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Some Extensions of  Horrocks Criterion to Vector Bundles 

on Grassmannians and Quadrics (*). 

GIORGIO O~TAWA~I (**) 

Summary, - I n  this paper we prove that a vector bundle E on a grassmannian (resp. on a quadric) 
splits as a direct sum o] line bundles i] and only i] certain cohomology groups involving E 
and the quotient bundle (resp. the spinor bv/adle) are zero. When ~'an~ t~ ~ 2 a better cri- 
terion is obtained considering only ]initely many suitably chosen cohamology groups. 

A well known criterion of Horroeks ([13], [14], [17]) says tha t  a vector bundle E 

on the complex project ive space pn splits (i.e. is isomorphic to a direct sum of line 

bundles) if and only if the cohomology groups H~(P  ~', ~(t)) are zero for 0 < i < n -~ 

-~ dim Pn and for all t ~ Z ,  where E($) denotes / ~  0p~(t). 

Le t  Gr (k, n) be the Grassmannian of linear k-planes in pn and let Q~ be the 

smooth quadr ie  hypersurface in p~+l. 

In  this paper  we obtain some extensions of Horroeks criterion and some related 

result  on Gr (k, ~) and  Q~. 

Gr (k, n) and Q~ (n~>3) are the simplest rat ional  homogeneous manifolds of rank  

one [23] besides P~. 

Most of the  results contained in this paper  have been announced in [19]. 

I wish to t hank  Prof. V. A~co~A, who posed to me this problem, for all his 

encouragement  and for many  helpful conversations. 

The paper  is divided as follows. 

In  section 1 we fix basic notat ions and in part icular  we recall the Bo t t  theorem 

for homogeneous vector  bundles on Grassmannians. 

Tn section 2 our main result is theorem 2.1. In  part icular  we have the following 

splitt ing criterion: 

L e t / ~  be a vector bundle on Gr (k, n). Then E splits if and only if 

Q ~8 

H ' ( G r ( k , n ) , / ~ Q * G . . . Q A Q * Q E ( $ ) )  ~ - 0  V i , , . . . , i ~  
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such tha t  0 < i l , . . . , i , < n - - k ,  s<]r V t e Z ;  Vi such tha t  0 < i < ( k + l ) ( n - - k ) =  

: dim Gr (k~ n) where Q : quot ient  bundle on Gr (k, n), Q* = dual of Q. 

When  i t : 0  or k : n - - 1  then  G r ( k , n ) ~ P ~  and we get exact ly  the Hor-  

rocks criterion. Obviously in the s ta tement  above we can replace Q* b y  Q (it is suf- 

ficient to apply  Serre dual i ty and observe tha t  E splits if and only if J~* splits). 

Then  we specialize to the case: r ank  E : 2. In  this case, by  a simple argument  

involving the Koszul complex of a line in the Grassmannian, we are able to prove 

t ha t  the  bundle E is uniform when finitely m an y  suitably chosen cohomology groups 

are zero (theorem 2.9). On the project ive plane this result  was proved in [18]. Uni- 

form 2-bundles on Grassmannians have  been classified b y  VA~ D~ VE~ [24] and 

GuYoT [1t]. So our result  imphes a strong improvement  of the  splitting criterion 

quoted above. When the  Grassmanniaa is u project ive space, we get another  proof 

of a result  of Chiantini and Valabrega [7]. 

In  section 3 we use some results f rom [20]. In  [20] we have defined some vector  

bundles on the  quadric Q~ which are the  natura l  generahzat ion of the universal 

bundle and the dual of the quot ient  bundle on Q4 ~ Gr (1, 3). We have called 

them spinor bundles. 

Spinor bundles appear  in the main result of this section which is theorem 3.3. 

In  part icular  we have  the following splitting criterion: 

Le t  E be a vector  bundle on Q. (n>3) ,  let S be a spinor bundle on Q~: Then ]~ 

splits if and only if 

H~(Q,,E(t))  = 0 for 2 < i < n - - 1  

H~(Q~, S Q E ( t ) )  : 0 for l < i < n - -  2 ,  for all t e Z .  

When rank  E = 2, the  analog of theorem 2.9 for quadrics is theorem 3.8. 

1. - Nota t ions  and pre l iminar ies .  

For  basic facts about  vector  bundles we refer to [17]. When X : Gr (k, n) or 

X : Q ~  (n>3 )  we have P i c ( G r ( k ~ n ) ) : P i c ( Q ~ ) : Z .  So i t  is na tura l  to keep 

the nota t ion E(t) = E ~ Ox(t) for t e Z when /~  is a vector  bundle on a Grassmannian 

or on a quadric, o~ 

The first Chern class of E can be considered as an integer. 

We use the definition of stabil i ty of ~umford -Takemoto .  

We denote  by  E* the duM of the vector  bundle E. 

I f  Z is a subvaxiety of X we denote E ( ~ O  z b y  J~lz- 5z is the ideal sheaf of Z. 
Ox 

I f  /~ is a sheaf on X, we denote b y  h~(/7) the dimension of the  complex vector  

space H~(X, _,v). We shah need the following 1emma: 

L ~ A  1.1. - ( i )Le t  

0 -+A~-+  ... -->A1--~B -+0 

be an exact  sequence of sheaves on a var ie ty  X, let r be an integer >0 .  



GI0~GIO O T T A V ~ I :  Some extensions o/ Horroelcs criterion, etc. 319 

I f  H ~ + H ( X ,  A~) --= 0 for  i = 1, ..., n t hen  H ' (X ,  B) = O. 

(ii) L e t  

a n  
0 -->A~----> ... ~ A 1  

a~z 

0 -~ A~-->  ... - > A 1  

-~-% B --~ 0 

~--~ B '  -+ 0 

t h e n  

and 

H,~-~(X, An) = o or  H~-~(X, A._~) = 0 

Ho(B) = HO(B'). 

PROOF. - W e  get  (i) cu t t i ng  the  sequence in to  shor t  exac t  sequences,  or b y  a 

spect ra l  a rgumen t .  

Cu t t ing  t he  first sequence of (ii) in to  shor t  exac t  sequences,  we ge t :  

(1) 0 -> K e r a l  -->A1 ~ B --> 0 

(2) 0 -~ Ke r  as -~ As -~ Ker  a~ -~ 0 

a n  
and  so on u n t i h  0 - ~ A ~ - +  A~-I -~ Coker (an) - ~ 0 .  Then  

hO(B)---- ( f rom (1)) 

= hO(A~)- h~ a~) Jr h l (Ker  al) ----- ( f rom (2)) 

= h~  ho(A~) -k hi(As) -~ h~ Ker  a s ) -  h~(Ker as) ~- hS(Ker as) .  

Thus ,  af ter  n steps, we ge t  ho(B) as a sum involv ing  only  some cohomology  groups  

of t he  sheaves  A~ (in fac t  Ker  an = An). 

This gives t he  thesis. 

I n  the  case (ii) of 1emma 1.1 we can prove  in the  same w a y  a li t t le more :  

L E n A  1.2. - L e t  

(3i) 

(3ii) 

a n a l  

0 - > A n  --> ... - + A 1  - ~  B - ~ 0  

' a~ B '  0 - ~ A ~  ... -~ A I - ~  - > 0  

be two exac t  sequences of sheaves  on a va r i e t y  X.  

be two  exac t  sequences of sheaves on a va r i e t y  X.  

I f  

H~(X, A~) = 0 for  i ---- 1, ..., n -  2 
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Then: 

n - - 1  

[hO(B) -- ho(B,)l ~< ~ hr 
i = l  

IhO(B) - hO(B~)[~<~ h~(A~) ~- h~-~(A~) . 
/ = 1  

P]tOOF. -- Set Zi(F) = ~ (-- 1)~h~(F) for a sheaf ~ .  
5 = 0  

Then, cutt ing (3i) and (3ii) into short exact sequences as in lemma 1.1 we have: 

~nd: 

h~ -- h~ ') <<. z~(Ker a~) -- z~(Ker a~) + h~(A1) 

i / l Z (Ker a~) -- gi(Ker ai) <~ Z~+~(Ker a,+~) -- g':+~(Ker a~+~) -~ h~+i(Ai+i) 

for i = l , . . o ~ n - - 1 .  

The same inequalities are true interchanging a, and a~. 

As K e r a , _ ~ =  Kera~'_~= A~, it  follows tha t  

n - - 1  

[h~ - B~ < Z h*(A,). 
i = 1  

In  the same way we can prove the other inequality. 

On the Grassmannian Gr (k, n) we have the canonical exact sequence 

(4) 0 --> S --> 0 ~ + ~  --> q - - > o .  

The universal bundle S has rank k ~ 1, the quotient bundle Q has rank n -  k. 

We have c ~ ( S ) = -  1, e~(Q) = ~ 1. Considering the isomorphism Gr (/Gn) 

Gr (n -- k -- 1, n), the c~nonical exact sequence on Gr (n -- k -- 1, n) is the dual 

sequence of (Q. 

We consider Gr (k, n) as the complex homogeneous manifold SL(n ~ 1)/P where 

o] 1 e SL(n § !~: h, e GL(tr § l) (see [26]). 
P = hs h~ 

~I(n ~ 1) = { A ~  M(n ~- 1): t r A =  0} is the simple Lie algebra of SL(n ~- 1) 

and ~ = {A e ~I(n A- 1): A is diagonal} is a Cartan subalgebra of ~i(n ~- 1). 

Le t  e , ~  fiI(n ~ 1) be the matr ix  with the (i, j) entry  equal to 1 and all other 

entries equal to zero, {e~j} the dual basis of {eij}. Then: ~ =  ei.~--e~+1.~+1 for 

i = l , . . . , n  give a basis for l). We call AI,...,2,~eI~* the dual basis of xl, . . . , x ,  
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and set 
r , l)* 

I t  is well known tha t  (2~, a~) = 8,~ where 1/(2(n @ 1))( ,  ) is the Killing form in ~* 

and 8 ,  is the Kroneeker symbol. 

a~, ..., ~. gives a basis of the root  system ~b of ~I(n ~-1)  with respect  to ~. 

I t  is well known tha t  q~ ---- q~+ ~9 ~5- where 

is the  set of positive roots and q~------ q~+. 

A weight ~ = ~ n ~  (n~eZ) is called singular if (~,~) = 0 for at  least one 
i = 1  

e ~b, and regular with index p if it is not  singular and there exists exactly p roots 

eq)+ such tha t  ( 4 , ~ ) < 0 .  We set: 8 = ~ 2 ~ = � 8 9  
i = 1  aecD+ 

A homogeneous vector bundle /E e of rank r on Gr (k, n) ~_ SL(n @ 1)/P is by  

definition ~ bundle arising from a representation ~: P - +  GL(r). In  particular a 

homogeneous bundle satisfies the condition: ]*J~e _~ E~ V ] e A u t  (Gr (k, n)) ~ where 

Aut  (Gr (k, n)) ~ is the connected component  of the group of all automorphisms of 

Gr (k, ~). 

We recall the fundamental  theorem of Bot t  ([5], th. IV',  [26]) 

TtlEO~E~r (Bott). - Let  Es be a homogeneous vector bundle on Gr (k, n ) -  

SL(n @ 1)/P, defined by  an irreducible representation ~, and let A be the highest 

weight of Dp: p ~ gi(r). 

(i) If  ~ ~- 8 is singular then H~(Gr (k, ~), Es) ---- 0 Vi. 

(ii) If  ~ -[- 8 is regular with index p then H~(Gr (/6 n), Ee) = 0 for all i # p 

and the dimension of Hs(Gr (k, ~), EQ) is the dimension of the representation of 

~I(n @ 1) with highest weight s(% @ (~)-  8. Here, s (2- [ -8)  denotes the  uniquely 

determined element of the Weyl  chamber of ~(n  @ I) which is congruent to ~ @ 8 

under the action of the  Weyl  group of reflections r~ with respect to the  hyperpl~ne 

orthogonal to ~ .  _1 

We have 

rj(2j) = { 2,j i # j 
2 j - l - -~0 j+  2j+x i = j 

where we set ~o : 2,,,+~ = 0. 

The bundle AQ (i-th exterior power of Q) belongs to the irreducible representa, 
t ion with highest weight 2.~. 
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L E l v ~  1.3. - Let 0 < i < dim Gr (k, n) : (k -~ 1)(n -- k). 

If  s < k  

i l  is 

H~(Gr (k, n), A Q@ ""@A Q(t)) = o 

H~(Gr (k, n) , / \  Q@ ' " @ A  Q(t)) : 

C 

V t e Z ~  for O < i ~ , . . . ~ i , < n - - k  

if i~ . . . . .  ik+l  = j ;  

t = - n + i - 1 ;  

i : (n--  k - -  j)(k + 1) for O < j < n - -  k; 

0 otherwise 

P~OOF. - The bundle A Q @ "" @A Q belongs to a representation not irreducible 

but  fully reducible. In fact Q is given by  the representation 

P ~ GL(n --  k) 

[h~ 0]~-~h~ 
h3 h4 

which is a surjective projection. So we limit ourselves to studying the representa- 

tions belonging to A Q @ "'" @A Q as GZ(n -- k)-representations (i.e. homomorphisms 

GZ(n--  lt) ---> Aut (V), V a vector space). 

The bundle Q belongs to the standard representation ~ of GZ(n- -k )  and 
ix is ix is 

A Q @'"  @A Q belongs to A ~ @... @ A w. By Littlewood-Richardson rule we can 

decompose these representations into a direct sum with each snmmand isomorphic 

to Q~ ...... ~" for some n l>  ...>~n~. We have found in [4] (pag. 879) a clear explana- 

tion of how to handle Littlewood-Richardson rule. 

We consider Qn ...... ~" as a bundle on Gr (k, n). I t  corresponds to a Young diagram 

with the i-th row given by  n~ elements. 
t imes  i 

In particular Q1,1 ..... ~ = A Q ,  Q~=--S~Q (p-th symmetric power of Q). As 
n--7r 

det Q ----- A Q = 0(1), we have: 

n - - k - - r  t imes 

I t  is convenient to set n~ = 0 for i > r. 
i l  is 

If Qn ...... ~" is a direct summand of A Q @ . . - @ A Q  then n~<s u This follows 
Q 

by Littlewood-I~ichardson rule. In fact A Q corresponds to a Young diagram with il 

rows each of them with only one element. AQ @ AQ decomposes in some summands, 

e-ch of them corresponds to a Young diagram consisting of rows with at most two 

elements. 



GIo~IO OTTAVIASII: Some extensions of Horroeks eriterion~ etc. 323 

Thus, AQ @ "" @AQ decomposes into summands, each corresponding to a Young 

diagram consisting of rows with at most s elements. 

I t  is well known tha t  the highest weight of the irreducible representation Q~ ...... ~' 

is 2 = 2~(nl -  n~) + 2~(n~- n~) + ... + 2rn~. A reference for this fact is [12] theo- 

rem A7, where h, is, in our notation, equal to 2~-- 2~-1. 

Observe tha t  r < n - - k :  rankQ. We recall tha t  the line bundle O(t) ( t e Z )  

belongs to the representation with highest weight t2~_~. 

Let  first s<k .  Then n~<k, in particular n~--n,+~<k.  Then we claim tha t  

2 + t2,_~ + (~ is a singular weight for -- n -  nl < t < - -  1 -- hi,  is regular of index 0 

for t > - -  n , ,  is regular of index (k + 1)(n--  k) for t < - -  n - -  n~-- 1. 

For, let first -- n -  n~<t<- -  n + l ~ -  n~. Then, 

(2 + t2,,_~ + b, ~ + ... + ~-~-,~) = (2, ~ + ... + ~-,-, , ,)  + 

+ (t2~_~, ~ +  ... + ~ - , - ~ )  + (~, ~ 1 +  ... + ~ - , - ~ )  = n ~ +  t + ( -  t -  n~) = o ,  

so tha t  2 + t2~-k + 3 is singular. 

Let  now -- n + /~-- n x +  l < t < - -  1 - -  n,.  

quence of integers: 

Consider the following decreasing se- 

W e  h a v e  

a i : =  (2 q- t2n-~-~  ~, Oq 27 . . . -~ Otn-~) = n i - ~  t q- n - -  ]~ 

a~ : = ( 2 + t 2 . _ ~ + ~ , z t ~ q - . . . + a ~ _ k ) = n ~ + t + n - - k - - 1  

a~_~ : :  (2 + t2~_~ + ~, ~,~_~) = n,~_~ + t + 1 

O<ai_~-- a i =  ni-~-- h i +  l < s  + l < k  + 1 

By  hypothesis: a l > l ,  a~_7r Let  a~+~ be the first element of the sequence which 

is nonpositive. Then aj>:[ ,  so tha t :  

Thus 

- -  k < a 3 + l < O  �9 

(2 + t2._~ + ~, gj+~ + ... + g._~_o,) = (~ + t2~_~ + ~, g~+~ + ... + g._~) + 

- - ~ J + 1  - - ~ J + l  

+ ~ (~ + t~_~ + ~, ~._~+~) = a~+~ + ~ i = a~+~- aj+~ = o ,  
y = l  $ = i  

so tha t  2 q-t2n-.~ + ,~ is singular. 

I f t > - - n ~ ,  then ( 2 + t 2 " _ ~ + ( ~ , a ) > 0  for each n e e + ,  so tha t  2 + t 2 ~ - k + ( ~  

is regular of index 0 (for all s). I f  t < - - n - - n l - - 1 ,  then ( 2 + t 2 ~ - ~ + 3 ,  a ) < 0  

exactly for a ---- as + ... + a~. with 1 < i  < n -  k < j <n,  and positive otherwise. Then 

2 + t2~_~ + (~ is regular of index (k + 1)(n -- k) (for all s). 
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Thus, if s ~< k, we get the result from Ber t  theorem. 

If  s ~ k @ 1, we point out tha t  when --n--n~<-..t<..--1--n~ the proof above 

shows tha~ 2 @ td~_~ @ (~ is singular for aj+~r -- k -  1. 

When a~+~: -- k - -  i, then a ~ :  1 and 

so tha t  the corresponding Young diagram has a row with exactly k @ ! elements 

more than  the above one. 

After twisting by some line bundle, the corresponding bundle Q"; ..... n; satisfies 

the condition: 

O..<n~.< k @ 1 Vi 
/ l 

n , -  nj+~---- k @ i 

so tha t  

, { k @ l  ~ < i < /  
9Zi = 0 ] @ 1 < i  

/c + i t imes  

i J 

Q~; ..... C is then a direct summand of A Q| A Q. 
Consider the corresponding weight: 

]t ---- (k @ 1) 4r @ t4~_7~ with t e Z .  

When t changes, 4 @ ~ is regular of index different from 0, (k @ 1 ) ( n -  k) only 

when t ---- -- n -}- j - -  1, and in this ease ((/~ @ 1)2;@I- (-- n @ j - -  1)Z~_~@ d, e) < 0 

exactly when ~---- c~@ a~+~@ ... @ % with j @ l~<i~<n--  k<~p<~n, so tha t  the 

index of (k @ 1)4;-b (-- n @ j - -  1)2.-7~ @ d is (n--  k - -  j)(k @ 1). 

By  applying Ber t  theorem again, it  remains only to show tha t  (k @1)~ ;@ 

@ ( - - n @  j--1)Z~_z0@ ~ is congruent to d under the action of the Weyl  group. 

This is explained by the following example: 

Let  n = 6 ,  k = 2 ,  j - = l  so tha t :  

(k @ 1)J% @ ( -  n @ j -  z)4~_~@ c~ = 44~§ 25@ 4.- 5~@ 4~@ 4~. 

We apply to this weight a sequence of reflections (elements of the Weyl  group) 

obtaining: 

(apply r4) : 42~ @ ~ -- ~3  @ 544 -- 4Z5 @ ~8 

step I) (apply r~): ~21@ ~ - - 4 ~ s @  44 @ 44s -- 326 

(apply r6): 42~@ 4~--442@ 4~@ ~@346  
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(apply r3): 42~ -- 322 ~ 4A~ -- 3A~ ~ A5 -[- 3~  

step 2) (apply r~): 42~--3A~-  A3~3A~--2As-[-3A6 

(apply r~): 4)~ -- 3~2 -[- A~ + A, -~ 2A5 § 2~ 

step 3) 

In general, if j : n -  k the 

I f  j < n - - k  we apply to 

quence of reflections: 

claim is obvious. 

( k ~ - l ) ~ j ~ - ( - - n ~ j - - 1 ) A . _ k +  ~ the following Be- 

step 1) r~o...or~_~+lor,_7~ (this is sufficient if j = n -  k - -  1) 

step 2) r,_lo...or~_~or~_~_l (this is sufficient if j : n -  k -  2) 

step n - -  k - -  j) r~+k_io...orj+,or~+~. 

In  the end we obtain ~, as the reader can convince himself. 

This completes the proof of lemma 1.3. 

As a corollary of lemma 1.3 we get the following well known s ta tement  (look 

at  the duali ty Gr (lr n) ~ Gr (n -- k -- 1, n)) : 

P]~m'. 1.4. - Let  0 < i < dim Gr (k, n) 

(i) We have Hi(Gr (k, n), 0(t)) : 0 Vt e Z 

(ii) H~(Gr (k, n), Q(t)) = 

H~(Gr (k, n), S*(t)) : { C O 

k = 0 ,  t = - - n ~  i = n - - 1  

otherwise 

k =  n - -X ,  t = - - n ,  i : n - - 1  
otherwise.  

2. - S p l i t t i n g  cr i t er ia  o n  G r a s s m a n n i a n s .  

Consider now the problem of finding some cohomological conditions for a vector 

bundle E on Gr (k, n) tha t  are equivalent to the splitting of E. 

By  prop. 1.4 we get tha t  the condition Hi(Gr (k, n), E(t)) = 0 for all t E Z, for 

0 < i < dim Gr (k, n) is always necessary but  is sufficient only when the Grass- 

mannian Gr (16 n) is isomorphic to a projective space (i.e. k = 0, n -  1). So it is 

natural  to look for more vanishing conditions. 

The answer is given by  the following theorem. 
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T~EO~E~ 2.1. - Le t  E be a vector  bundle on Gr (k, n). 

The following conditions are equivalent:  

a) ~ splits 

b) H~(Gr (k, n), 

< n - -  k, s <  

e) H~(Gr (k, n), 

i t  is 

/~ Q* @ .... ~ /~ Q* @ E(t)) : 0 Vil, ..., i~ such tha t  0 < i~ , . . . ,  i~< 
k, Yte Z, Vi: 0 < i < (k -~ 1 ) (n - -  k) : d i m G r  (k, n) 

i l  is 

AQ*@. . . |  = o, v t e z ,  vi~, . . . , i~ , i  s.t.: 

8 

~ i , < i <  ~ i , - ~  d i m G r  (k- -  s, n - -  s) 
n = l  n = l  

0 < i ,  0<i l ,  ..., i~<~n-- k 

0 

where we set, A Q * =  Oct, d i m G r  (p, q) ---- 0 if p < 0. 

PROOF. -- a) ~ b) I t  follows f rom lemma 1.3 and Serre dual i ty as cohomology 

commutes  with direct sums. 

b) ~ v) is trivial, because if s > k condition e) is empty.  

c) ~ a) The proof is by  induction on k and follows the pa t t e rn  of the proof 

of Horroeks criterion given in [3]. 

For  k----0 the  implication is exact ly  the Horrocks criterion on P ' .  Consider 

now a generic section s of S (Q is globally generated):  it has zero locus Z 

_~ Gr (k- -  1, n - -  !) .  Observe t h a t  Q[z ~- Qz. The first step in our proof is to  show 

tha t  EIz splits. In  order to  use the  induction hypothesis,  we claim tha t  

Jt J~ 

H~(Z, A Q * |  .... ~ A Q * |  v t e z ,  v s  

I 
~ j ~ < i  < ~ j , , +  dimGr (k- -  1 - -  s, n - -  1 - -  s) 

i > 0 .  

For,  we consider the  Koszul complex of s, after  tensoring it by  E(t): 

(5) 
n - - l c  n - - k - - 1  

o ---> A Q* @ ~(t) ---> A Q* | F,(t) ~ . , .  - >  

2 

--> A Q* @ F,(t) -> Q* | E(t) ---> -E(t)]~ --> 0 .  

This sequence is exact.  
i l  is 

We tensor (5) by  A Q* @ -.- @ A Q*. 

Our hypothesis together  with lemma 1.1, (i) proves our claim. So we can con- 
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struct  a splitting bundle /v on Gr(k,n)  and a isomorphism ~o: F[z-+E[z, o~oE 

+ r e ( z ,  (~* | ~)l~). 
Our second step is to show tha t  go can be extended to an isomorphism 

g e H ~  (k~ n)~ F* >QE). The obstruction to this extension lies in H~(Gr (k, n)~ 
~ | ~* | ~).  

The Koszul complex of s gives an exact sequence: 

(6) 
n - - k  2 

o --> AQ* -+ ...---> AQ* -+Q* ---> ;~ - + o .  

We tensor (6) by  /~*(D E. 

Our hypothesis  together  with lemma 1.1, (i) gives: 

HI(Gr (k, n), ~ | F* | ~)  = 0 .  

Then there  exists a morphism ~: F - +  E, and then a morphism: det ~: det ~ - +  

-+ det E. We obtain 

det ~ e H~ (k, n), (det 2~) * (~ det E) ---- 

-~ H~ (k, n), 0(e1(]~) -- el(F))) = H~ (k, n), 0Gr(k,,)) ~ C .  

Then det ~ is a constant ;  as it is nonzero on Z, it is nonzero everywhere on Gr (k, n). 
Thus g must  be an isomorphism, q.e.d. 

REMARK 2.2. -- Theorem 2.1 is useful if k ~- l < n -  k. Otherwise we can perform 

the dual i ty Gr ( n -  k - -  1, n) _ Gr (k, n) and use the dual of theorem 2.1 with S 

at  the place of Q*. 

RE~tA~K 2.3. -- The computat ion in lemma 1.3 for s = k + 1 shows tha t  the bound 

s <  k in (b) of theorem 2.1 is sharp. 

EXA2d:P:SE 2.4. - Le t  E be a vector bundle on Gr (1, 4). Theorem 2.1 says tha t  E 

splits if and only if: 

H'(Gr (1, 4), E(t)) = 0 

H~(Gr (1, 4), Q* (~ E(t)) -~ 0 

2 

H~(Gr (1, 4), A Q* | E(t)) = 0 

for 1 < i < 5 ~  for all t e Z  

for 1 < i < 3 ~  for all t e Z  

for 2 <i<4,  for all t e Z .  

On Gr (1, 3) __ Q~ a bet ter  criterion will be found in section 3 (theorem 3.3). 

EvAns and G~IFFITE have proved in [8], th. 2.4, tha t  if E is a vector bundle on pn 
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and Hs(P~ E(t)) -~ 0 for all t ~ Z, for all i such tha t  0 < i < rank E, then  E splits. 

This improves Horrocks criterion when rgnk E is small. 

Using the result of Evgns und Griffith~ b y  g proof similar to tha t  of theorem 2.1, 

we obtain the following: 

Ti~EOnE~ 2.5. -- Le t  E be ~ vector  bundle on Gr (k, n). The following conditions 

are equivalent :  

a) E splits 

i l  is 

b) H~(Gr (k, n), A Q*Q ...@ A Q*@Z(t)) -~ o for all t e z ,  Vi~, ..., i~, i such tha t :  

~ i ~ < i <  i i~+ min {ra~ukE, d imGr(k - -  s , n - -  s)} 
n = l  n = l  

0 < i~ 0<i1~ ...~ i,<~n-- k .  

J 

We recall now tha t  Horrocks gave the following characterizat ion of the bundle A Q* 

on P"  (recall tha t  Q ~_ TRy( - 1)~-  (#2~(1)) * on P~): 

~- (A Q,)| if ~nd only if (n>2): 

E does not  contain any line subbundlc as direct summand,  and 

{ C  ~ if i = j ,  t = - - j  
Hi(P"~ E(t)) = 0 otherwise .  

We obtain the following result  (for ls~>2) exact ly in the same way we obtained 

theorem 2.1 : 

Tm~O~E~ 2.6. - Let  j such tha t  l < j < n - -  k -- 1, and let k~>2. Let  E be a vector  

bundle on Gr (k, n). The following conditions are equivalent:  

J 

a) E _~ (A Q * ) %  

b) E does not  contain ~ny line subbundle as direct summand and: 

i l  is 

Hi(Gr  (k, n), A Q* @ ... ~ f Q* @ ~(t)) = 

Cr 

Vii, ..., is such tha t  s 4 k, 

O < i l , . . . , i ~ < n - - k ,  for all t ~Z~  

Vi: 0 < i < dim Gr (k~ n) 

with the  only exception s = k, 

il . . . . .  i s =  j, i =  j ( k + l ) ,  

t - - - - - - j  

if il . . . . .  i ~ - j ,  s =  k 

i = j(k + 1 ) ,  t = -  j; 
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e) E does not  contain any  line subbundle as direct summand  and:  

i t  i ~ 

H~(Gr(k ,n ) ,AQ*@. . .@AQ*@E( t ) )  = 0  Vi l , . . . , i~ , i  such t ha t :  

8 8 

~ i ~ < i  < ~ i ~ - ~  d i m G r  (k - -  s, n - -  s) 
n = l  n = l  

0 < i ~  0 < i l ,  .... , i~<n- -  k, 

with the  only exception s ---- k, il . . . . .  i~ = j, i = j(k ~ 1), t = - -  j 

k t i m e s  

J J 

HJ(k+~)(Gr (k, n), A Q*Q . . .G  A Q * ( ~ E ( -  j)) = C ~ 

i n--k--j 

H i ( G r ( k , n ) , A Q * @  A Q*@E)-=O for l < i < n - - k .  

n--k--1 

RE~A~K 2.7. -- As Q ~_ A Q*(1), theorem 2.6 gives also a cohomological char- 

acterizat ion of the  quot ient  bundle. 

F r o m  now on, we specialize to the  case r ank  E ~ 2. We point  out t h a t  in this 

ease: E* ~_ E(--el(E)), regarding el(~) as an integer. 

I t  is well known tha t  if 1 is a line on Gr (k, n) (i.e. a Schubert  cycle of dimen- 

pk+l  with Po k-l ,  pk+~ fixed sub- sion 1, consisting of all P~ such t h a t  Pko-~cPkc~  o ~o 

spaces of P ' )  then  /~[~ _~ O~(p)Q O~(q) with p -~ q = c~(E). 
When p,  q do not  depend on the  line l, the bundle E is called uniform. VAN DE 

VE~ [24] and  Gwzo~ [11] have  shown tha t  uniform 2-bundles always split on Gr (k, n) 
(n>3) ,  except  in the case k ~ 1 when also the  2-bundle S(t) is uniform, and  k ---- 

= n -  2 when also the  2-bundle Q(t) is uniform. 

Le t  us consider the  bundle 

F = Q+~| 0(1) +~-k-1 

F is a globally generated vector  bundle of r ank  (k + l ) ( n - -  k ) - - 1 .  Note  t h a t  

det /~  = 0 (n - -  1). 

A generic section of F vanishes on a line l, and the  following Koszul  complex 

is exact  (we set d = (k -k 1 ) (n - -  k)): 

d - - 1  2 

(~) 0 + A F * + . . . + A F ,  + ~ * + o ~ r + o , + o .  

We recall also t ha t  twist ing by  �9 we can suppose t h a t  el(E)= 0 or 

el(E) ---- - -  1. I n  fact  E is uniform if and  only if E(t) is uniform. A 2-bundle with 

c~(E) ---- 0 or - -  1 is called normalized.  

Observe t h a t  an i te ra ted  applicat ion of the  canonical decomposit ion 

~ ~: ~-~ 
(A (~ B) = (A A @ A B) , where A, B are vector  spaces ,  

i ~ 0  
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i 

shows tha t  ~\ F* is the  direct sum of some bundles isomorphic to 

h r~ h k 

A Q * Q . . . Q A Q * ( ~ r j - i )  with O < ~ r j K i .  
i = 1  3"=1 

LElVIMA 2.8. -- On Gr (1, n), we have, for all i, j such tha t  0 < i < 2 n - - 2 ,  

l < i < n - -  2, for all t e Z :  
J 

H' (Ur  (1, n), h Q*Q S(t)) -~ 0 

with the only exceptions: 

n - - 2  

H~(Gr (1, n), Q*Q S) --- H~'-8(Gr (1, n), A Q*Q S(1 - n)) = C .  

PROOF. - I t  is convenient  to use Serre dual i ty  first. Then the lemma is a stan- 

dard ~pplication of Bo t t  theorem.'  In  fact  S* belongs to  the irreducible representat ion 

with highest weight 2~. 

We get the  following 

THE01r 2.9. - Le t  E be a normalized 2-bundle on Gr (k, n) (n>3) .  

(i) I f  el(E) 

a) H~(Gr 

c~') H~(Gr 

(if) Is c~(E) 

b) H'(Gr 

b') H ' ( G r  

---- 0, E splits if and only if either one of the following holds: 

i - - 1  

(16 n), A / ~ * Q E ( -  ! ) )  = 0 for i ---- 1, ..., d - -  2; 

i 

(k, n), A F * ( D E ( - -  1)) = 0 for i = 2, ..., d - -  1. 

-- 1, E splits if and only if either one of the following holds: 

i - - 1  

(k, n ) , / ~  F*  Q E ( -  1)) = 0 for i = 1, . . . ,  a - 1 ; 

i 

(k, n), A 2~* | B)  = 0 for  i = 1, . . . ,  a - 1. 

(iii) I f  el(E) = -- 1, E splits or k ~- 1 and E ___ S if and only if either one of 

the following holds: 

i - - 1  

bl) H~(Gr (k, n), A F* • E(- -  1)) -~ 0 for i ---- 1, ..., d -- 2 ; 

H~-~(Gr (k, n), ~( - -~) )  = 0 
i 

bl ')  H~(Gr (k, n), A P * ~  E)  = 0 for i = 2, ..., d - -  1; 

H~(Gr (k, n), E)  ---- 0 

(iv) If  c ~ ( E ) = -  1, E is uniform if and only if either one of the following 

holds: 

i - - 1  

e) H~(Gr (k, n), A / ~ * Q E )  = 0 for i = 1, ..., d - -  1 
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~,) m(Gr  (~, n), A F * |  E ( -  z)) : 0 for i = 1, ..., d -- 1 
~--1 

d) H~(Gr (k, n), A/v*  (~) E) ---- 0 for i = 1, ..., d -- 2 ; 

H'-~(Gr (k, n), E( - -  n -F 1)) = 0 

x)  R'(Gr (k, n), A ~* | E ( -  1)) = o for i : 2 ,  . . . ,  d - -  1 ; 

m ( G r  (~, n), E(-- 1)) = 0 

P~ooF. - F i r s t  observe tha t  a) and a'), b) and b') and so on, are equivalent  
i d- - i - -1  

by  Serre duali ty and by  the isomorphism A F* ___ A F Q det F*  (we recall tha t  

KGr(k,~ ) ___ 0 ( - -  n -  1) is the canonical bundle). 

I f  E splits, all conditions hold by  theorem 2.1. I f  k----1 and E ~ S, condi- 

t ion bl) holds by  lemma 2.8. I f  E is uniform, conditions c) and d) hold by  theo- 

rem 2.1 and lemma 2.8. 

Le t  now o d e  ) = O. I f  a) holds, we want  to show tha t  E is uniform. We ten- 

sor (7) by  E( - -  1). Then from our hypothesis  and from lemma 1.1 (if) we get t ha t  

if l, l' are any  two lines in Gr (k, n): 

m(~, E ( -  1)l,) -~ r e ( r ,  E ( -  ]-)I,,) �9 

This means exact ly  tha t  E is uniform. 

Since the  bundles S(t), Q(t) have odd first Chern class, then  they  are not  iso- 

morphic to E.  So E must  split, as claimed. 

Le t  now el(E) ---- -- 1. The proof is similar, but  in order to show tha t  E is uni- 

form, i t  is sufficient to  verify tha t :  

(8) 

o r :  

(9) 

m(~, El3 = m ( G  El,,) 

m(~, E ( -  1)1,) = m(t', E ( -  1)1,,) 

for t', l' any two lines in Gr (k, n). F ro m  b) or bl) we get (9). F ro m  e) or d) we 

get (8). In  case b) the possibilities E _ S for k = 1 or E ~ Q* for k = n -  1 are 

excluded by  lemma 2.8 and lemma 1.3. q.e.d. 

By  the well known Hartshorne-Serre  correspondence between vector  bundles 

of rank  2 and 2-codimensionM subcanonical smooth subvarieties (see [25] theorem 2.1 

and 2.2) we can state  Theorem 2.9 in the following equivalent  form (for simplicity 

we state  only the eases a), b) and bl)). 

T~m0~E~ 2.10. - Le t  X c Gr (k, n) be a smooth subvariety of codimension 2. 

Suppose tha t  K x _ Oar(~,~)(a)l x for some a e Z (i.e. X is a-subcanonicM). 
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(i) If  a -t- n + 1 is even, then X is a complete intersection if and only if one 

of the following holds: 

" 2 I/ 

a') H'(Gr(k'n)'AF*~3x( a-~-~-11~2 ]] 

= 0 for i -= 1, ...~ d - - 2  

= 0  for i = 2 , . . . , d - - 2 ;  

~ 0  

(ii) If  a ~L n -~ 1 is odd, then X is a complete intersection if and only if one 

of the following holds: 

b) H ~ G r ( k , n ) , A l ~ * @ 3 x  . a t  - - 2  = 0  for i = i , . . ~  i 

( b') H~ Gr()'~,n),A~'*@ 3x = 0  for i = l , . . . , d - - 2 ;  

H I (  Gr (k' n)' 3x(  a + - n - - 2 ) )  = 0 2  

(iii) If  a + n + 1 is odd then X is a complete intersection or k = 1 and X 

is the zero locus of a section of S(t) ii and only if one of the following holds: 

( ,1 

( b2) H i G r ( k , n ) , m f f * @ 3 x  = 0 for i = 2 , . . . , d - - 2 ;  

H~(Gr/k,. n ) , 3 x ( ~ ) ) = H l ( G r ( ~ , n ) ,  3x(  a + 2 ~ - - 2 ) ) = 0  

P~ooF. - The normal bundle of X in Gr (k, n) extends to a 2-bundle E on Gr (k, n), 

with el(E) = a -[- n + 1, E]x ~-- NxiGr(k,~ ). 
We have an exact  sequence 

(10) 0 -~ Oar --> E -+ 3x(a ~- n -- 1) ~ 0 .  

We normalize E after twisting by  0 ( - -  (a -~ n -~ 1)/2) when a ~- n + 1 is even, 

and by  0 ( - - ( a + n + 2 ) / 2 )  when a - ~ n - ~ l  is odd. Then, we can tensor (10) by  



GlOl~C-IO O~r~rAVlA~I: Some extensions o] Horroeks criterion, etc. 333 

suitable wedge powers of F*, and then we apply theorem 2.9, lemma 1.3 and Serre 

duality.  

I~v,~A~K 2.11. - When k---- 0 or k : n -  l ,  the Grassmannian Gr (k, n) is iso- 

morphic to the projective space P~. Ia  this case F* = 0 ( - -1 )  en-1, and in theo- 
i 

rems 2.9 and 2.10 we can re~d 0p~(-- i) in place of A ~v*. 

Condition a) is exactly Cor. 1.8 (i) of [7] (our proof is different). 

On P~ conditions b) and bl) of theorem 2.9 are equivalent (observe tha t  in this 

case we can ask tha t  b or bl) be 2ulfilled only for i : 1, ..., [n/2] by  Serre duality), 

and are exactly Cor. 1.8 (ii) of [7]. 

Condition c) is weaker than  Cot. 1.8 (iii) of [7]. 

Condition d) is apparent ly new for n >  4. 

We want  to point out the following 

THEORV,~ 2.12 (Sommese). - Let  X c Gr (k, n) be a smooth subv~riety of codi- 

mension 2. 

I f  n~>6 then Pic (X) is generated by  the hyperplane section. In  particular X is 

subcanonical. 

Pl~OOF. - In  [21] ((3.5) and (3.6.3)) is proved that ,  if Xo e X:  

z~(Gr (k, n), X, Xo) = 0 for j < n d- 1 -- 2 codlin X 

Then, by  the relative Hurewicz theorem ([22] ch. 7 sect. 5.4) 

Hj(Gr (k, n), X, Z) = 0 for j < n  + 1- -  2 c o d i m X .  

By (10), cor. 23.14, it  follows tha t  HJ(Gr (16 n), X ,  Z) = 0 for j < n  d~ 1 -- 2 codim X. 

So in our hypothesis HJ(Gr (k, n), X ,  Z) ~- 0 for j < n - -  3. As n ~ 6 ,  we get in 

particular H~(Gr (k, n), X, Z) = 0 for j < 3 .  From the exact cohomology sequence 

of the pair (Gr (k, n), X)  it follows tha t  Hi(X,  Z) = 0 and tha t  Hs(X, Z) = Z is 

generated by the hyperplane section. Observe tha t  by  Hodge decomposition 

Hi(X ,  Ox) = H2(X, Ox) = O. Now from the cohomology sequence associated to 

the exponential sequence 

O --> Z ---~ O x--> O ~x --> O 

we get the result. 

Let  E be a 2-bundle and let 1 c Gr (k, n) be a line. 

define, as usual: 

d (E) : =  (Ib-- + 

If  Elz ~_ O~(a)�9 O~(b) we 

if cl(.E) is even 

if el(E) is odd 

and d(.E):~ dz(E) for generic 1. 
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THEORE)I 2.i3.  -- Le t  E be a 2-bundle on Gr (k, n). Let  l, l' be any two lines on 

Gr (k, n). Le t  H = Qe~|  0(1) |  Then the following inequalities hold: 

d - - 1  i - - 1  

Id,(E) - -  d,,(E) < ~ h~(A ~v* @ E(t~)) 
i = 1  

d - 2  i - - i  d - - 1  

,~=1 

k c~(E) 1 for §  <a(E). 

P~ooF. - I t  is easy to check that ,  if 

k c~(E) (11) 4- --{-- 4- 1 < d ( E ) ,  

~hen 

I~~ = a,(E)4- k + [ ~ ]  + ~ .  

Thus, for ~ in the range of (11) we have 

]a~(~)- d,,(E)l = Ih0(~(k) D -- ho(E(k)l,,)l. 

Now it is sufficient to look at the Koszul complexes of l (which is (7)) and l' and 

apply  lemma 1.2. 

I~E~-~K 2.14. -- I f  S is the minimum integer such tha t  h~ O, then  

- - [ ~ E - ~ ] - - s < d ( E ) < d , ( E )  

for each line l c Gr (k, n). This means tha t  when E is (( ve ry  unstable )> (i.e. s << 0) 

then  the inequalities of theorem 2.13 hold for k in a wide range. Observe tha t  

w h e n / ~  is not  uniform, the theorem says tha t  the  r ight-hand sides of the inequal- 

ities ~re nonzero. 

3.  - S p l i t t i n g  cr i t er ia  o n  quadr ic s .  

We recall now from [20] the definition and some properties of spinor bundles onQ~. 

Le t  $1~ be the spinor var ie ty  which parametrizes the family of (k- -1) -p lanes  

in Q21~-1 or one of the two disjoint families of k-planes in Q27~. 

We have  dimS~ = (k(k + 1))/2, Pie (S~) = Z and h~ 0(1)) = 2 k. Spinor va- 

rieties are ra t ional  homogeneous manifolds of rank  1 [23]. When n - - - - 2 k -  1 is 

odd, consider Vx e Q~_I the var ie ty  {pk-~ e Gr (k --  1, 2k)[x ~ ~-1 r Q~k-1}. This va- 
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r ie ty  is isomorphic to S,_I and we denote it  b y  (S~_~)~. 

embedding 

Then we have a na tura l  

Considering the linear spaces spanned b y  these varieties, we have Vx e Q~_~ a 

natural  inclusion H~ 0(1))* ~H~ 0(1))* and then  an embedding 

s: Q~_I -+ Gr (2 ~-~ -- I ,  2 ~ -  i ) .  

In  the same way, when n ---- 2k is even, we have two embeddings: 

s ' :  Q~ -+ Gr (2 k - l -  11 2 ~ --  1) 

s '~' : Q,~ -> Gr (2 k - ~ -  11 2 ~ -- 1) 

I f  U is the  universal  bundle of Gr (2 ~ - 1 -  1, 2 ~ -  1) we call 

s* U the spinor bundle on Q~_~ 

s'* U, s"* U the two sp inor  bundles on Q~ .  

As $1----= p1, S~= p3, it is easy to verify t h a t  on Q4 ~ -Gr  (1, 3) the two spinor 

bundles are the universal bundle and the dual of the quot ient  bundle. 

We summarize the  results t ha t  we need in the following theorem (see [20] 

theorems 1.4 and 2.3). 

THEOREM 3.1. -- (i) Le t  S' I S" be the spinor bundles on Q~I let i:  Q2~_l--~Q2~ 
be a smooth hyperplane section. Then i*S'~_ i*S ''~_ S spinor bundle on Q~-I. 

(ii) Le t  S be the spinor bundle on Q~k+l, let i:  Q~->Q~+~ be a smooth 

hyperplane section. Then i*S ~_S'@S", where S ' ,S "  are the spinor bundles 

on Q~k. 

(iii) Le t  S be a spinor bundle on Q., 

Then:  

H~(Q.IS(t))~-O for 0 < i < n ,  for all t e Z .  

Consider now the  problem of finding some cohomological conditions for a vector  

bundle E on Q. (n~>3) tha t  are equivalent  to  the  splitting of E.  

I t  is well known tha t  if E splits on Q. then:  

(12) tt,(Q.,E(t))=o f o r O < i < n ,  VteZ. 

As in the  case of Grassmannians, by  theorem 3.1 (iii) we get t ha t  condition (12) 

is too weak to s E to  split. 

So also in this case i t  is na tura l  to look for more vanishing conditions. 
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I ~ v . ~  3.2. - Le t  E be a vector  bundle on Q~ (n>3) ,  let S be a spinor bundle  

on Q,.  Then  J~ splits ff and  only ff 

Hi(Qn, E(t))-=Hi(Qn,.~(~*9(t))--~0 for 0 < t < n  V t e Z .  

P~ooP.  - I f / ~  splits, we have  see t h a t  H'(Q~, E(t)) = H~(Q~, E@ S(t)) = 0 for 

l<i<n--i, for all t ~ Z .  
:For the  converse, we p rove  first the  resul t  on Qs. 

I f  l is a line on Q3, t hen  EI~ splits b y  Grothendieek theorem,  so there  exists 

spli t t ing bundle  i7 on Qa and  a i somorphism a : P I ~ - ~ E I ~ ,  ~eH~ (lv*@E)[~). 

We  have  the  following exact  sequence of sheaves on Qa (it is the  Koszul  complex 

of a section of S*, S spinor bundle  on Q3): 

(13) O -> 0 ( - -  1) --> .9 --> 3~ --> 0 .  

The obstruct ion to ex tend  a to H~ P*(~E) lies in H~(Q3, F*@OE(~ 3t). We  

tensor  (13) b y  /~*(D/~ and  we obta in  the  exact  sequence: 

0 -+ i~* |  1) ~ F * |  ~ |  .9 ~ / ~ * | 1 7 4  3~ -+ 0 .  

As E splits, b y  hypothes is :  

H~(Q~, E * @ ~ , @  ,9) = 0 H2(Q3, F*@ Y,(-- 1))  = 0 

so t h a t  H~(Qs,ff*~)JE@I~) = 0 and we can choose a h o m o m o r p h i s m  s  

which restr icts  to cr on l. 

A s / ~  and  E have  the  same first Chern class, 

det  a e HO(Q., O(v~(E)- e,(F))) = H~ O) = C.  

As det  a is nonzero on l, i t  mus t  be  nonzero everywhere.  Then a is an iso- 

morph i sm,  as we wanted.  

I f  n >  3 the  result  follows b y  induction on ~. I n  fact ,  if 

~ ( Q ~ + ~ ,  E(t))  = o for ~ < i < n ,  Vt e Z 

H~(Q,,+~,E@*9(t)) = 0  for l < i < n ,  V t e Z  

t hen  i rom the  exac t  sequences on Q.+~ (Q. is a smooth  hyperp lane  section): 

o ~ ~ ( t -  1) -+ ~ ( t )  ~ ~( t ) l~ .  ~ o 

0 ~ .E(t - -  1) | ~ -,'- BCt) | 8 -+ ~(t)  | .91,~. -+ 0 (for all t e Z) 
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and theorem 3.1 it follows t h a t  if So is a spinor bundle on Q~ then:  

/ / ' ( Q . , ~ l a . ( t ) )  = 0 for 1 < i < n - - 1  Vtr  

H ~ ( Q . , E ~ S o I a . ( t ) )  ----- 0 for 1 < i < n - - 1  Y t ~ Z .  

B y  the induction hypothesis  E]Q. splits then  there exists a split t ing bundle B on 

Q~+, and ~ isomorphism a: BI~ ~ --~ EIQ ~. As in the  previous cases, the  vanishing of 

H~(Q~+~, E(t)) Vt e Z allows to  ex tend  ~ on Q~+~ in such a way  t h a t  1~ splits. 

COROLLARY 3.3. -- Le t  E be a vector  bundle on Q. and  let Q2 c Q~ be a smooth 

plane section. Then E splits if and  only if/iT]Q~ splits. 

P~ooF.  - Cut Q~ with hyperplanes  and  use theorems 3.1, 3.2 and  theorem B. 

We  can prove  now our ma in  result :  

T~E0~E~ 3.4. - Le t  E be a vec tor  bundle on Q~ (n~>3), let S be a spinor bundle 

on Q~. Then 1~ splits if and  only if 

(i) H'(Q., E(t))= O for 2 < i < n - - 1  VteZ; 

(li) H~(Q., E Q  S(t)) ---- 0 for l < i < n  - -  2 Vt e Z. 

P~ooF. - I t  suffices to observe t ha t  in the  proof of Theorem 3.2 the  hypothesis  

H~-~(Q~, E Q  S(t)) : 0 is not  needed and  the  hypothesis  HI(Q~, E(t)) : 0 is needed 

only to prove  t h a t  if E]~._. splits then  also E splits, bu t  this assured b y  Corollary 3.3. 

RE~ARK. -- I Jemma 3.2 follows also f rom the following result, p roved  b y  K~6R- 

~v,R~ BVCt~WITZ, G~nVET, and  Scm~EIE~ in [6], [15] conj. B r e m a r k  2 with com- 

pletely different techniques. 

Tn~0RE~ 3.5. - Le t  E be a vector  bundle on Q~. H~(Q~,~(t))= 0 for 0 -<  i < n 

Vt E Z if and  only if E is isomorphic to ~ direct  sum of line bundles and spinor 

bundles twis ted b y  some O(t) (for n -~ 2 the  line bundles mus t  be of t ype  O(t, t)). 
Looking a t  the  previous theorem, we can give an e lementary  proof  of the  weaker :  

Ttt~o~v,~I 3.6. - Le t  E be a vector  bundle on Q.~ 

(i) I f  n>~3 and H~(Q~,E(t)) = O for l < i < n - - 1 ,  VteZ,  then  E is uniform. 

(ii) I f  n ~ 2 and  HI(Q~, E(t)) : 0 for all t e Z, then  /~ is uni form separa te ly  

on each family  of lines on Q~. 

PROOF. -- Le t  S be the  spinor bundle on Qs. For  each line 1 on Q3 there is a 

section of S* which vanishes exac t ly  on 1. For  any  two lines l, l' tensoring b y  E(t) 
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the respective Koszul complexes, we get the exact sequences: 

o - + E ( t -  :t) ~ S |  ~ E ( t )  ~ E(t)[, ~ o ,  

o ~ E ( t -  1) ---> s |  .~(t) ~ .E(t) ~ .~(t)[~, -+ O. 

Considering the associated exact  sequences of cohomology groups, it is an easy 

ma t t e r  to check from our hypothesis t ha t  (see lemma 1.1 (if)): 

He(t, E(0[ , )  -~ ~~ E(t)l,,) w + z .  

This means exactly t ha t  E is uniform, as we wanted. 

For  n > 3  the result follows by  induction on n using the fact  tha t  a bundle on Q. 

which is uniform on every smooth hyperplune section is uniform. 

For  n = 2 the proof is similar. 

We now specialize to the ease: rank E ~ 2. 

Tm~ORE~ 3.7. - Let  E be a 2-bundle on Q~, n > 3 ,  let S be a spinor bundle. 

(a) If  e l ( E ) =  0, E splits if and only if 

H'(Q., E ( - - i ) ) = 0  for 1 < i < [ 2  ] . 

(b) H e ~ ( E ) = -  1, E splits if and only if 

H,(Q., E ( -  i)) = 0 for 1 < i < ~ -  2 

H'(Q~,E(--i-~I)@S) = 0  for 2 < i < n - - 1 .  

(v) If  e l ( E ) - ~ -  1, E is uniform (and hence splits for n>~5) if and only if: 

n , (Qa ,  ~ ( -  i)) = o for l < i < n -  a. 

P~ooF. - I f  E splits or is uniform, all conditions hold. In  fact,  by  [9], all uniform 

2-bundles on Q~ (n~>3) either split or are spinor bundles (up to tensoring by some 

line bundle). 

Observe t ha t  by  Serre dual i ty  the vanishing of H~(Q~, E(--i)) for 1 < i < [ ~ / 2 ]  

in case (a) is equivalent to the same condition for 1 < i < n  -- 1. In  fact, if el(E) = 0 

and E is a 2-bundl% then  E _ / ~ * .  

Firs t  we prove the result on Q3: As in the proof of theorem 3.5, for each line 

1 c Q8 we have an exact sequence: 

o -.~(-2) -~ ~(-i)| s-~ E(- i) -~ E(- i)[,-~ o. 

Then each one of our hypothesis implies tha t  h~ E(-- 1)]z) : h~ ', E(-- 1)l~, ) for 

each lines 5, l'. This means tha t  E is uniform. 
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I t  remains to show tha t  if e~(E):--1 and 

H~(Qs, E(-- 1)) = H~(Qa, EQ S(-- 1)) = 0 

then E splits (in fact the spinor bundle has odd first Chern class, so tha t  there are 

no problems in the case e~(E)= 0). 
I t  is sufficient to note tha t  H~(Q3, SQ S(-- 1)) ----- C (e.g. by  Ber t  theorem) and 

so the case /~ ~ S must  be excluded. 

I f  n~>3 the proof is by  induction on n, in the same way as in the proof of lem- 

ma 3.2, using corollary 3.3. _l 

As in the case of Grassmannians9 theorem 3.7 can be stated in the following 

equivalent form (for simplicity we state only the case (a), (b)): 

T~moRv,~ 3.8. - Let  X c Q. be a smooth subvariety of codimension 2. Suppose 

tha t  Kx ~-- Or for some a e Z (i.e. X is a-subeanonical). 

Let  S be a spinor bundle on Q~. 

(i) I f  n -1- a is even then X is a complete intersection ff and only if 

H~( Qn'3x( n+a2 i))-----0 for 1<~i<[n/2]. 

(if) H n Jr a is odd then X is a complete intersection if and only if the fol- 

lowing hold: 

H~( Q~'3z( n + 2 a - l - i ) ) : 0  for l < i < ~ n - - 2 ;  

H~(Q~ 3x(n ~- a + l - - i ) ~  S) = for 2 < i < n - - 1 .  

P~ooF. - By  the Hartshorne-Serre correspondence [25], the normal bundle of X 

in Qn extends to a 2-bundle E on Q~. As KQn ~ 0(--  n), we have el(E) = n ~- a. 

We get an exact sequence 

0 ~ OQ~ ---> E --+ 3x(n § a) -+ 0. 

We normalize E after twisintg by 0(-- (n + a)/2)when n -t- a is even and by  

0(--  (n -f- a ~- 1)/2) when n ~- a is odd. Then, we apply theorem 3.7 and Serre 
duality.  

We want  to point out the following: 

THEOREm 3.9 (Barth-Larsen). - Let  X c Q, be a smooth subvariety of eodl- 

mension 2. I f  n >  7 then  Pic (X) = Z is generated by the hyperplane section. In  

particular, X is subeanonical. 
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PROOF. - X is a codimension 3 smooth  subv~rie ty  of P~+~. 

Then, app ly  the  Bar th -Lar sen  theorem for subvariet ies  of P'+~ [16]. 

EXA~LE 3.10. - Le t  C be a smooth subcanonical curve in p4 which is embedded 
in a smooth quadric hypersurface Q3. 

If  K c ---- Op,(a)I c with a odd, then  C is a complete intersection of Q3 and two 

other  hypersurfaces of P~ if and only if the restrict ion map 

is surjective (i.e. C is ((a ~- 1)/2)-normal in Q0" 

I f  E is ~ 2-bundle on Q,~, and l = Q~ is a line, define now d~(E) and d(E) exact ly  

as before theorem 2.13. 

The proofs of the  following two theorems are completely aaulogous to the proof 

of theorem 2.13 and are omitted. 

T~EORE~ 3.11. - Le t  E be a 2-bundle oa Q3. Let  l, l' be any  two lines i~ Q3 and  

let S be the spinor bundle on Q3. Then the following inequalities hold: 

for 

jd,(E)- d,,(B)l<h~(Z(k)) + h~(B(k)| S) 

Ida(E)- d,,(~)l<h~(E(k)) + h~(E(k- 1)) 

e~(E) 
k + - ~  + i i<d(E). d 

Tm~ORE~[ 3.12. - Le t  B be a 2-bundle on Q~. Le t  l, F be any  two lines in Q4, let S 

be a spinor bundle on Qt and let /~----S*@ 0(1). Then the following inequalities 

hold:  

2 

Id,(~) - ~,,(E)I < hl(~(~)) + h~(~* | E(k)) + ~~ F* | E(k)) 

Id~(.E)- d~,(E)[<h~(E(k)) ~ h~(F*@ E(k)) -~ h~(E(k-- 1)) 

for 

k el(E) -~ ~ -4- 1 <d(E) .  
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