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Abstract. Let RN
+ = [0,∞)N . We here consider a class of random

fields (Xt)t∈RN
+

which are known as Multiparameter Lévy processes.

Related multiparameter semigroups of operators and their generators
are represented as pseudo-differential operators. We also consider the
composition of (Xt)t∈RN

+
by means of the so-called subordinator fields

and we provide a Phillips formula. We finally study the composition of
(Xt)t∈RN

+
by means of the so-called inverse random fields, which gives

rise to interesting long range dependence properties. As a byproduct of
our analysis, we study a model of anomalous diffusion in an anisotropic
medium which extends the one treated in [8].

1. Introduction

In this paper we consider Multiparameter Lévy processes (Xt)t∈RN
+

in the sense of [5; 37; 38; 39]. The reason they are called in this way
is that they enjoy, in some sense, independence and stationarity of
increments. Independence of increments is meant in the following way.
First a partial ordering on RN

+ is established, such that a ⪯ b in RN
+ if

ai ≤ bi for each i = 1, . . . N . Then it is assumed that, for any choice
of ordered points t(1), t(2), . . . , t(k) in RN

+ , we have that Xt(j+1) − Xt(j) ,
j = 1, . . . , k−1, is a set of independent random variables. On the other
hand, stationarity of increments means that Xt+τ − Xt has the same
distribution of Xτ for all t, τ ∈ RN

+ .
Such processes are not to be confused with other extensions of Lévy

processes where the parameter is multidimensional. Among them, we
recall a class of processes, including the Brownian sheet and the Poisson
sheet, which have a different definition from ours, because in that case
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independence of increments is understood in another way (consult e.g.
[1; 10; 17]).

Multiparameter Lévy processes are of interest in Analysis since they
furnish a stochastic solution to some systems of differential equations,
as will be recalled in section 2. Roughly speaking, if the vector G =
(G1, G2, . . . , GN) is the generator of a Multiparameter Lévy process
(Xt)t∈RN

+
, then, provided that u belongs to suitable function spaces,

the function Eu(x+Xt) (E denoting the expectation) solves the system

∂

∂tk
h(x, t) = Gk h(x, t) h(x, 0) = u(x) k = 1, . . . , N(1.1)

where t = (t1, . . . , tN). Of course, for one parameter Lévy processes, we
have a single differential equation, as stated by the well known Feller
theory of one parameter Markov processes and semigroups.

The idea of subordination for Multiparameter Lévy processes is pre-
sented in [5; 37; 38; 39] (for the classical theory of subordination of
one-parameter Lévy processes see e.g. [[42], chapter 6]). The construc-
tion is as follows. Let (Xt)t∈RN

+
be a Multiparameter Lévy process and

let (Ht)t∈RM
+

be a subordinator field, i.e. a Multiparameter Lévy pro-

cess with values in RN
+ , such that it has non decreasing paths in the

sense of the partial ordering (i.e. t1 ⪯ t2 in RM
+ implies Ht1 ⪯ Ht2 in

RN
+ ) . The subordinated field is defined by (XHt)t∈RM

+
and it is again a

Multiparameter Lévy process.
One of the main results of this paper is to provide a formula for

the generator of the subordinated field. Indeed we find an extension
of the Phillips theorem to the multi-parameter case, by involving the
so-called multi-dimensional Bernstein functions. This gives rise to in-
teresting systems of type 1.1. In those systems, the operator on the
right side may possibly be pseudo-differential. For example, when the
subordinator field is stable, such a system could be interesting for those
studying fractional equations, since the operator on the right side in-
volves the fractional Laplacian and the so-called fractional gradient; we
recall that the fractional gradient is a generalization of the fractional
Laplacian to the case where the jumps are not isotropically distributed
(see e.g. [[8], Example 2.2] and the references therein).

The basic case of subordinator field is the one with M = 1. In
this case we have a one-parameter process Ht = (H1(t), . . . , HN(t))
which the authors in [5] call multivariate subordinator. This is nothing
more than a one-parameter Lévy process with values in RN

+ , where all
the components t → Hj(t) are non-decreasing (namely, each Hj is a
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subordinator). Using a multivariate subordinator, subordination of a
Multiparameter Lévy process gives a one-parameter Lévy process.

In the second part of the paper, by considering a multivariate sub-
ordinator (H1(t), . . . HN(t)), we will construct a new random field

Lt =
(
L1(t1), . . . , LN(tN)

)
t = (t1, . . . , tN)(1.2)

where Lj is the inverse, also said the hitting time, of the subordinator
Hj, i.e.

Lj(tj) = inf{x > 0 : Hj(x) > tj}.
We will call 1.2 inverse random field. Now, let (Xt)t∈RN

+
be a Mul-

tiparameter Lévy process with values in Rd, which is assumed to be
independent of (1.2) . We are interested in the subordinated random
field (Zt)t∈RN

+
defined by

Zt = XLt(1.3)

Of course, 1.2 and 1.3 are not Multiparameter Lévy processes because
they enjoy neither independence nor stationarity of increments with
respect to the partial ordering on RN

+ . However, they may be useful in
applications in order to model spatial data exhibiting various correla-
tion structures which cannot fall in the framework of Multiparameter
Lévy or Markov processes.

Our topic has been inspired by some existing literature. First of
all, there are many papers (see e.g. [6; 21; 28; 29; 30; 31; 32; 33; 47])
concerning semi-Markov processes of the form

Z(t) = X(L(t)) t ≥ 0(1.4)

where X is a (one parameter) Lévy process in Rd and L is the inverse
of a subordinator H independent of X, i.e.

L(t) = inf{x > 0 : H(x) > t}.
Processes of type 1.4 have an important role in statistical physics, since
they model continuous time random walk scaling limits and anomalous
diffusions. Moreover, it is known that 1.4 is not Markovian and its
density p(x, t) is governed by an equation which is non local in the
time variable:

Dtp(x, t)− ν(t)p(x, 0) = G∗ p(x, t).(1.5)

In the above equation, G∗ is the dual to the generator of X and the
operator Dt is the so-called generalized fractional derivative (in the
sense of Marchaud), defined by

Dth(t) :=

∫ ∞

0

(
h(t)− h(t− τ)

)
ν(dτ), t > 0(1.6)
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where ν is the Lévy measure of H and ν(t) :=
∫∞
t
ν(dx) is the tail of

the Lévy measure.
The main results regarding the random fields of type 1.3 will be re-

ported in Section 4; we will show that they have interesting correlation
structures and that they are governed by particular integro-differential
equations. Such equations are non local in the t1, . . . , tN variables and
generalize equation (1.6) holding in the one-parameter case.

We also recall that the first idea of inverse random field appeared in
[[8], Sect. 3] where the authors proposed a model of multivariate time
change.

Another source of inspiration is the paper [23], even if it does not
exactly fit into our context. Here the authors considered a Poisson sheet
N(t1, t2), which is not a Multiparameter Lévy process in the sense of
this paper, and studied the composition

Z(t1, t2) = N(L1(t1), L2(t2)),

where L1 and L2 are two independent inverse stable subordinators,
of index α1 and α2 respectively; the resulting random field showed
interesting long range dependence properties.

2. Basic notions and some preliminary results

We introduce the partial ordering on the set RN
+ = [0,∞)N : the

point a = (a1, . . . , aN) precedes the point b = (b1, . . . , bN), say a ⪯ b,
if and only if aj ≤ bj for each j = 1, . . . , N .

A sequence {xi}∞i=1 in RN
+ is said to be increasing if xi ⪯ xi+1 for

each i; it is said to be decreasing if xi+1 ⪯ xi for each i.
Consider a function f : RN

+ → Rd. We say that f is right continuous
at x ∈ RN

+ if, for any decreasing sequence xi → x we have f(xi) → f(x).
We say that f : RN

+ → Rd has left limits at x ∈ RN
+/{0} if, for any

increasing sequence xi → x, the limit of f(xi) exists; such a limit may
depend on the choice of the sequence xi.

Moreover, f is said to be cadlag if it is right continuous at each
x ∈ RN

+ and has left limits at each x ∈ RN
+/{0}.

2.1. Multiparameter Lévy processes. We here recall the notion
of Multiparameter Lévy process in the sense of [5; 37; 38; 39]. We
also refer to [16] as a standard reference on Multiparameter Markov
processes.

The parameters set is here assumed to be RN
+ . An analogous (but

more general) definition holds if the parameter set is any cone contained
in RN , but this generalization is not essential for the aim of this paper.



5

Definition 2.1. A random field (Xt)t∈RN
+
, with values in Rd, is said to

be a Multiparameter Lévy process if

(1) X0 = 0 a.s.
(2) it has independent increments with respect to the partial order-

ing on RN
+ , i.e. for any choice of 0 = t(0) ⪯ t(1) ⪯ t(2) · · · ⪯ t(k),

the random variables Xt(j) −Xt(j−1), j = 1, . . . , k, are indepen-
dent.

(3) it has stationary increments, i.e. Xt+τ − Xt
d
= Xτ for each

t, τ ∈ RN
+

(4) it is cadlag a.s.
(5) it is continuous in probability, namely, for any sequence t(i) ∈

RN
+ such that t(i) → t, it holds that Xt(i) converges to Xt in

probability.

If (1), (2), (3), (5) hold, then (Xt)t∈RN
+
is said to be a Multiparameter

Lévy process in law.
We report some examples of Multiparameter Lévy processes, which

are constructed from one-parameter ones.

Example 2.2. If (X
(1)
t1 )t1∈R+ , . . . , (X

(N)
tN

)tN∈R+ are N independent Lévy

processes on Rd, with laws ν
(1)
t1 , . . . , ν

(N)
tN

, then

Xt := X
(1)
t1 +X

(2)
t2 + · · ·+X

(N)
tN

t = (t1, t2, . . . , tN)

is a N-parameter Lévy process on Rd, which is usually called additive
Lévy process (see e.g. [18] and [[16], pp. 405]).

Here Xt has law
µt = ν

(1)
t1 ∗ · · · ∗ ν(N)

tN

where ∗ denotes the convolution. Examples of the sample paths are
shown in Figure 1 and Figure 2.

Example 2.3. Let (X
(1)
t1 )t1∈R+ , . . . (X

(N)
tN

)tN∈R+ be independent R-valued
Lévy processes with laws ν

(1)
t1 , . . . , ν

(N)
tN

. Then

Xt =
(
X

(1)
t1 , X

(2)
t2 , . . . , X

(N)
tN

)
t = (t1, t2, . . . , tN)

is a RN valued Lévy process, which can be called product Lévy process
(in the language of [[16], pag. 407]). Clearly, this is a particular case
of Example 2.2 because

Xt = X
(1)
t1 e1 +X

(2)
t2 e2 + · · ·+X

(N)
tN

eN

where {e1, . . . , eN} denotes the canonical basis of RN .
Here Xt has law

µt = ν
(1)
t1 ⊗ ν

(2)
t2 · · · ⊗ ν

(N)
tN
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(a) Brownian additive field (b) Stable additive field

Figure 1. Sample paths of additive Lévy fields, as in Ex-
ample 2.2
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(a) Brownian vector field
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(b) Zoom of the previous figure on [0, 1]2

Figure 2. Sample path of a R2-valued biparameter additive
field (i.e. d = N = 2).

where ⊗ denotes the product of measures.

Example 2.4. Let (Vt)t∈R+ be a Lévy process in Rd. Then Vc1t1+···+cN tN
is a multi-parameter Lévy process for any choice of (c1, . . . , cN) ∈ RN

+ .

Remark 2.5. What we have presented is not the only way to extend
the notion of independence of increments to the multiparameter case.
A very common approach is to define independence of increments over
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disjoint rectangles (see [1] and [10]). This gives rise to a class of ran-
dom fields, known as Levy sheets (e.g. the Poisson sheet or the Brow-
nian sheet).

In the following, δ0 will denote the probability measure concentrated
at the origin. Moreover, {e1, . . . , eN} will denote the canonical basis of
RN .

Definition 2.6. A family (µt)t∈RN
+

of probability measures on Rd is

said to be a RN
+ -parameter convolution semigroup if

i) µt+τ = µt ∗ µτ , for all t, τ ∈ RN
+

ii) µt → δ0 as t→ 0

By Def. 2.6 it follows that µt is infinitely divisible for each t.
The above notion of multi-parameter convolution semigroup is re-

lated to Multiparameter Lévy processes, as shown in the following
Proposition.

We preliminarily observe that, since Xt is a Multiparameter Lévy
process, where t = (t1, . . . , tN), it immediately follows that, for each
j = 1, . . . , N , the process (Xtjej)tj∈R+ is a classical one-parameter Lévy
process. In other words, if (µt)t∈RN

+
is a multi-parameter convolution

semigroup, then (µtjej)tj∈R+ is a one-parameter convolution semigroup
which is the law of Xtjej .

Proposition 2.7. Let (Xt)t∈RN
+

be a Multiparameter Lévy process on

Rd and let µt be the law of the random variable Xt. Then
i) The family (µt)t∈RN

+
is a RN

+ -parameter convolution semigroup of

probability measures.

ii) There exist independent random vectors Y
(j)
tj , j = 1, . . . , N , with

Y
(j)
tj

d
= Xtjej , such that

Xt
d
= Y

(1)
t1 + . . . Y

(N)
tN

t = (t1, . . . , tN)

Proof. By writing

Xt+τ = (Xt+τ −Xτ ) +Xτ for all t, τ ∈ RN
+

we observe that Xt+τ −Xτ and Xτ are independent by the assumption
of independence of increments along those sequences that are increasing
with respect to the partial ordering. Moreover Xt+τ −Xτ has the same
distribution of Xt by stationarity. Hence µt+τ = µt ∗ µτ . Moreover,
stochastic continuity of (Xt)t∈RN

+
gives µt → δ0 as t→ 0, and thus i) is

proved. To prove ii), it is sufficient to write t = t1e1 + · · ·+ tNeN and
apply the semigroup property just proved in point i), to have

µt = µt1e1 ∗ · · · ∗ µtNeN
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and the proof is complete since µtjej is the law of Xtjej . □

We stress that Proposition 2.7 is a statement about equality in law
of random variables (t is fixed), and not equality of processes.

We further observe that Proposition 2.7 says that to each Multipa-
rameter Lévy process in law there corresponds a unique convolution
semigroup of probabilty measures. But, unlike what happens for clas-
sical Lévy processes (i.e. when N = 1), the converse is not true in
general: a multiparameter convolution semigroup (µt)t∈RN

+
can be as-

sociated to different Multiparameter Lévy processes in law, because
(µt)t∈RN

+
does not completely determine all the finite-dimensional dis-

tributions. Indeed, only along RN
+ -increasing sequences 0 ⪯ τ (1) ⪯

· · · ⪯ τ (k), the joint distribution of (Xτ (1) , . . . , Xτ (k)) can be uniquely
determined in terms of µt by using independence and stationarity of
increments, but this is not possible if the points τ (1), . . . , τ (k) ∈ RN

+ are
not ordered (in the sense of the partial ordering).

2.1.1. Characteristic function of Multiparameter Lévy processes. Con-

sider the Y
(j)
tj involved in Proposition 2.7. By the Lévy Khintchine

formula, we have

Eeiξ·Y
(j)
tj =

∫
Rd

eiξ·yµtjej(dy) = etjψj(ξ) ξ ∈ Rd,(2.1)

the Lévy exponent ψj having the form

ψj(ξ) = iγj · ξ −
1

2
Ajξ · ξ +

∫
Rd/{0}

(eiξ·z − 1− iξ · zI[−1,1](z))νj(dz)

(2.2)

where γj ∈ Rd, Aj is the Gaussian covariance matrix, νj denotes the
Lévy measure and · denotes the scalar product. By the above consid-
erations, we thus get the following statement.

Proposition 2.8. Let (Xt)t∈RN
+
be a Multiparameter Lévy process with

values in Rd. Then Xt has characteristic function

Eeiξ·Xt = et1ψ1(ξ)+···+tNψN (ξ) = et·Ψ(ξ) ξ ∈ Rd(2.3)

where t = (t1, . . . , tN), the functions ψj have been defined in 2.2, and

Ψ(ξ) = (ψ1(ξ), . . . , ψN(ξ)).(2.4)

We will call 2.4 the multidimensional Lévy exponent.
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2.2. Autocorrelation function of Multiparameter Lévy processes.
Consider a Multiparameter Lévy process {Xt}t∈RN

+
with values in R.

In the following Proposition we will explicitly compute the autocor-
relation function between two ordered points in the parameter space,
i.e.

ρ(Xs, Xt) :=
Cov(Xs, Xt)√
V arXs

√
V arXt

s ⪯ t.(2.5)

Of course, 2.5 exists finite only in some cases, which will be specified in
the following. What we will find is the N -parameter extension of the
well known formula holding in the case N = 1, i.e. for classical Lévy
processes (consult e.g. Remark 2.1 in [22]):

ρ(Xs, Xt) =

√
s

t
s ≤ t.

Proposition 2.9. Let {Xt}t∈RN
+

be a N-parameter Lévy process with

values in R, having multidimensional Lévy exponent Ψ(ξ) defined in 2.3
and 2.4. For each j = 1, . . . , N , let ξ → ψj(ξ) be twice differentiable
in a neighborhood of ξ = 0, and such that ψ′′

j (0) ̸= 0. Then the auto-
correlation function defined in 2.5 reads

ρ(Xs, Xt) =

√
s · σ2

t · σ2
s ⪯ t(2.6)

where · denotes the scalar product and σ2 := −Ψ′′(0).

Proof. Consider the decomposition ofXt given in Proposition 2.7. Since

ψ′′
j (0) exists, then Y

(j)
tj has finite mean and variance:

EY (j)
tj = −itjψ′

j(0) = tj EY (j)
1

E(Y (j)
tj )2 = −tjψ′′

j (0)− t2jψ
′
j(0)

2

VarY (j)
tj = −tjψ′′

j (0) = tjVarY (j)
1

Letting µ := (EY (1)
1 , . . . ,EY (N)

1 ) and σ2 := −Ψ′′(0) = (VarY (1)
1 , . . . ,VarY (N)

1 ),
we get

EXt = −it ·Ψ′(0) = t · µ
VarXt = −t ·Ψ′′(0) = t · σ2

Moreover, for s ⪯ t, we have

EXtXs = E(Xt −Xs)Xs + E(Xs)
2

= E(Xt −Xs)EXs + E(Xs)
2

= EXt−sEXs + E(Xs)
2
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=
(
(t− s) · µ

)(
s · µ

)
+ s · σ2 + (s · µ)2

where we used independence and stationarity of the increments along
RN

+ increasing sequences. We thus have

Cov(Xt, Xs) := EXtXs − EXtEXs = s · σ2

and the desired result immediately follows. □

Remark 2.10. Let |v| denote the euclidean norm of v. In the limit
|t| → ∞, we have that ρ(Xs, Xt) behaves like |t|−1/2. Indeed, consider
the scalar product in the denominator of 2.6, i.e. t · σ2 = |t| |σ2| cos θ,
where θ is the angle between t and σ2. Now, observe that σ2 is a
fixed vector of RN

+ , with strictly positive components by the assumption
ψ′′
j (0) ̸= 0. . Since t is in RN

+ also, by simple geometric arguments it
follows that there exist two constants c1 > 0 and c2 > 0, which do not
depend on t, such that c1 ≤ cos θ ≤ c2. Then k1|t|−1/2 ≤ ρ(Xs, Xt) ≤
k2|t|−1/2 for two suitable constants k1 > 0 and k2 > 0 both independent
of t.

2.3. Multi-parameter semigroups of operators and their gen-
erators. Let B be a Banach space equipped with the norm || · ||B.
A N -parameter family (Tt)t∈RN

+
of bounded linear operators on B is

said to be a N -parameters semigroup of operators if T0 is the identity
operator and the following property holds:

Ts+t = Ts ◦ Tt ∀s, t ∈ RN
+ .(2.7)

We say that (Tt)t∈RN
+
is strongly continuous if

lim
t→0

||Ttu− u||B = 0 ∀u ∈ B.

Moreover, we say that (Tt)t∈RN
+
is a contraction semigroup if, for any

t ∈ RN
+ , we have ||Ttu||B ≤ ||u||B.

Example 2.11. Let G1, G2, . . . , GN be bounded operators on B, such
that [Gi, Gk] := GiGk −GkGi = 0 for all i ̸= k. Consider the vector

G = (G1, . . . , GN).

Then, for all t = (t1, . . . , tN), the family

Tt = et1G1 ◦ · · · ◦ etNGN = eG·t

defines a strongly continuous semigroup on B. In light of the following
Definition 2.13, we will call the vector G the generator of the multipa-
rameter semigroup.
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Example 2.12. Let (µt)t∈RN
+

be a multiparameter convolution semi-

group of probability measures on Rd (in the sense of Definition 2.6)
and let C0(Rd) be the space of continuous funtions vanishing at infin-
ity, equipped with the sup-norm. Then

Ttq(x) =

∫
Rd

q(x− y)µt(dy) = µt ∗ q(x) q ∈ C0(Rd) t ∈ RN
+

defines a strongly continuous contraction multi-parameter semigroup.

Let t = (t1, . . . , tN) ∈ RN
+ and let {e1, . . . , eN} be the canonical basis

of RN . For each j = 1, . . . , N , we refer to the one-parameter semigroups
Ttjej as the marginal semigroups. By the property 2.7 it follows that
the marginal semigroups commute, i.e. [Ttiei , Ttjej ] = 0 for i ̸= j and
the following relation holds:

Tt = Tt1e1 ◦ Tt2e2 ◦ · · · ◦ TtNeN
Now, let Gi be the generator of Ttiei , defined on Dom(Gi). It is well

known that if u ∈ Dom(Gi), then Ttieiu ∈ Dom(Gi) and the following
differential equation

d

dti
w(ti) = Giw(ti) w(0) = u

is solved by w(ti) = Ttieiu. We here report the notion of generator of a
multi-parameter semigroup (see [[9], chapt 1]).

Definition 2.13. Let (Tt)t∈RN
+

be a strongly continuous N-parameter

semigroup on B and let Gi, i = 1, . . . , N , be the generators of the mar-
ginal semigroups, each defined on Dom(Gi). We say that the vector

G = (G1, . . . , GN)

is the generator of (Tt)t∈RN
+
, defined on Dom(G) =

⋂N
j=1Dom(Gj) .

The above definition is intuitively motivated by the following result.

Proposition 2.14. Let (Tt)t∈RN
+
be a strongly continuous N-parameter

semigroup with generator G according to Def. 2.13. Then, for u ∈⋂N
j=1Dom(Gj), the function w(t) = Ttu solves the following system of

differential equations

∇tw(t) = Gw(t) w(0) = u(2.8)

where ∇t denotes the gradient with respect to t = (t1, . . . , tN). Namely,
we have

∂

∂ti
w(t) = Giw(t) i = 1 . . . N(2.9)

subject to w(0) = u.
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Proof. Let us fix i = 1, . . . , N . For q ∈ Dom(Gi) it is true that Ttieiq ∈
Dom(Gi) and

d

dti
Ttieiq = GiTtieiq(2.10)

By using Propositions 1.1.8 and 1.1.9 in [9], we know that if u ∈
Dom(Gi) then Ttu ∈ Dom(Gi) for any t ∈ RN

+ . In particular, we
have ⃝N

k=1,k ̸=iTtkeku ∈ Dom(Gi) Hence equation 2.10 holds for q =

⃝N
k=1,k ̸=iTtkeku:

d

dti
Ttiei ⃝N

k=1,k ̸=i Ttkeku = GiTtiei ⃝N
k=1,k ̸=i Ttkeku(2.11)

and the equation 2.9 for a fixed i is found by using property 2.7. By
choosing u ∈

⋂N
j=1Dom(Gj) it is possible to repeat the same argument

for all i = 1, . . . , N , and the system of differential equations is obtained.
□

By putting t = 0 in equation 2.8 it follows that the generator G can
also be found by

Gu = ∇tTtu
∣∣
t=0

u ∈
N⋂
j=1

Dom(Gj)(2.12)

For other results concerning multiparameter semigroups and gener-
ators consult [9]. Moreover, for a general discussion on operator semi-
groups related to multiparameter Markov processes we refer to [16].

Remark 2.15. A different definition of generator for multiparameter
semigroups is given in [13] and [46]. Here the authors defined the
generator as the composition of the marginal generators, i.e.

G = G1 ◦G2 ◦ · · · ◦GN .

The motivation for such definition is that, for u ∈ Dom(G1 ◦ · · · ◦GN),
the authors prove that w(t) = Ttu solves the partial differential equation

∂N

∂t1 . . . ∂tN
w(t) = Gw(t) w(0) = u(2.13)

where t = (t1, . . . tN). Also this approach seems to be very interesting,
especially in the field of partial differential equations as it allows to
find probabilistic solutions to equations of type 2.13, containing a mixed
derivative.
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2.4. Semigroups associated to Multiparameter Lévy processes.
Let (Xt)t∈RN

+
be a Multiparameter Lévy process on Rd and let (µt)t∈RN

+

be the associated convolution semigroup of probability measures, i.e.
µt is the law of Xt for each t. Consider the operator

Tth(x) := Eh(x+Xt) =

∫
Rd

h(x+ y)µt(dy) h ∈ C0(Rd) t ∈ RN
+

(2.14)

where C0(Rd) denotes the space of continuous functions vanishing at
infinity. By using the properties of {µt}t∈RN

+
it immediately follows that

the family (Tt)t∈RN
+
is a strongly continuous contraction semigroup on

C0(Rd); it is also positivity preserving, hence it is a Feller semigroup.
We now give a representation of this semigroup and its generator by
means of pseudo-differential operators. We restrict to the Schwartz
space of functions S(Rd).

We define the Fourier transform by

ĥ(ξ) =
1

(2π)d/2

∫
Rd

e−iξ·xh(x)dx ξ ∈ Rd

Since h ∈ S(Rd), the following Fourier inversion formula holds:

h(x) =
1

(2π)d/2

∫
Rd

eiξ·xĥ(ξ)dξ x ∈ Rd

Theorem 2.16. Let (Xt)t∈RN
+

be a Multiparameter Lévy process with

Lévy exponent Ψ defined in 2.3 and 2.4. Let (Tt)t∈RN
+
be the associated

semigroup defined in 2.14 and let G = (G1, . . . , GN) be its generator.
Then

(1) For any t ∈ RN
+ , Tt is a pseudo-differential operator with symbol

et·Ψ, i.e.

Tth(x) =
1

(2π)d/2

∫
Rd

eiξ·xet·Ψ(ξ)ĥ(ξ)dξ h ∈ S(Rd)(2.15)

(2) G is a pseudo-differential operator with symbol Ψ, i.e. for each
i = 1, . . . , N we have

Gih(x) =
1

(2π)d/2

∫
Rd

eiξ·xψi(ξ)ĥ(ξ)dξ h ∈ S(Rd)

Proof. (1) Since 2.14 is a convolution integral, its Fourier transform
can be computed as

1

(2π)d/2

∫
Rd

e−iξ·xTth(x)dx = ĥ(ξ)Eeiξ·Xt
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where Eeiξ·Xt = et·Ψ(ξ) by using 2.3. Then Fourier inversion
gives the result.

(2) By applying formula 2.12, we have that

Gih(x) =
∂

∂ti
Ttu(x)

∣∣∣∣
t=0

=

[
lim
ti→0

1

(2π)d/2

∫
Rd

eiξ·x
etiψi(ξ) − 1

ti

N∏
k=1,k ̸=i

etkψk(ξ)ĥ(ξ)dξ

]
t=0

The limit can be taken inside the integral due to dominated
convergence theorem. Indeed |etkψk(ξ)| ≤ 1 for each k because
etkψk(ξ) is the characteristic function of µtkek (see 2.1); moreover∣∣∣∣etiψi(ξ) − 1

ti

∣∣∣∣ ≤ |ψi(ξ)| ≤ Ci(1 + |ξ|2)

where for the last inequality we used [[4] page 31]. Thus the

absolute value of the integrand is dominated by (1 + |ξ|2)ĥ(ξ).
But the last function is independent of ti and is integrable on
Rd because ĥ is a Schwartz function. Then, by exchanging the
limit and the integral, the result immediately follows.

□

3. Composition of random fields

3.1. Subordinator fields. In order to treat the composition of ran-
dom fields, the main object is provided by the following definition.

Definition 3.1. A Multiparameter Levy process (Ht)t∈RM
+

is said to be

a subordinator field if, for some positive integer N , it takes values in
RN

+ almost surely.

The above definition means that, almost surely, t → Ht is a non
decreasing function with respect to the partial ordering, i.e. t1 ⪯ t2 on
RM

+ implies Ht1 ⪯ Ht2 on RN
+ .

Example 3.2. (Classical subordinators) If N = M = 1, then
(Ht)t∈R+ is a classical subordinator, i.e. a non-decreasing Lévy process
with values in R+. Hence it is such that

Ee−λHt = e−tf(λ), λ ≥ 0,

where the Laplace exponent f is a so-called Bernstein function. Thus
it is defined by

f(λ) = bλ+

∫
R+

(1− e−λx)ϕ(dx)
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where b ≥ 0 is the drift cofficient and ϕ is the Lévy measure, which
is supported on R+ and satisfies

∫
R+

min(x, 1)ϕ(dx) < ∞. For more

details on this subject consult [44].

Example 3.3. (Multivariate subordinators)
If M = 1 and N ≥ 1, then (Ht)t∈R+ is a multivariate subordinator

in the sense of [5]. Thus it is a one-parameter Lévy process with values
in RN

+ , i.e. it is non decreasing in each marginal component. Here Ht

has Laplace transform

Ee−λ·Ht = e−tS(λ), λ ∈ RN
+ ,

where the Laplace exponent S is a multivariate Bernstein function.
Hence it is defined by

S(λ) = b · λ+

∫
RN
+

(1− e−λ·x)ϕ(dx) λ ∈ RN
+

where b ∈ RN
+ , and the Lévy measure ϕ is supported on RN

+ and satisfies∫
RN
+

min(|x|, 1)ϕ(dx) <∞.

It is known (see e.g. Sect. 2 in [8]) that if Ht has a density p(x, t),
then it solves

∂tp(x, t) = b · ∇xp(x, t)−Dxp(x, t) x ∈ RN
+ t > 0

where Dx denotes the N-dimensional version of the generalized frac-
tional derivative defined in 1.6, i.e:

Dxh(x) =

∫
RN
+

(
h(x)− h(x− y)

)
ϕ(dy) x ∈ RN

+ .(3.1)

Example 3.4. (Multivariate stable subordinators) We here con-
sider a special sub-case of Example 3.3, in which the multivariate sub-
ordinator is stable. In order to define this process by means of its Lévy
measure, we need to use the spherical coordinates r and θ̂, which re-
spectively denote the lenght and the direction of jumps. Clearly θ̂ takes
values in the set CN−1 = {θ̂ ∈ RN

+ : |θ̂| = 1} because, by definition,
all the marginal components make positive jumps. So, a multivariate
subordinator (Ht)t∈R+ is said to be α-stable if its Lévy measure can be
written in spherical coordinates as

ϕ(dr, dθ̂) =
dr

rα+1
σ(dθ̂) r > 0 θ̂ ∈ CN−1

where α ∈ (0, 1) denotes the stability index and σ is the so-called spec-
tral measure, which is proportional to the probability distribution of the
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jump direction θ̂. By simple calculations, it is easy to see that in this
case the Laplace exponent takes the form

Sα,σ(λ) = k

∫
CN−1

(λ · θ̂)ασ(dθ̂) λ ∈ RN
+(3.2)

for a suitable k > 0. It is known that Ht has a density p(x, t) solving
the following equation

∂tp(x, t) = −Dα,σ
x p(x, t)(3.3)

where Dα,σ
x is the so-called fractional gradient, i.e. a pseudo-differential

operator defined by

Dα,σ
x h(x) = k

∫
CN−1

(∇ · θ̂)αh(x)σ(dθ̂)(3.4)

Note that 3.4 represents the average under σ(dθ̂) of the fractional power

of the directional derivative along the direction θ̂. For some theory and
applications about this operator consult Example 2.2 in [8], chapter 6
in [32] and also [12; 27].

When N = 2 the Lévy measure has the form

ϕ(dr, dθ) =
dr

rα+1
σ(dθ) r > 0 0 ≤ θ ≤ π

2

and, by denoting λ = (λ1, λ2), the Laplace exponent can be written as

Sα,σ(λ1, λ2) = k

∫ π/2

0

(λ1 cos θ + λ2 sin θ)
α σ(dθ),

whence the fractional gradient, acting of a function (x, y) → h(x, y),
has the form

Dα,σ
x,y h(x, y) = k

∫ π/2

0

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)α

h(x, y)σ(dθ),(3.5)

3.1.1. The general case. In the general case where N and M are any
positive integers, the Laplace transform of Ht can be computed as fol-
lows. Let t = (t1, . . . , tM) ∈ RM

+ and let {e1, . . . , eM} be the canonical
basis of RM . We can use Proposition 2.7 to say that there exist inde-

pendent random vectors Z
(k)
tk

, k = 1, . . . ,M , with Z
(k)
tk

d
= Htkek , such

that

Ht
d
= Z

(1)
t1 + . . . Z

(M)
tM

But, by the construction of (Ht)t∈RM
+
, it follows that, for each k =

1, . . . ,M , the process (Htkek)tk∈R+ is a multivariate subordinator in the
sense explained in the previous Example 3.3. Hence there exist bk ∈ RN

+
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Figure 3. Sample path of a stable subordinator field.

and a Lévy measure ϕk on RN
+ (satisfying

∫
RN
+
min(|x|, 1)ϕk(dx) < ∞)

such that Htkek has Laplace transform

Ee−λ·Htkek = e−tkSk(λ), λ ∈ RN
+ ,

where Sk is a multivariate Bernstein functions, defined by

Sk(λ) = bk · λ+

∫
RN
+

(1− e−λ·x)ϕk(dx).(3.6)

Hence the Laplace transform of Ht can be compactly written as

Ee−λ·Ht = e−t1S1(λ)···−tMSM (λ) = e−t·S(λ)(3.7)

where t = (t1, . . . , tM) and

S(λ) =
(
S1(λ), . . . , SM(λ)

)
(3.8)

We call 3.8 the multi-dimensional Laplace exponent of the subordinator
field. The above decomposition of a subordinator field into the sum
(in distribution) of independent multivariate subordinators will play a
decisive role in the following.

A sample path of a stable subordinator field is shown in Figure 3.

3.2. Subordinated fields. Let (Xs)s∈RN
+
be a N -parameter Lévy pro-

cess with values in Rd and let (Ht)t∈RM
+

be a subordinator field (in the

sense of Sect. 3.1) with values in RN
+ . In the following, (Xs)s∈RN

+
and
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(Ht)t∈RM
+

are assumed to be independent. We consider the subordi-

nated random field

Zt := XHt t ∈ RM
+ .(3.9)

It is known that 3.9 is also a Multi-parameter Lévy process (see [[38],
Thm. 3.12]). Let µs, ρt and νt respectively denote the probability laws
of Xs, Ht and Zt. Then, by conditioning, for any Borel set B ⊂ Rd we
have

νt(B) =

∫
RN
+

µs(B) ρt(ds).(3.10)

Processes of type 3.9 have also been studied in the literature.
In [5] the authors study the case M = 1 and prove that (Zt)t∈R+ is

again a Lévy process and find the characteristic triplet.
In [37], [38] and [39], the authors consider the general case M ≥ 1;

actually their study is more general, since they consider cone-parameter
Lévy processes subordinated by cone-valued Lévy processes.

Now, let (Tt)t∈RN
+
be the Feller semigroup associated to Xt, defined

in 2.14, with generator G = (G1, . . . , GN). Moreover, let (TZt )t∈RM
+

be

the Feller semigroup associated to Zt, i.e.

TZt h(x) := Eh(x+ Zt) =

∫
Rd

h(x+ y)νt(dy) h ∈ C0(Rd) t ∈ RM
+

(3.11)

where νt is the law of Zt defined in 3.10, whence we can rewrite 3.11
as a subordinated semigroup:

TZt h(x) =

∫
RN
+

Tsh(x)ρt(ds) t ∈ RM
+(3.12)

In the following theorem we determine the form of the generator GZ =
(GZ

1 , . . . , G
Z
M) for the subordinated semigroup, by restricting to the

Schwartz space S(Rd). We obtain a multiparameter generalization of
the well known Phillips formula (see e.g. [[42], pag. 212]) holding for
one-parameter subordinated semigroups.

Theorem 3.5. For each k = 1, . . . ,M , we have

GZ
k h(x) = bk ·Gh(x) +

∫
RN
+

(
Tzh(x)− h(x)

)
ϕk(dz) h ∈ S(Rd).

(3.13)

where bk and ϕk have been defined in 3.6.
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Proof. We first compute the characteristic function of Zt = XHt . By
conditioning, and using 2.3 and 3.7, we have

Eeiξ·XHt =

∫
RN
+

Eeiξ·XuP (Ht ∈ du)

=

∫
RN
+

eu·Ψ(ξ)P (Ht ∈ du)

= Ee−(−Ψ(ξ))·Ht

= e−t·S(−Ψ(ξ)) ξ ∈ Rd

where t = (t1, . . . , tM) and

−S(−Ψ(ξ)) :=


−S1

(
−ψ1(ξ), . . . ,−ψN(ξ)

)
:
:

−SM
(
−ψ1(ξ), . . . ,−ψN(ξ)

)


Thus, by using theorem 2.16, it follows that TZt is a pseudo-differential
operator with symbol e−t·S(−Ψ), i.e.

TZt h(x) =
1

(2π)d/2

∫
Rd

eiξ·xe−t·S(−Ψ(ξ))ĥ(ξ)dξ h ∈ S(Rd)(3.14)

while, for each k = 1, . . . ,M , GZ
k is a pseudo-differential operator

with symbol

−Sk(−Ψ(ξ)) = −Sk(−ψ1(ξ), . . . ,−ψN(ξ)).
This means that

GZ
k h(x) = − 1

(2π)d/2

∫
Rd

eiξ·xSk(−ψ1(ξ), . . . ,−ψN(ξ)) ĥ(ξ)dξ h ∈ S(Rd)

(3.15)

But, using 3.6, we have that

−Sk(−Ψ(ξ)) = bk ·Ψ(ξ) +

∫
RN
+

(ez·Ψ(ξ) − 1)ϕk(dz)(3.16)

Then, after substituting 3.16 in 3.15, we can solve the inverse Fourier
transform and taking into account the representation of Tt given in 2.15
we obtain the result.

□

Remark 3.6. In the spirit of operational functional calculus, the well
known Phillips Theorem (see e.g. [[42], pag. 212]) can be informally
stated as follows. Let a Markov process (Xt)t∈R+ have generator G
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and let a subordinator (Ht)t∈R+ have Bernstein function f . Then the
subordinated process (XHt)t∈R+ has generator −f(−G).

In a similar way, our Theorem 3.5 can be stated as follows.
Let (Xt)t∈RN

+
be a Multiparameter Lévy process with generator G =

(G1, . . . , GN) and let (Ht)t∈RM
+

be a subordinator field associated to the

multivariate Bernstein functions S1, S2, . . . , SM , namely its Laplace ex-
ponent is S = (S1, S2, . . . , SM). Then the subordinated field (XHt)t∈RM

+

has generator

−S(−G) :=


−S1(−G1,−G2, . . . ,−GN)
−S2(−G1,−G2, . . . ,−GN)

·
·

−SM(−G1,−G2, . . . ,−GN)


3.3. Stochastic solution to systems of integro-differential equa-
tions. Our extension of the Phillips theorem, given in Theorem 3.5,
provides a stochastic solution to some systems of differential equations.
Indeed, let (Xt)t∈RN

+
be a Multiparameter Lévy process with values

in Rd. Moreover, let (Ht)t∈RM
+

be a subordinator field with values in

RN
+ and let (Zt)t∈RM

+
= (XHt)t∈RM

+
be the subordinated field. Then, by

virtue of Proposition 2.14, and using the symbolic notation of Remark
3.6, we have that, for any u ∈ S(Rd), the function Eu(x + Zt) solves
the system



∂
∂t1
h(x, t) = −S1(−G1,−G2, . . . ,−GN)h(x, t)

∂
∂t2
h(x, t) = −S2(−G1,−G2, . . . ,−GN)h(x, t)

·
·
∂

∂tM
h(x, t) = −SM(−G1,−G2, . . . ,−GN)h(x, t)

h(x, 0) = u(x)

x ∈ Rd, t ∈ RM
+

(3.17)

where t = (t1, . . . , tM), G = (G1, . . . , GN) denotes the generator of
(Xt)t∈RN

+
and S1, . . . , SM are the multivariate Bernstein functions, i.e.

the components of the Laplace exponent of (Ht)t∈RM
+

defined in 3.8 .

Example 3.7. Let {e1, . . . , eM} be the canonical basis of RM . Assume
that the subordinator field (Ht)t∈RM

+
is such that, for each i = 1, . . . ,M ,

the component Htiei is a multivariate stable subordinator in the sense
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of Example 3.4, with index αi ∈ (0, 1), whose multivariate Bernstein
function reads

Sαi,σi
i (λ) = ki

∫
CN−1

(λ · θ̂)αiσi(dθ̂).(3.18)

Then the system 3.17 takes the form


∂
∂t1
h(x, t) = −k1

∫
CN−1(−G · θ̂)α1h(x, t)σ1(dθ̂)

∂
∂t2
h(x, t) = −k2

∫
CN−1(−G · θ̂)α2h(x, t)σ2(dθ̂)

. . .
∂

∂tM
h(x, t) = −kM

∫
CN−1(−G · θ̂)αMh(x, t)σM(dθ̂)

x ∈ Rd, t ∈ RM
+

(3.19)

where, on the right side, the fractional powers (−G·θ̂)αi are well defined

because −G · θ̂ is the generator of a contraction semigroup.

Example 3.8. Let N = M = 2. Consider the bi-parameter, additive
Lévy process

X(t1, t2) = X1(t1) +X2(t2)(3.20)

where X1 and X2 are independent isotropic stable processes with
indices α1 ∈ (0, 2] and α2 ∈ (0, 2] respectively. Let

H(t1, t2) = (H1(t1, t2), H2(t1, t2))

be a subordinator field, such thatH(t1, 0) andH(0, t2) are two bivariate
stable subordinators in the sense of Example 3.4 , respectively having
indices β1 ∈ (0, 1) and β2 ∈ (0, 1) and spectral measures σ1 and σ2. Let

Z(t1, t2) = X1(H1(t1, t2)) +X2(H2(t1, t2))

be the subordinated field. Then, for any u ∈ S(Rd), the function
Eu(x+ Z(t1, t2)) solves the system



∂
∂t1
h(x, t) = −k1

∫ π/2
0

(
(−∆)α1/2 cos θ + (−∆)α2/2 sin θ

)β1h(x, t)σ1(dθ)
∂
∂t2
h(x, t) = −k2

∫ π/2
0

(
(−∆)α1/2 cos θ + (−∆)α2/2 sin θ

)β2h(x, t)σ2(dθ)
h(x, 0) = u(x)

(3.21)

where −(−∆)αi/2 denotes the fractional Laplacian. To write the system
3.21, we used that, for i = 1, 2, the generator of the isotropic stable
process Xi is Gi = −(−∆)αi/2 (see e.g [[4], page 166]).
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Example 3.9. Consider again Example 3.8. In the special case where
α1 = α2 = 2, the process 3.20 is a so-called additive Brownian motion
(see e.g. [[16], page 394]) and the above system simplifies to

∂
∂t1
h(x, t) = −C1(−∆)β1h(x, t)

∂
∂t2
h(x, t) = −C2(−∆)β2h(x, t)

h(x, 0) = u(x)

(3.22)

for suitable constants C1, C2 > 0.

Example 3.10. Let N = 1 andM > 1 (so that subordination increases
the number of parameters). So let (Xt)t∈R+ be a one-parameter Lévy
process and let (Ht)t∈RM

+
be a subordinator field with values in R+. For

example, assume that (Xt)t∈R+ is a standard Brownian motion in Rd

and, for each k = 1, . . . ,M , Htkek is a stable subordinator of index
βk ∈ (0, 1) (ek denoting the k-th vector of the canonical basis). Let
(Zt)t∈RM

+
= (XHt)t∈RM

+
be the subordinated field. Then Eu(x+Zt) solves

∂
∂t1
h(x, t) = −(−∆)β1h(x, t)

∂
∂t2
h(x, t) = −(−∆)β2h(x, t)

·
·
∂

∂tM
h(x, t) = −(−∆)βMh(x, t)

h(x, 0) = u(x)

4. Subordination by the inverse random field

Let (Ht)t∈R+ be a multivariate subordinator in the sense of Ex-
ample 3.3, which takes values in RN

+ . Hence it is defined by Ht =
(H1(t), . . . , HN(t)), where each marginal component Hj(t) is a classi-
cal subordinator. Consider a new random field (Lt)t∈RN

+
defined by

Lt =
(
L1(t1), . . . , LN(tN)

)
t = (t1, . . . , tN)(4.1)

where Lj is the inverse hitting time of the subordinator Hj, i.e.

Lj(tj) = inf{x > 0 : Hj(x) > tj}
As stated in the introduction, we will call 4.1 inverse random field.

Now, let (Xt)t∈RN
+
be a N -parameter Lévy process with values in Rd.

We are interested in the subordinated random field (Zt)t∈RN
+
defined by

Zt = XLt t ∈ RN
+(4.2)
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This topic has many sources of inspiration. Above all, there is a well
established theory (consult e.g. [6; 7; 21; 26; 28; 29; 30; 31; 32; 33; 47])
concerning semi-Markov processes of the form

Z(t) = X(L(t)) t ≥ 0(4.3)

where X is a Lévy process in Rd and L is the inverse hitting time of a
subordinator H, i.e.

L(t) = inf{x > 0 : H(x) > t}

Such processes have a great interest in statistical physics, as they arise
as scaling limits of suitable continuous time random walks.

Example 4.1. A special case (see e.g. [2; 3; 24; 25]) is the process

Z(t) = B(Lα(t))(4.4)

where B is a d-dimensional standard Brownian motion and Lα is the
inverse of a α-stable subordinator independent of B, where α ∈ (0, 1).
The process 4.4 is a so-called subdiffusion: the mean square displace-
ment behaves as tα, i.e. the motion is delayed with respect to the
Brownian behavior. This models the case where the moving particle
is trapped by inhomogeneities or perturbations in the medium; thus the
particle runs on Brownian paths, but, for arbitrary time intervals, it is
forced to be at rest, which gives rise to a sub-diffusive dynamics. Dif-
fusions in porous media and penetration of a pollutant in the ground
have this type of motion (see [34] for other applications of anomalous
diffusions). The random variable B(Lα(t)) has a density solving the
following anomalous diffusion equation

Dα
t q(x, t)−

tα

Γ(1− α)
δ(x) =

1

2
∆q(x, t)(4.5)

where ∆ denotes the Laplacian operator and Dα
t is the Marchaud frac-

tional derivative, defined by

Dα
t h(t) :=

∫ ∞

0

(
h(t)− h(t− τ)

) ατ−α−1

Γ(1− α)
dτ.(4.6)

See also [11] for a tempered version of such operator. We finally re-
call that recent models of anomalous diffusion in heterogeneous media,
where the fractional order α is space-dependent, have been developed in
[19; 40; 43] (see also [15] for a related model).

Equation 4.5 is a special case of a more general theory. Indeed,
as anticipated in the Introduction, if X and L are independent, the
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connection of the process 4.3 with integro-differential equations is given
by the following facts. Let X have a density p(x, t) solving

∂t p(x, t) = G∗ p(x, t)

where G∗ is the dual to the Markov generator. Moreover, let L be
the inverse of a subordinator with Lévy measure ν. If L has a density
l(x, t), then, by conditioning, X(L(t)) has a density

p∗(x, t) =

∫ ∞

0

p(x, u)l(u, t)du.

Such a density solves

Dtp
∗(x, t)− ν(t)p∗(x, 0) = G∗p∗(x, t)(4.7)

where ν(t) =
∫∞
t
ν(dx) and the operator Dt, usually called generalized

Marchaud fractional derivative, is defined by

Dth(t) :=

∫ ∞

0

(
h(t)− h(t− τ)

)
ν(dτ).(4.8)

Concerning the link between semi-Markov processes and non-local in
time equations, consult also [35; 36] for a discrete-time model and [41]
for the theory of abstract equations related to semi-Markov Random
evolutions.

The rest of this section will be structured as follows. A special case
of biparameter Lévy processes will be treated in subsection 4.1 and
a related model of anisotropic subdiffusion will be presented in sub-
section 4.2. Finally, the special case where the Lj, j = 1, . . . , N , are
independent will be presented in subsection 4.3 and some long range
dependence properties will be analysed.

4.1. Subordination of some two-parameter Lévy processes. Con-
sider the following biparameter Lévy process with values in Rd:

X(t1, t2) = (X1(t1), X2(t2))(4.9)

where X1 and X2 are (possibly dependent) Lévy processes with values
in Rd1 and Rd2 respectively, with d1 + d2 = d.
Consider now a bivariate subordinator (H1(t), H2(t)) and the related

bivariate inverse random field (L1(t1), L2(t2)) as defined in 4.1.
We will consider the following assumptions:
A1) X1(t1) and X2(t2) have marginal densities p1(x1, t) and p2(x2, t)

satysfying the following forward equations:

∂

∂t
pi(xi, t) = G∗

i pi(xi, t) i = 1, 2

where G∗
1 and G∗

2 are the duals to the generators of X1 and X2.
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A2) X(t1, t2) has density p(x1, x2, t1, t2) satysfying the system

∂

∂ti
p(x1, x2, t1, t2) = G∗

i p(x1, x2, t1, t2) i = 1, 2.

A3) For all t1, t2 > 0, the random vector (H1(t1), H2(t2)) has a
density q(x1, x2, t1, t2)

1.

We now consider the subordinated random field

Z(t1, t2) = X(L1(t1), L2(t2))(4.10)

The following Proposition gives a generalization of equation 4.7 adapted
to the random field 4.10.

Proposition 4.2. Under the assumptions A1), A2) , A3) , the random
vector X(L1(t1), L2(t2)) has a density h(x1, x2, t1, t2) satisfying

Dt1,t2h(x1, x2, t1, t2) = (G∗
1 +G∗

2)h(x1, x2, t1, t2) x1 ̸= 0, x2 ̸= 0
(4.11)

where Dt1,t2 is the bidimensional version of the generalized fractional
derivative, defined in 3.1, i.e.

Dt1,t2h(t1, t2) =

∫
R2
+

(
h(t1, t2)− h(t1 − τ1, t2 − τ2)

)
ϕ(dτ1, dτ2)

Proof. Under assumption A3), the distribution of (L1(t1), L2(t2)) is the
sum of two components (see [[8], sect. 3.1]): the first one is absolutely
continuous with respect to the bi-dimensional Lebesgue measure, with
density l, namely

P (L1(t1) ∈ dx1, L2(t2) ∈ dx2) = l(x1, x2, t1, t2)dx1dx2 x1 ̸= x2

while the second one has support on the bisector line x1 = x2, with one
dimensional Lebesgue density l∗(x, t1, t2) (i.e. P (L1(t1) = L2(t2)) =∫∞
0
l∗(x, t1, t2)dx).

Then, by using a simple conditioning argument, the random vector
X(L1(t1), L2(t2)) has density

h(x1, x2, t1, t2) =

∫ ∞

0

∫ ∞

0

p(x1, x2, u, v)l(u, v, t1, t2)dudv

+

∫ ∞

0

p(x1, x2, u, u)l∗(u, t1, t2)du

By applying Dt1,t2 to both sides and using [[8], Thm 3.6] we have

Dt1,t2h(x1, x2, t1, t2)

1Observe that the random field (t1, t2) → (H1(t1), H2(t2)) is not a biparameter Lévy
process even if t → (H1(t), H2(t)) is a multivariate subordinator, unless the two marginal
components are independent.
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= −
∫ ∞

0

∫ ∞

0

p(x1, x2, u, v)
∂

∂u
l(u, v, t1, t2)dudv

−
∫ ∞

0

∫ ∞

0

p(x1, x2, u, v)
∂

∂v
l(u, v, t1, t2)dudv

−
∫ ∞

0

p(x1, x2, u, u)
∂

∂u
l∗(u, t1, t2)du.(4.12)

Now, we integrate by parts by using assumptions A1 and A2. We also
use that X1(0) = 0 and X2(0) = 0 almost surely, which implies that
P (X1(0) ∈ A,X2(t2) ∈ B) = I(0∈A)P (X2(t2) ∈ B) and P (X1(t1) ∈
A,X2(0) ∈ B) = P (X1(t1) ∈ A)I(0∈B); thus we get

Dt1,t2h(x1, x2, t1, t2)

= G∗
1

∫ ∞

0

∫ ∞

0

p(x1, x2, u, v)l(u, v, t1, t2)dudv + δ(x1)

∫ ∞

0

p2(x2, v)l(0, v, t1t2)dv+

+G∗
2

∫ ∞

0

∫ ∞

0

p(x1, x2, u, v)l(u, v, t1, t2)dudv + δ(x2)

∫ ∞

0

p1(x1, u)l(u, 0, t1t2)du

+ (G∗
1 +G∗

2)

∫ ∞

0

p(x1, x2, u, u)l∗(u, t1, t2)du+ δ(x1)δ(x2)ϕ(t1, t2)

where

ϕ(t1, t2) =

∫ ∞

t1

∫ ∞

t2

ϕ(dx1, dx2).

In the above calculations we have taken into account that

∂p(x1, x2, u, u)

∂u
= (G∗

1 +G∗
2)p(x1, x2, u, u)

since the total derivative of p(x1, x2, t1, t2), with t1 = u and t2 = u, is
given by

∂p

∂t1

∂t1
∂u

+
∂p

∂t2

∂t2
∂u

= G∗
1p+G∗

2p.

In the region x1 ̸= 0, x2 ̸= 0 we have

Dt1,t2h(x1, x2, t1, t2)

=(G∗
1 +G∗

2)

∫ ∞

0

∫ ∞

0

p(x1, x2, u, v)l(u, v, t1, t2)dudv

+ (G∗
1 +G∗

2)

∫ ∞

0

p(x1, x2, u, u)l∗(u, t1, t2)du

= (G∗
1 +G∗

2)h(x1, x2, t1, t2),

which concludes the proof. □

A sample path of a time-changed field is shown in Figure 4.
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Figure 4. Sample path of a time-changed additive Brown-
ian field with an inverse stable field.

4.2. Anomalous diffusion in anisotropic media. As a byproduct
of the results of section 4.1, we here propose another model of subdif-
fusion which extends the one treated in Example 4.1, by including it
as a special case.

As explained, the process 4.4 models a subdiffusion through an isotropic
medium, i.e. the trapping effect is the same in all coordinate directions
(e.g. all components of the Brownian motion are delayed by the same
random time process). Hence the subordinated process 4.4 is isotropic
as well as the Brownian motion.

Thus it is natural to search for a model of subdiffusion in the case
where the external medium is not isotropic. Actually, a first model
of anisotropic subdiffusion has been proposed in [[8], Sect. 5]. In the
following, we will improve such a model, by including it in a more
general framework.

We recall some notions on operator stability (consult [14] and [45]).
A random vector X with values in Rd is said to be operator stable if,
for any positive integer n, there exist a vector cn ∈ Rd and a d × d
matrix A such that n indipendent copies X1, . . . , Xn of X satisfy

X1 + · · ·+Xn
d
= nAX + cn(4.13)
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where the matrix power nA is defined by

nA = eA lnn =
∞∑
k=0

1

k!
Ak(lnn)k.

In the special case A = 1
α
I, with α ∈ (0, 2] and I denoting the identity

matrix, we have that X is α-stable. In the general case, A has eigenval-
ues whose real parts have the form 1/αi, with αi ∈ (0, 2], i = 1, . . . , d.
We stress that the matrix A is not unique, i.e. there may be different
n× n matrices satisfying 4.13 (unlike what happens in the stable case,
where the index α is uniquely defined).

Operator stable laws are infinite divisible, hence they correspond to
some Lévy processes. A Levy process X(t), t ≥ 0 is said to be an oper-
ator stable Lévy motion if X(1) is an operator stable random vector.
Note that such a process is characterized by the anisotropic scaling

X(ct)
d
= cAX(t). This property is a generalization of self-similarity of

α-stable processes where the scaling is the same for all coordinates, i.e.

X(ct)
d
= c1/αX(t).

We are now ready to present the model of anisotropic subdiffusion.
So, let us consider a bivariate subordinator (H1(t), H2(t)) which is con-
structed as an operator stable Lévy motion with values in R2

+. In
this case A has eigenvalues whose real parts have the form 1/αi, with
αi ∈ (0, 1), i = 1, 2. Now, let r > 0 and θ ∈ [0, π

2
] be the so-called

Jurek coordinates (see e.g. [14] and [[32], page 185]) which are defined

by the mapping R2
+ ∋ x = rAθ̂, where θ̂ = (cos θ, sin θ). In this new

coordinates the bi-dimensional Lévy measure can be expressed as

ϕA,M(dr, dθ) = C
dr

r2
M(dθ) r > 0 θ ∈

[
0,
π

2

]
where M is a probability measure on the angular component. Then
the operator Dx, x ∈ R2

+, defined in formula 3.1 of Example 3.3, takes
the form

DA,M
x h(x) = C

∫ π/2

0

∫ ∞

0

(
h(x)− h(x− rAθ̂)

)dr
r2
M(dθ)(4.14)

If (H1(t), H2(t)) is a bivariate stable subordinator (see Example 3.4),
i.e. A = 1

α
I, by a simple change of variables one re-obtains the frac-

tional gradient defined in formula 3.4.
Now, let (L1(t1), L2(t2)) be the inverse random field of (H1(t), H2(t))

and let (B1(t), B2(t)) be a bi-dimensional standard Brownian motion
with independent components. Consider the time changed process

Z(t) =
(
B1(L1(t)), B2(L2(t))

)
t ≥ 0(4.15)
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The process 4.15 is a model of anisotropic subdiffusion. Indeed con-
sider the random variable

Zθ(t) = Z(t) · θ̂

representing the displacement along the direction θ̂ = (cos θ, sin θ). By
conditioning, the mean square displacement can be written as

EZ2
θ (t) = EL1(t) cos

2 θ + EL2(t) sin
2 θ

which, in general, depends on θ because of anisotropy.
In the spirit of [[8], Sect. 4], a governing equation for the pro-

cess 4.15 can be obtained by considering the related random field
(B1(L1(t1)), B2(L2(t2))). Indeed, by applying Proposition 4.2 of the
previous section, it has a density h(x1, x2, t1, t2) satisfying the anoma-
lous diffusion equation

DA,M
t h(x1, x2, t1, t2) =

1

2
∆h(x1, x2, t1, t2) x1 ̸= 0, x2 ̸= 0

where the operator DA,M
t , defined in 4.14, now acts on t = (t1, t2).

Example 4.3. If L1(t) = L2(t) = L(t), where L(t) is the inverse
of a α-stable subordinator, the process 4.15 reduces to the isotropic
subdiffusion 4.4. In this case we have EL(t) = Ctα. Thus EZ2

θ (t) =
Ctα, which is independent of θ because of isotropy.

Example 4.4. If H1(t) and H2(t) are independent stable subordinators,
then the matrix A is diagonal with elements 1/α1 and 1/α2. If α1 ̸= α2

the process 4.15 is anisotropic, in such a way that α1 and α2 represent
the spreading rates along the two coordinate directions. Indeed, since
ELi(t) = Cit

αi for i = 1, 2, then the mean square displacement along

a direction θ̂ has the form EZ2
θ (t) = C1t

α1 cos2 θ + C2t
α2 sin2 θ which

depends on θ̂ and asymptotically behaves like tmax(α1,α2).

Example 4.5. If A is a symmetric matrix with eigenvalues 1/α1 and
1/α2, where α1 and α2 are in (0, 1), then a rigid rotation of the co-
ordinate system allows to find the two eigenvectors, along which the
spreading rates are α1 and α2 respectively, which corresponds to the
situation explained in Example 4.4 .

4.3. Subordination by independent inverses. In the following, let
X(t1, . . . , tN) be a N -parameter Lévy process with density p(x, t) sat-
isfying the system

∂tjp(x, t) = G∗
jp(x, t) j = 1, . . . , N
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with the usual notation t = (t1, . . . , tN). Assume that the marginal
components Lj(tj) of the inverse random field 4.1 are mutually inde-
pendent, each having density lj(x, tj) and Lévy measure νj. Consider
the subordinated random field

Z(t) := X(L1(t1), . . . , LN(tN))(4.16)

Before stating the next result, we introduce the following notation: for
a given vector v = (v1, . . . , vN), we introduce the vector v

(j) defined by
v(j) = (v1, . . . , vj−1, 0, vj+1, . . . , vN).

Proposition 4.6. Under the above assumptions, the subordinated field
4.16 has a density p∗(x, t) satisfying the system

D(νj)
tj p∗(x, t)− νj(tj) p

∗(x, t(j)) = G∗
j p

∗(x, t) j = 1, . . . , N

where D(νj)
tj denotes the generalized fractional derivative defined in 4.8

with Lévy measure νj, and νj(tj) =
∫∞
tj
νj(dτ).

Proof. By conditioning, 4.16 has a density

p∗(x, t) =

∫
RN

+

p(x, u1, . . . , uN)
N∏
i=1

li(ui, ti)du1 · · · duN

By applying D(νj)
tj to both members and taking into account that such

operator commutes with the integral, we have

D(νj)
tj p∗(x, t) = −

∫
RN

+

p(x, u1, . . . , uN)
∂

∂uj
lj(uj, tj)

N∏
i=1,i ̸=j

li(ui, ti) du1 · · · duN

where we used that the density lj(x, tj) of an inverse subordinator

satisfies the equation D(νj)
tj lj(x, tj) = −∂xlj(x, tj) under the condition

lj(0, tj) = νj(tj) (see e.g. [21]).
Integrating by parts, we have

D(νj)
tj p∗(x, t) = G∗

j p
∗(x, t) + νj(tj)

∫
RN−1
+

p(x, u(j))
N∏

i=1,i ̸=j

li(ui, ti)dui

where the last integral can be written as∫
RN−1
+

p(x, u(j))
N∏

i=1,i ̸=j

li(ui, ti)dui = p∗(x, t(j))

because lj(uj, 0) = δ(uj). This completes the proof. □
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4.3.1. Long range dependence. Consider a process of type 4.16. For
each k = 1, . . . , N , let Lk(tk) be the inverse of a α-stable subordina-
tor. The subordinated field exhibits a power law decay of the auto-
correlation function which is slower with respect to the |t|− 1

2 decay
holding for Multiparameter Lévy processes (which was discussed in
Remark 2.10 ). This can be useful in applied fields, where spatial data
exhibit long range dependence properties.

So, let s ⪯ t. By using the results of Section 2.2, we have

Cov(XLs , XLt)

= E
[
Cov(XLs , XLt)

∣∣Ls, Lt]+ Cov
(
E[XLs|Ls, Lt],E[XLt |Ls, Lt]

)
= E[Ls · σ2] + Cov(Lt · µ, Ls · µ)

= E
[ N∑
k=1

σ2
kLk(sk)

]
+ Cov

( N∑
k=1

µkLk(tk),
N∑
i=1

µiLi(si)

)

=
N∑
k=1

σ2
kELk(sk) +

N∑
k=1

N∑
i=1

µkµiCov
(
Lk(tk), Li(si)

)
=

N∑
k=1

σ2
kELk(sk) +

N∑
k=1

µ2
k Cov

(
Lk(tk), Lk(sk)

)
where in the last step we used independence between Li and Lk when
i ̸= k. Putting s = t we have

VarXLt =
N∑
k=1

σ2
kELk(tk) +

N∑
k=1

µ2
k VarLk(tk)

By self-similarity of the inverse stable subordinator (consult e.g.

Proposition 3.1 in [30]), we have Lk(tk)
d
= tαkLk(1). Hence

ELk(tk) = tαk ELk(1) VarLk(tk) = t2αk VarLk(1).

Thus, by using the notation tβ := (tβ1 , . . . , t
β
N) we can write

VarXLt = w · tα + v · t2α

where we defined wk = σ2
k ELk(1) and vk = µ2

k VarLk(1).
Moreover, by using Formula 10 in [22] we have

Cov
(
Lk(tk), Lk(sk)

)
∼ s2αk

Γ(2α + 1)
tk → ∞.
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In summary, for |t| → ∞, we have

ρ(XLs , XLt) ∼

{
1

|tα|1/2 if µ = 0
1

|t2α|1/2 if µ ̸= 0
(4.17)

Remark 4.7. What we found in 4.17 is the multiparameter extension
of the known formula holding in the N = 1 case, see e.g. Example 3.2 in
[22]. Here the authors considered the subordinated process (XL(t))t∈R+,
where (Xt)t∈R+ is a Lévy process and (L(t))t∈R+ is the inverse of a α-
stable subordinator, with α ∈ (0, 1). By considering two times s and t,
such that s < t, and letting t→ ∞, they show that the auto-correlation
ρ(XL(t), XL(s)) behaves like t−α if EX1 ̸= 0 and t−

α
2 if EX1 = 0. It is

interesting to note that the same power law behavior is observed in the
corresponding discrete-time models (see Proposition 4 in [36]).

References

[1] R.J.Adler, D.Monrad, R.H.Scissors, R.Wilson. Representations,
decompositions and sample function continuity of random fields
with independent increments. Stochastic Processes and their Ap-
plications Volume (15), Issue 1, 1983, Pages 3-30

[2] G. Ascione. Tychonoff solutions of the time-fractional heat equa-
tion. Fractal Fract. 6(6), 292, 2022

[3] G. Ascione, P. Patie, B. Toaldo. Non-local heat equation with
moving boundary and curve-crossing of delayed Brownian motion,
https://arxiv.org/pdf/2203.09850.pdf
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