l} \rightarrow E\right|_{i}, \quad \alpha \in H^{0}\left(l,\left.\left(F^{*} \otimes E\right)\right|_{2}\right)$.

We have the following exact sequence of sheaves on Q_{3} (it is the Koszul complex of a section of S^{*}, S spinor bundle on Q_{3}):

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-1) \rightarrow S \rightarrow \mathfrak{I}_{l} \rightarrow 0 \tag{13}
\end{equation*}
$$

The obstruction to extend α to $H^{0}\left(Q_{3}, F^{*} \otimes E\right)$ lies in $H^{1}\left(Q_{3}, F^{*} \otimes E \otimes J_{l}\right)$. We tensor (13) by $F^{*} \otimes E$ and we obtain the exact sequence:

$$
0 \rightarrow F^{*} \otimes E(-1) \rightarrow F^{*} \otimes E \otimes S \rightarrow F^{*} \otimes E \otimes J_{\imath} \rightarrow 0
$$

As F splits, by hypothesis:

$$
H^{1}\left(Q_{3}, F^{*} \otimes E \otimes S\right)=0 \quad H^{2}\left(Q_{3}, F^{*} \otimes E(-1)\right)=0
$$

so that $H^{1}\left(Q_{3}, F^{*} \otimes E \otimes I_{l}\right)=0$ and we can choose a homomorphism $\alpha^{\prime}: F \rightarrow D$ which restricts to α on l.

As F and E have the same first Chern class,

$$
\operatorname{det} \alpha \in H^{0}\left(Q_{3}, \mathcal{O}\left(\rho_{1}(E)-\vartheta_{1}(F)\right)\right)=H^{0}\left(Q_{3}, \mathcal{O}\right)=C
$$

As det α is nonzero on l, it must be nonzero everywhere. Then α is an isomorphism, as we wanted.

If $n \geqslant 3$ the result follows by induction on n. In fact, if

$$
\begin{array}{lll}
H^{i}\left(Q_{n+1}, E(t)\right)=0 & \text { for } 1 \leqslant i \leqslant n, & \forall t \in Z \\
H^{i}\left(Q_{n+1}, E \otimes S(t)\right)=0 & \text { for } 1 \leqslant i \leqslant n, & \forall t \in Z
\end{array}
$$

then from the exact sequences on $Q_{n+1}\left(Q_{n}\right.$ is a smooth hyperplane section):

$$
\begin{aligned}
0 & \left.\rightarrow E(t-1) \rightarrow E(t) \rightarrow E(t)\right|_{Q_{n}} \rightarrow 0 \\
0 \rightarrow E(t-1) \otimes S & \left.\left.\rightarrow E(t) \otimes S \rightarrow E(t) \otimes S\right|_{Q_{n}} \rightarrow 0 \quad \text { (for all } t \in Z\right)
\end{aligned}
$$

and theorem 3.1 it follows that if S_{0} is a spinor bundle on Q_{n} then:

$$
\begin{array}{lll}
H^{i}\left(Q_{n},\left.E\right|_{Q_{n}}(t)\right)=0 & \text { for } 1 \leqslant i \leqslant n-1 & \forall t \in Z \\
H^{i}\left(Q_{n},\left.E \otimes S_{0}\right|_{Q_{n}}(t)\right)=0 & \text { for } 1 \leqslant i \leqslant n-1 & \forall t \in Z
\end{array}
$$

By the induction hypothesis $\left.E\right|_{Q_{n}}$ splits then there exists a splitting bundle B on Q_{n+1} and a isomorphism $\alpha:\left.\left.B\right|_{Q_{n}} \rightarrow E\right|_{Q_{n}}$. As in the previous cases, the vanishing of $H^{1}\left(Q_{n+1}, E(t)\right) \forall t \in \boldsymbol{Z}$ allows to extend α on Q_{n+1} in such a way that E splits.

Corollary 3.3. - Let E be a vector bundle on Q_{n} and let $Q_{2} \subset Q_{n}$ be a smooth plane section. Then E splits if and only if $\left.E\right|_{Q_{n}}$ splits.

Proof. - Cut Q_{n} with hyperplanes and use theorems 3.1, 3.2 and theorem B. We can prove now our main result:

Theorem 3.4. - Let E be a vector bundle on $Q_{n}(n \geqslant 3)$, let S be a spinor bundle on Q_{n}. Then E splits if and only if
(i) $H^{i}\left(Q_{n}, E(t)\right)=0$ for $2 \leqslant i \leqslant n-1 \quad \forall t \in Z$;
(ii) $H^{i}\left(Q_{n}, E \otimes S(t)\right)=0$ for $1 \leqslant i \leqslant n-2 \forall t \in \mathbb{Z}$.

Proof. - It suffices to observe that in the proof of Theorem 3.2 the hypothesis $H^{n-1}\left(Q_{n}, E \otimes S(t)\right)=0$ is not needed and the hypothesis $H^{1}\left(Q_{n}, E(t)\right)=0$ is needed only to prove that if $\left.E\right|_{Q_{n-1}}$ splits then also E splits, but this assured by Corollary 3.3 .

Remark. - Lemma 3.2 follows also from the following result, proved by KnöRrer, Buchweitz, Greuee and Schreier in [6], [15] conj. B remark 2 with completely different techniques.

Theorem 3.5. - Let E be a vector bundle on $Q_{n} . H^{i}\left(Q_{n}, E(t)\right)=0$ for $0<i<n$ $\forall t \in \boldsymbol{Z}$ if and only if E is isomorphic to a direct sum of line bundles and spinor bundles twisted by some $\mathcal{O}(t)$ (for $n=2$ the line bundles must be of type $\mathcal{O}(t, t)$).

Looking at the previous theorem, we can give an elementary proof of the weaker:
Theorem 3.6. - Let E be a vector bundle on Q_{n},
(i) If $n \geqslant 3$ and $H^{i}\left(Q_{n}, E(t)\right)=0$ for $1 \leqslant i \leqslant n-1, \forall t \in Z$, then E is uniform.
(ii) If $n=2$ and $H^{1}\left(Q_{2}, E(t)\right)=0$ for all $t \in Z$, then E is uniform separately on each family of lines on Q_{2}.

Proof. - Let S be the spinor bundle on Q_{3}. For each line l on Q_{3} there is a section of S^{*} which vanishes exactly on l. For any two lines l, l^{\prime} tensoring by $E(t)$
the respective Koszul complexes, we get the exact sequences:

$$
\begin{aligned}
& \left.0 \rightarrow E(t-1) \rightarrow S \otimes E(t) \rightarrow E(t) \rightarrow E(t)\right|_{i} \rightarrow 0, \\
& \left.0 \rightarrow E(t-1) \rightarrow S \otimes E(t) \rightarrow E(t) \rightarrow E(t)\right|_{\nu^{\prime}} \rightarrow 0 .
\end{aligned}
$$

Considering the associated exact sequences of cohomology groups, it is an easy matter to check from our hypothesis that (see lemma 1.1 (ii)):

$$
H^{0}\left(l,\left.E(t)\right|_{l}\right) \simeq H^{0}\left(l^{\prime},\left.E(t)\right|_{l^{\prime}}\right) \quad \forall t \in Z
$$

This means exactly that E is uniform, as we wanted.
For $n \geqslant 3$ the result follows by induction on n using the fact that a bundle on Q_{n} which is uniform on every smooth hyperplane section is uniform.

For $n=2$ the proof is similar.
We now specialize to the case: $\operatorname{rank} E=2$.
Theorem 3.7. - Let E be a 2 -bundle on $Q_{n}, n \geqslant 3$, let S be a spinor bundle.
(a) If $c_{1}(E)=0, E$ splits if and only if

$$
H^{i}\left(Q_{n}, E(-i)\right)=0 \quad \text { for } 1 \leqslant i \leqslant\left[\frac{n}{2}\right]
$$

(b) If $\epsilon_{1}(B)=-1, E$ splits if and only if

$$
\begin{array}{ll}
H^{i}\left(Q_{n}, E(-i)\right)=0 & \text { for } 1 \leqslant i \leqslant n-2 \\
H^{i}\left(Q_{n}, E(-i+1) \otimes S\right)=0 & \text { for } 2 \leqslant i \leqslant n-1
\end{array}
$$

(c) If $c_{1}(E)=-1, E$ is uniform (and hence splits for $n \geqslant 5$) if and only if:

$$
H^{i}\left(Q_{n}, E(-i)\right)=0 \quad \text { for } 1 \leqslant i \leqslant n-1
$$

Proof. - If E splits or is uniform, all conditions hold. In fact, by [9], all uniform 2 -bundles on $Q_{n}(n \geqslant 3)$ either split or are spinor bundles (up to tensoring by some line bundle).

Observe that by Serre duality the vanishing of $H^{i}\left(Q_{n}, E(-i)\right)$ for $1 \leqslant i \leqslant[n / 2]$ in case (a) is equivalent to the same condition for $1 \leqslant i \leqslant n-1$. In fact, if $c_{1}(E)=0$ and E is a 2 -bundle, then $E \simeq E^{*}$.

First we prove the result on Q_{3} : As in the proof of theorem 3.5, for each line $l \subset Q_{3}$ we have an exact sequence:

$$
\left.0 \rightarrow E(-2) \rightarrow E(-1) \otimes S \rightarrow E(-1) \rightarrow E(-1)\right|_{2} \rightarrow 0
$$

Then each one of our hypothesis implies that $h^{0}\left(l,\left.E(-1)\right|_{2}\right)=h^{0}\left(l^{\prime},\left.E(-1)\right|_{2}\right)$ for each lines l, l^{\prime}. This means that D is uniform.

It remains to show that if $c_{1}(E)=-1$ and

$$
H^{1}\left(Q_{3}, E(-1)\right)=H^{2}\left(Q_{3}, E \otimes S(-1)\right)=0
$$

then E splits (in fact the spinor bundle has odd first Chern class, so that there are no problems in the case $c_{1}(E)=0$).

It is sufficient to note that $H^{2}\left(Q_{3}, S \otimes S(-1)\right)=C$ (e.g. by Bott theorem) and so the case $E \simeq S$ must be excluded.

If $n \geqslant 3$ the proof is by induction on n, in the same way as in the proof of lemma 3.2 , using corollary 3.3 .

As in the case of Grassmannians, theorem 3.7 can be stated in the following equivalent form (for simplicity we state only the case $(a),(b)$):

Theorem 3.8. - Let $X \subset Q_{n}$ be a smooth subvariety of codimension 2. Suppose that $\left.K_{X} \simeq \mathcal{O}_{Q_{n}}(a)\right|_{X}$ for some $a \in Z$ (i.e. X is a-subcanonical).

Let S be a spinor bundle on Q_{n}.
(i) If $n+a$ is even then X is a complete intersection if and only if

$$
H^{i}\left(Q_{n}, J_{X}\left(\frac{n+a}{2}-i\right)\right)=0 \quad \text { for } 1 \leqslant i \leqslant[n / 2]
$$

(ii) If $n+a$ is odd then X is a complete intersection if and only if the following hold:

$$
\begin{array}{ll}
H^{i}\left(Q_{n}, J_{x}\left(\frac{n+a-1}{2}-i\right)\right)=0 & \text { for } 1 \leqslant i \leqslant n-2 \\
H^{i}\left(Q_{n}, J_{X}\left(\frac{n+a+1}{2}-i\right) \otimes S\right)=0 & \text { for } 2 \leqslant i \leqslant n-1
\end{array}
$$

Proof. - By the Hartshorne-Serre correspondence [25], the normal bundle of X in Q_{n} extends to a 2-bundle E on Q_{n}. As $K_{Q_{n}} \simeq \mathcal{O}(-n)$, we have $\epsilon_{1}(E)=n+a$.

We get an exact sequence

$$
0 \rightarrow \mathcal{O}_{Q_{n}} \rightarrow E \rightarrow J_{X}(n+a) \rightarrow 0
$$

We normalize E after twisintg by $\mathcal{O}(-(n+a) / 2)$ when $n+a$ is even and by $\mathcal{O}(-(n+a+1) / 2)$ when $n+a$ is odd. Then, we apply theorem 3.7 and Serre duality.

We want to point out the following:
Theorem 3.9 (Barth-Larsen). - Let $X \subset Q_{n}$ be a smooth subvariety of codimension 2. If $n \geqslant 7$ then $\operatorname{Pic}(X)=Z$ is generated by the hyperplane section. In particular, X is subcanonical.

Proof. $-X$ is a codimension 3 smooth subvariety of \boldsymbol{P}^{n+1}.
Then, apply the Barth-Larsen theorem for subvarieties of $\boldsymbol{P}^{n+1}[16]$.
Example 3.10. - Let C be a smooth subcanonical curve in \boldsymbol{P}^{4} which is embedded in a smooth quadric hypersurface Q_{3}.

If $K_{C}=\left.\mathcal{O}_{P^{4}}(a)\right|_{C}$ with a odd, then C is a complete intersection of Q_{3} and two other hypersurfaces of \boldsymbol{P}^{4} if and only if the restriction map

$$
H_{0}\left(Q_{3}, \mathcal{O}\left(\frac{a+1}{2}\right)\right) \rightarrow H^{0}\left(C, \mathcal{O}\left(\frac{a+1}{2}\right)\right)
$$

is surjective (i.e. C is $((a+1) / 2)$-normal in $\left.Q_{3}\right)$.
If E is a 2 -bundle on Q_{n}, and $l \subset Q_{n}$ is a line, define now $d_{l}(E)$ and $d(E)$ exactly as before theorem 2.13.

The proofs of the following two theorems are completely analogous to the proof of theorem 2.13 and are omitted.

Theorem 3.11. - Let E be a 2 -bundle on Q_{3}. Let l, l^{\prime} be any two lines in Q_{3} and let S be the spinor bundle on Q_{3}. Then the following inequalities hold:

$$
\begin{aligned}
& \left|d_{l}(E)-d_{b^{\prime}}(E)\right| \leqslant h^{1}(E(k))+h^{2}(E(k) \otimes S) \\
& \left|d_{i}(E)-d_{l^{\prime}}(E)\right| \leqslant h^{1}(E(k))+h^{2}(E(k-1))
\end{aligned}
$$

for

$$
\left|k+\frac{c_{1}(E)}{2}+1\right| \leqslant d(E)
$$

Theorem 3.12. - Let E be a 2 -bundle on Q_{4}. Let l, l^{\prime} be any two lines in Q_{4}, let S be a spinor bundle on Q_{4} and let $F=\mathbb{S}^{*} \otimes \mathcal{O}(1)$. Then the following inequalities hold:

$$
\begin{aligned}
& \left|d_{l}(E)-d_{l^{\prime}}(E)\right| \leqslant h^{1}(E(k))+h^{2}\left(F^{*} \otimes E(k)\right)+h^{3}\left(\bigwedge^{2} F^{*} \otimes E(k)\right) \\
& \left|d_{i}(E)-d_{l^{\prime}}(E)\right| \leqslant h^{1}(E(k))+h^{2}\left(F^{*} \otimes E(k)\right)+h^{3}(E(k-1))
\end{aligned}
$$

for

$$
\left|K+\frac{c_{1}(E)}{2}+1\right| \leqslant d(E)
$$

REFERENCES

[1] E. Ballico, Unitorm vector bundles on quadrics, Ann. Univ. Ferrara, serie VII, 27 (1981), pp. 135-146.
[2] E. Ballico - P. E. Newstead, Uniform bundles on quadric surfaces and some related varieties, J. London Math. Soc., 31 (1985), pp. 211-223.
[3] W. Barth - K. Hulek, Monads and moduli of vector bundles, Manuscripta Math., 25 (1978), pp. 323-347.
[4] E. Berger - R. Bryant - P. Griffiths, The Gauss equations and rigidity, Duke Math. J., 50, по. 3 (1983), pp. 803-892.
[5] R. Bott, Homogeneous vector bundles, Ann. of Math., 66 (1957), pp. 203-248.
[6] R. O. Buchweitz - G. M. Greuel - 0. Schreyer, Cohen-Macaulay modules of hypersuperface singularities II, Invent. Math., 88 (1987), pp. 165-182.
[7] L. Chiantini - P. Valabrega, Subcanonical curves and complete intersections in projective 3-space, Annali di Mat., serie IV, 138 (1984), pp. 309-330.
[8] E. G. Evans - P. Griffitil, The syzygy problem, Ann. of Math., 114, no. 2 (1981), pp. 323-333.
[9] K. Fritzsche, Linear-Uniforme Bündel auf Quadriken, Ann. Sc. Norm. Sup. Pisa, (4), 10 (1983), pp. 313-339.
[10] M.J. Greenberg, Lectures on algebraic topology, Mathematics lecture note series, London: W. A. Benjamin (1973).
[11] M. Guyor, Caracterisation par l'uniformité des fibres universels sur la Grassmannienne, Math. Ann., 270 (1985), pp. 47-62.
[12] R. Hartshorne, Ample vector bundles, Publ. Math. IHES, 29 (1966), pp. 319-350.
[13] G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc., (3), 14 (1964), pp. 689-713.
[14] G. Horrocks, Construction of bundles on \boldsymbol{P}^{n}, in: Séminaire Douady-Verdier E.N.S. 77/78, Astérisque 71-72, Les équations de Yang-Mills (1980), pp. 197-203.
[15] H. Knörrer, Cohen-Macaulay modules of hypersurface singularities, Invent. Math., $\mathbf{8 8}$ (1987), pp. 153-164.
[16] M. E. Larsen, On the topology of complex projective manifolds, Inventiones Math., 19 (1973), pp. 251-260.
[17] C. Okonek - M. Schneider - M. Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, 3, Boston - Basel - Stuttgart: Birkhauser (1980).
[18] G. Ottaviani, Alcune proprietà dei 2 -fibrati su R^{2}, Boll. UMI, serie VI, 3-D, no. 1 (1984), pp. 5-18.
[19] G. Ottaviani, Oritères de soindage pour les fibrés vectoriels sur les grassmanniennes et les quadriques, C. R. Acad. Sci. Paris, 305 (1987), pp. 257-260.
[20] G. Ottaviant, Spinor bundles on quadratics, Trans. Am. Math. Soc., 307, no. 1 (1988), pp. 301-316.
[21] J. A. Sommese, Complex subspaces of homogeneous complex manifolds. II: Homotopy results, Nagoya Math. J., 86 (1982), pp. 101-129.
[22] E. H. Spanter, Algebraio topology, New York, McGraw-Hill (1966).
[23] M. Steinsieck, Über homogen-rationale Mannigfaltigkeiten. Schriftenr., Math. Inst. Univ. Münster, 2. Serie, Bd. 23 (1982), pp. 1-55.
[24] A. Van de Ven, On uniform vector bundles, Math. Ann., 195 (1972), pp. 245-248.
[25] J. A. Vogelaar, Constructing vector bundles from codimension-two subvarieties, Ph. D. thesis, Leiden (1978).
[26] J. Weuler, Beiträge zur algebraischen Geometrie auf homogenen lomplexen Mannigfaltigkeiten, Habilitationsschrift, München (1984).

