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SOME FAMILIES OF RAPIDLY CONVERGENT SERIES
REPRESENTATIONS FOR THE ZETA FUNCTIONS

H. M. Srivastava

Abstract. Many interesting families of rapidly convergent series repre-
sentations for the Riemann Zeta function ζ(2n + 1) (n ∈ N) were consid-
ered recently by various authors. In this survey-cum-expository paper,
the author presents a systematic (and historical) investigation of these
series representations. Relevant connections of the results presented here
with several other known series representations for ζ(2n+1) (n ∈ N) are
also pointed out. In one of many computationally useful special cases
presented here, it is observed that ζ(3) can be represented by means
of a series which converges much faster than that in Euler’s celebrated
formula as well as the series used recently by Apéry in his proof of the
irrationality of ζ(3). Symbolic and numerical computations using Math-
ematica (Version 4.0) for Linux show, among other things, that only 50
terms of this series are capable of producing an accuracy of seven decimal
places.

1. INTRODUCTION AND HISTORICAL BACKGROUND

Let S denote the set of all nontrivial integer kth powers, that is,

S :=
{
nk : n, k ∈ N \ {1} (N := {1, 2, 3, . . . })}

= {4, 8, 9, 16, 25, 27, 32, 36, . . . }.
(1.1)
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An over two centuries old theorem of Christian Goldbach (1690 - 1764), which
was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700 -
1782), was revived, not too long ago, as the following problem [19]:

∑

ω∈S
(ω − 1)−1 = 1,(1.2)

the sum being extended over all members ω of the set S.
In terms of the Riemann Zeta function ζ(s), Goldbach’s theorem (1.2) can

easily be restated as
∞∑

k=2

{ζ(k)− 1} = 1(1.3)

or, equivalently, as
∞∑

k=2

F(ζ(k)) = 1,(1.4)

where, for convenience, F(x) := x − [x] denotes the fractional part of x ∈ R.
In fact, it is fairly easy to show also that

∞∑

k=2

(−1)k F(ζ(k)) =
1
2
,(1.5)

∞∑

k=1

F(ζ(2k)) =
3
4
,(1.6)

and
∞∑

k=1

F(ζ(2k + 1)) =
1
4
.(1.7)

Here, as usual, the Riemann Zeta function ζ(s) and the (Hurwitz’s) gen-
eralized Zeta function ζ(s, a) are defined (for R(s) > 1) by

ζ(s) :=





∞∑
n=1

1
ns

=
1

1− 2−s

∞∑
n=1

1
(2n− 1)s

(R(s) > 1)

1
1− 21−s

∞∑
n=1

(−1)n−1

ns
(R(s) > 0; s 6= 1)

(1.8)

and

ζ(s, a) :=
∞∑

n=0

1
(n + a)s

(
R(s) > 1; a /∈ Z−0 := {0,−1,−2, . . . }) ,(1.9)
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and (for R(s) 5 1; s 6= 1) by their meromorphic continuations (see, for details,
Titchmarsh [28]), so that (obviously)

ζ(s, 1) = ζ(s) = (2s − 1)−1 ζ

(
s,

1
2

)
and ζ(s, 2) = ζ(s)− 1.(1.10)

Another remarkable result involving Riemann’s ζ-function is the following
series representation for ζ(3):

ζ(3) = −4π2

7

∞∑

k=0

ζ(2k)
(2k + 1)(2k + 2)22k

,(1.11)

which was contained in a 1772 paper, entitled “Exercitationes Analyticae”, by
Leonhard Euler (1707 - 1783) (cf., e.g., Ayoub [2, pp. 1084 - 1085]). In fact,
this result of Euler was rediscovered (among others) by Ramaswami [18] (see
also Srivastava [20, p. 7, Equation (2.23)]) and (more recently) by Ewell [8].
And, as pointed out by (for example) Chen and Srivastava [4, pp. 180 - 181],
another series representation:

ζ(3) =
5
2

∞∑

k=1

(−1)k−1

k3

(
2k

k

) ,(1.12)

which played a key rôle in Apéry’s celebrated proof [1] of the irrationality of
ζ(3), was proven independently by (among others) Hjortnaes [13], Gosper [11],
and Apéry [1].

Clearly, Euler’s series in (1.11) converges faster than the defining series for
ζ(3), but obviously not as fast as the series in (1.12). Such Zeta values as ζ(3),
ζ(5), et cetera are known to arise naturally in a wide variety of applications
(see, for example, Tricomi [29], Witten [32], and Nash and O’Connor [16,
17]). On the other hand, in the case of even integer arguments, we have the
computationally useful relationship:

ζ(2n) = (−1)n−1 (2π)2n

2 · (2n)!
B2n (n ∈ N0 := N ∪ {0})(1.13)

with the well-tabulated Bernoulli numbers defined by the generating function:

z

ez − 1
=

∞∑

n=0

Bn
zn

n!
(|z| < 2π),(1.14)

as well as the familiar recursion formula:

ζ(2n) =
(

n +
1
2

)−1 n−1∑

k=1

ζ(2k) ζ(2n− 2k) (n ∈ N \ {1}).(1.15)
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Thus there is a need for expressing ζ(2n + 1) as a rapidly converging series
for all n ∈ N. With this objective in view, we propose to develop here a
rather systematic investigation of the various families of rapidly convergent
series representations for the Riemann ζ(2n + 1) (n ∈ N). We also consider
relevant connections of the results presented here with many other known
series representations for ζ(2n + 1) (n ∈ N). In one of many computationally
useful special cases considered here, it is observed that ζ(3) can be represented
by means of a series which converges much more rapidly than that in Euler’s
celebrated formula (1.11) as well as the series (1.12) used recently by Apéry [1]
in his proof of the irrationality of ζ(3). Symbolic and numerical computations
using Mathematica (Version 4.0) for Linux show, among other things, that
only 50 terms of this series are capable of producing an accuracy of seven
decimal places.

2. THE FIRST SET OF SERIES REPRESENTATIONS

The various series identities considered in the preceding section, including
(for example) Goldbach’s theorem (1.2), are known to be derivable also from
the following simple consequence of the binomial theorem and the definition
(1.9):

∞∑

k=0

(s)k

k!
ζ(s + k, a)tk = ζ(s, a− t) (|t| < |a|),(2.1)

which, for a = 1 and t = ±1/m, readily yields the series identity:

∞∑

k=0

(s)2k

(2k)!
ζ(s + 2k)

m2k

=





(2s − 1) ζ(s)− 2s−1 (m = 2)

1
2

[
(ms − 1) ζ(s)−ms −

m−2∑
j=2

ζ

(
s,

j

m

)]
(m ∈ N \ {1, 2}),

(2.2)

(λ)n := Γ(λ+n)/Γ(λ) being the Pochhammer symbol (or the shifted factorial,
since (1)n = n!).

In terms of the familiar harmonic numbers

Hn :=
n∑

j=1

1
j

(n ∈ N),(2.3)
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the following series representations for ζ(2n + 1) were proven recently by ap-
pealing appropriately to the series identity (2.2) in its special cases when
m = 2, 3, 4, and 6 (see Srivastava [24]):

ζ(2n + 1) =(−1)n−1 (2π)2n

22n+1 − 1

[
H2n − log π

(2n)!

+
n−1∑

k=1

(−1)k

(2n− 2k)!
ζ(2k + 1)

π2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k)!

ζ(2k)
22k

]
(n ∈ N);

(2.4)

ζ(2n + 1) =(−1)n−1 2(2π)2n

32n+1 − 1

[
H2n − log

(
2
3π

)

(2n)!

+
n−1∑

k=1

(−1)k

(2n− 2k)!
ζ(2k + 1)(

2
3π

)2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k)!

ζ(2k)
32k

]
(n ∈ N);

(2.5)

ζ(2n + 1) =(−1)n−1 2(2π)2n

24n+1 + 22n − 1

[
H2n − log

(
1
2π

)

(2n)!

+
n−1∑

k=1

(−1)k

(2n− 2k)!
ζ(2k + 1)(

1
2π

)2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k)!

ζ(2k)
42k

]
(n ∈ N);

(2.6)

ζ(2n + 1) =(−1)n−1 2(2π)2n

32n(22n + 1) + 22n − 1

[
H2n − log

(
1
3π

)

(2n)!

+
n−1∑

k=1

(−1)k

(2n− 2k)!
ζ(2k + 1)(

1
3π

)2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k)!

ζ(2k)
62k

]
(n ∈ N).

(2.7)
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Here (and elsewhere in this work) an empty sum is to be interpreted (as usual)
to be nil.

We choose to recall the proof of (2.4) detailed by Srivastava [24]. Each of
the other results (2.5), (2.6), and (2.7) can be proven mutatis mutandis. The
following properties of the Riemann ζ-function will also be required in these
derivations:

ζ(0) = −1
2
; ζ(−2n) = 0 (n ∈ N); ζ ′(0) = −1

2
log(2π),(2.8)

and (in general)

ζ ′(−2n)= lim
ε→0

ζ(−2n + ε)
ε

=
(−1)n

2(2π)2n
(2n)! ζ(2n + 1) (n ∈ N),

(2.9)

where use is made of the familiar functional equation:

2s Γ(1− s) ζ(1− s) sin
(

1
2
πs

)
= π1−s ζ(s).(2.10)

Furthermore, by l’Hôpital’s rule, it is easily seen that

lim
s→−2n

{
sin

(
1
2πs

)

s + 2n

}
= (−1)n π

2
(n ∈ N)(2.11)

and

lim
s→−2n

{
ζ(s + 2k)
s + 2n

}
=

(−1)n−k

2(2π)2(n−k)
(2n− 2k)! ζ(2n− 2k + 1)

(k = 1, · · · , n− 1;n ∈ N \ {1}).
(2.12)

First of all, upon separating the first n+1 terms of the series occurring on
the left-hand side of the case m = 2 of the general result (2.2), if we transpose
the terms for k = 0 and k = n to the right-hand side, we readily obtain the
identity:

n−1∑

k=1

(s)2k

(2k)!
22(n−k) ζ(s + 2k) +

∞∑

k=1

(s)2n+2k

(2n + 2k)!
ζ(s + 2n + 2k)

22k

= 22n(2s − 2)ζ(s)− 2s+2n−1 − (s)2n

(2n)!
ζ(s + 2n) (n ∈ N),

(2.13)
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it being understood, as mentioned before, that an empty sum is to be inter-
preted as nil.

Now we apply the functional equation (2.10) in the first term on the right-
hand side of (2.13) and divide both sides by s + 2n. We thus find that

n−1∑

k=1

(s)2k

(2k)!
22(n−k)

{
ζ(s + 2k)
s + 2n

}

+
∞∑

k=1

(s)2n(s + 2n + 1)2k−1

(2n + 2k)!
ζ(s + 2n + 2k)

22k

= 2s+2n(2s − 2)πs−1Γ(1− s)ζ(1− s)

{
sin

(
1
2πs

)

s + 2n

}

−





2s+2n−1 +
(s)2n

(2n)!
ζ(s + 2n)

s + 2n





(s 6= −2n; n ∈ N).

(2.14)

Since

(−n)k = (−1)k n!
(n− k)!

(k = 0, 1, · · · , n; n ∈ N),

so that, obviously,

(−n)n = (−1)n n! (n ∈ N),(2.15)

it is easily seen by logarithmic differentiation that

d

ds
{(s)n} = (s)n

n−1∑

j=0

1
s + j

(n ∈ N),(2.16)

so that

d

ds
{(s)2n}

∣∣∣∣
s=−2n

= −(2n)!H2n (n ∈ N),(2.17)

where Hn denotes the harmonic numbers defined by (2.3). We observe also
that the limit formula (2.12) is needed in the first sum on the left-hand side
of (2.14) only when this sum is nonzero (that is, only when n ∈ N \ {1}).
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Furthermore, by l’Hôpital’s rule once again, we have

lim
s→−2n





2s+2n−1 +
(s)2n

(2n)!
ζ(s + 2n)

s + 2n





=
[
2s+2n−1 log 2 +

d

ds
{(s)2n} · ζ(s + 2n)

(2n)!
+

(s)2n

(2n)!
ζ ′(s + 2n)

]∣∣∣∣
s=−2n

=
1
2
(H2n − log π) (n ∈ N).

(2.18)

Finally, letting s → −2n in (2.14), and making use of the limit relationships
(2.12) and (2.18), we obtain the first series representation for ζ(2n+1) asserted
by (2.4).

The series representation (2.4) is markedly different from each of the series
representations for ζ(2n+1), which were given earlier by Zhang and Williams
[33, p. 1590, Equation (3.13)] and (subsequently) by Cvijović and Klinowski
[5, p. 1265, Theorem A]. Since ζ(2k) → 1 as k →∞, the general term in the
series representation (2.4) has the order estimate:

O
(
2−2k · k−2n−1

)
(k →∞; n ∈ N),

whereas the general term in each of these earlier series representations has the
order estimate:

O
(
2−2k · k−2n

)
(k →∞; n ∈ N).

By suitably combining (2.4) and (2.6), it is fairly straightforward to obtain
the series representation:

ζ(2n + 1) =(−1)n−1 2(2π)2n

(22n − 1)(22n+1 − 1)

[
log 2
(2n)!

+
n−1∑

k=1

(−1)k(22k − 1)
(2n− 2k)!

ζ(2k + 1)
π2k

−2
∞∑

k=1

(2k − 1)!(22k − 1)
(2n + 2k)!

ζ(2k)
24k

]
(n ∈ N).

(2.19)

Now, in terms of the Bernoulli numbers Bn and the Euler polynomials En(x)
defined by the generating functions (1.14) and

2exz

ez + 1
=

∞∑

n=0

En(x)
zn

n!
(|z| < π),(2.20)
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respectively, it is known that (cf., e.g., Magnus et al. [15, p. 29])

En(0) = (−1)nEn(1) =
2(1− 2n+1)

n + 1
Bn+1 (n ∈ N),(2.21)

which, together with the identity (1.13), implies that

E2n−1(0) =
4(−1)n

(2π)2n
(2n− 1)!(22n − 1) ζ(2n) (n ∈ N).(2.22)

By appealing to the relationship (2.22), the series representation (2.19) can
immediately be put in the form:

ζ(2n + 1) =(−1)n−1 2(2π)2n

(22n − 1)(22n+1 − 1)

[
log 2
(2n)!

+
n−1∑

k=1

(−1)k(22k − 1)
(2n− 2k)!

ζ(2k + 1)
π2k

+
1
2

∞∑

k=1

(−1)k−1

(2n + 2k)!

(π

2

)2k
E2k−1(0)

]
(n ∈ N),

(2.23)

which is a slightly modified (and corrected) version of a result proven in a
significantly different way by Tsumura [30, p. 383, Theorem B].

Another interesting combination of our series representations (2.4) and
(2.6) leads us to the following variant of Tsumura’s result (2.19) or (2.23):

ζ(2n + 1) =(−1)n−1 π2n

22n+1 − 1

[
H2n − log

(
1
4π

)

(2n)!

+
n−1∑

k=1

(−1)k(22k+1 − 1)
(2n− 2k)!

ζ(2k + 1)
π2k

−4
∞∑

k=1

(2k − 1)!(22k−1 − 1)
(2n + 2k)!

ζ(2k)
24k

]
(n ∈ N),

(2.24)

which is essentially the same as the determinantal expression for ζ(2n + 1)
derived recently by Ewell [9, p. 1010, Corollary 3] by employing an entirely
different technique from ours.

Other similar combinations of the series representations (2.4) to (2.7) would
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yield the following interesting companions of Ewell’s result (2.24):

ζ(2n + 1) =(−1)n−1 2(2π)2n

(22n+1 − 1)(32n + 1)

[
H2n − log

(
1
6π

)

(2n)!

+
n−1∑

k=1

(−1)k(22k+1 − 1)
(2n− 2k)!

ζ(2k + 1)(
2
3π

)2k

−4
∞∑

k=1

(2k − 1)!(22k−1 − 1)
(2n + 2k)!

ζ(2k)
62k

]
(n ∈ N),

(2.25)

ζ(2n + 1) =(−1)n−1 2(2π)2n

(22n + 1)(32n+1 − 1)

[2H2n − log
(

π2

27

)

(2n)!

+
n−1∑

k=1

(−1)k(32k+1 − 1)
(2n− 2k)!

ζ(2k + 1)
π2k

−6
∞∑

k=1

(2k − 1)!(32k−1 − 1)
(2n + 2k)!

ζ(2k)
62k

]
(n ∈ N),

(2.26)

ζ(2n + 1) =(−1)n−1 2(2π)2n

32n+2 − 22n+3 + 1

[
H2n − log

(
8π
27

)

(2n)!

+
n−1∑

k=1

(−1)k(32k+1 − 22k+1)
(2n− 2k)!

ζ(2k + 1)
(2π)2k

−12
∞∑

k=1

(2k − 1)!(32k−1 − 22k−1)
(2n + 2k)!

ζ(2k)
62k

]
(n ∈ N),

(2.27)

ζ(2n + 1) =(−1)n−1 2(2π)2n

24n+3 + 22n+2 − 32n+2 − 1

[
H2n − log

(
27π
128

)

(2n)!

+
n−1∑

k=1

(−1)k(42k+1 − 32k+1)
(2n− 2k)!

ζ(2k + 1)
(2π)2k

−24
∞∑

k=1

(2k − 1)!(42k−1 − 32k−1)
(2n + 2k)!

ζ(2k)
122k

]
(n ∈ N),

(2.28)
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and

ζ(2n + 1) =(−1)n−1 2(2π)2n

32n+1(22n + 1)− 24n+2 + 22n − 1

[
H2n − log

(
4π
27

)

(2n)!

+
n−1∑

k=1

(−1)k(32k+1 − 22k+1)
(2n− 2k)!

ζ(2k + 1)
π2k

−12
∞∑

k=1

(2k − 1)!(32k−1 − 22k−1)
(2n + 2k)!

ζ(2k)
122k

]
(n ∈ N).

(2.29)

Next we turn to the following obvious consequence of the series identity (2.1):

∞∑

k=0

(s)2k+1

(2k + 1)!
ζ(s + 2k + 1, a) t2k+1

=
1
2
[ζ(s, a− t)− ζ(s, a + t)] (|t| < |a|).

(2.30)

By setting t = 1/m and differentiating both sides with respect to s, we find
from (2.30) that

∞∑

k=0

(s)2k+1

(2k + 1)!m2k


ζ ′(s + 2k + 1, a) + ζ(s + 2k + 1, a)

2k∑

j=0

1
s + j




=
m

2
∂

∂s

{
ζ

(
s, a− 1

m

)
− ζ

(
s, a +

1
m

)}
(m ∈ N \ {1}),

(2.31)

where we have made use of the derivative formula (2.16). In particular, when
m = 2, (2.31) immediately yields

∞∑

k=0

(s)2k+1

(2k + 1)!22k


ζ ′(s + 2k + 1, a) + ζ(s + 2k + 1, a)

2k∑

j=0

1
s + j




= −
(

a− 1
2

)−s

log
(
a− 1

2

)
.

(2.32)

By letting s → −2n−1 (n ∈ N) in the further special of this last identity (2.32)
when a = 1, Wilton [31, p. 92] obtained the following series representation for
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ζ(2n + 1) (see also Hansen [12, p. 357, Entry (54.6.9)]):

ζ(2n + 1) =(−1)n−1 π2n

[
H2n+1 − log π

(2n + 1)!

+
n−1∑

k=1

(−1)k

(2n− 2k + 1)!
ζ(2k + 1)

π2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k + 1)!

ζ(2k)
22k

]
(n ∈ N),

(2.33)

which, in view of the identity:

(2k)!
(2n + 2k)!

=
(2k − 1)!

(2n + 2k − 1)!
− 2n

(2k − 1)!
(2n + 2k)!

(n ∈ N),(2.34)

would combine with the result (2.4) to yield the series representation:

ζ(2n + 1) =(−1)n (2π)2n

n(22n+1 − 1)

[
n−1∑

k=1

(−1)k−1k

(2n− 2k)!
ζ(2k + 1)

π2k

+
∞∑

k=0

(2k)!
(2n + 2k)!

ζ(2k)
22k

]
(n ∈ N).

(2.35)

The series representation (2.35) is precisely the aforementioned main re-
sult of Cvijović and Klinowski [5, p. 1265, Theorem A]. In fact, in view of
the derivative formula (2.19), the series representation (2.35) is essentially the
same as a result given earlier by Zhang and Williams [33, p. 1590, Equation
(3.13)] (see also Zhang and Williams [33, p. 1591, Equation (3.16)], where an
obviously more complicated (asymptotic) version of (2.35) was proven simi-
larly).

Observing also that

(2k)!
(2n + 2k + 1)!

=
(2k − 1)!
(2n + 2k)!

− (2n + 1)
(2k − 1)!

(2n + 2k + 1)!
(n, k ∈ N),(2.36)

we obtain yet another series representation for ζ(2n+1) by applying (2.4) and
(2.33):

ζ(2n + 1) =(−1)n 2(2π)2n

(2n− 1)22n + 1

[
n−1∑

k=1

(−1)k−1k

(2n− 2k + 1)!
ζ(2k + 1)

π2k

+
∞∑

k=0

(2k)!
(2n + 2k + 1)!

ζ(2k)
22k

]
(n ∈ N),

(2.37)
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which provides a significantly simpler (and much more rapidly convergent)
version of the other main result of Cvijović and Klinowski [5, p. 1265, Theorem
B]:

ζ(2n + 1) = (−1)n 2(2π)2n

(2n)!

∞∑

k=0

Ωn,k
ζ(2k)
22k

(n ∈ N),(2.38)

where the coefficients Ωn,k are given explicitly as a finite sum of Bernoulli
numbers [5, p. 1265, Theorem B(i)] (see, for details, Srivastava [24, pp. 393 -
394]):

Ωn,k :=
2n∑

j=0

(
2n

j

)
B2n−j

(j + 2k + 1)(j + 1)2j
(n ∈ N; k ∈ N0).(2.39)

3. ANOTHER FAMILY OF SERIES REPRESENTATIONS

Starting once again from the identity (2.1) with (of course) a = 1, t =
±1/m, and s replaced by s + 1, and applying (2.2), we find yet another class
of series identities including, for example,

∞∑

k=1

(s + 1)2k

(2k)!
ζ(s + 2k)

22k
= (2s − 2)ζ(s)(3.1)

and

∞∑

k=1

(s + 1)2k

(2k)!
ζ(s + 2k)

m2k

=
1

2m

[
m(ms − 3)ζ(s) + (ms+1 − 1)ζ(s + 1)− 2ζ

(
s + 1,

1
m

)

−
m−2∑

j=2

{
mζ

(
s,

j

m

)
+ ζ

(
s + 1,

j

m

)}
 (m ∈ N \ {1, 2}).

(3.2)

It is the series identity (3.1) which was first applied by Zhang and Williams
[33] (and, subsequently, by Cvijović and Klinowski [5]) in order to prove two
(only seemingly different) versions of the series representation (2.35). Indeed,
by appealing to (3.2) with m = 4, we can derive the following much more
rapidly convergent series representation for ζ(2n+1) (see Srivastava [23, p. 9,



582 H. M. Srivastava

Equation (41)]):

ζ(2n + 1) =(−1)n 2(2π)2n

n(24n+1 + 22n − 1)

[
4n−1 − 1

(2n)!
B2n log 2

− 22n−1 − 1
2(2n− 1)!

ζ ′(1− 2n)− 42n−1

(2n− 1)!
ζ ′

(
1− 2n,

1
4

)

+
n−1∑

k=1

(−1)k−1k

(2n− 2k)!
ζ(2k + 1)(

1
2π

)2k
+

∞∑

k=0

(2k)!
(2n + 2k)!

ζ(2k)
42k

]
(n ∈ N),

(3.3)

where (and in what follows) a prime denotes the derivative of ζ(s) or ζ(s, a)
with respect to s.

In view of the identities (2.34) and (2.36), the results (2.6) and (3.3) would
lead us eventually to the following additional series representations for ζ(2n+1)
(see Srivastava [23, p. 10, Equations (42) and (43)]):

ζ(2n + 1) =(−1)n−1
(π

2

)2n
[

H2n+1 − log
(

1
2π

)

(2n + 1)!

+
2(4n − 1)
(2n + 2)!

B2n+2 log 2− 22n+1 − 1
(2n + 1)!

ζ ′(−2n− 1)

− 24n+3

(2n + 1)!
ζ ′

(
−2n− 1,

1
4

)
+

n−1∑

k=1

(−1)k

(2n− 2k + 1)!
ζ(2k + 1)(

1
2π

)2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k + 1)!

ζ(2k)
42k

]
(n ∈ N);

(3.4)

ζ(2n + 1) =(−1)n 4(2π)2n

n · 42n+1 − 22n + 1

[
22n+1 − 1
2 · (2n)!

ζ ′(−2n− 1)

+
42n+1

(2n)!
ζ ′

(
−2n− 1,

1
4

)
− (2n + 1)(4n − 1)

(2n + 2)!
B2n+2 log 2

+
n−1∑

k=1

(−1)k−1k

(2n− 2k + 1)!
ζ(2k + 1)(

1
2π

)2k

+
∞∑

k=0

(2k)!
(2n + 2k + 1)!

ζ(2k)
42k

]
(n ∈ N).

(3.5)

Explicit expressions for the derivatives ζ ′(−2n ± 1) and ζ ′
(−2n± 1, 1

4

)
,

occurring in the series representations (3.3), (3.4), and (3.5), can be found
and substituted into these results in order to represent ζ(2n + 1) in terms of
Bernoulli numbers and polynomials and various rapidly convergent series of
ζ-functions (see, for details, Srivastava [23, Section 3]).
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Of the four seemingly analogous results (2.6), (3.3), (3.4), and (3.5), the
infinite series in (3.4) would obviously converge most rapidly, with its general
term having the order estimate:

O
(
k−2n−2 · 4−2k

)
(k →∞; n ∈ N).

We now turn to the work of Srivastava and Tsumura [27], who derived the
following three new members of the class of the series representations (2.6)
and (3.4):

ζ(2n + 1) =(−1)n−1

(
2π

3

)2n
[

H2n+1 − log
(

2
3π

)

(2n + 1)!
+

(32n+2 − 1)π
2
√

3(2n + 2)!
B2n+2

+
(−1)n−1

√
3(2π)2n+1

ζ

(
2n + 2,

1
3

)
+

n−1∑

k=1

(−1)k

(2n− 2k + 1)!
ζ(2k + 1)(

2
3π

)2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k + 1)!

ζ(2k)
32k

]
(n ∈ N),

(3.6)

ζ(2n + 1) =(−1)n−1
(π

2

)2n
[

H2n+1 − log(1
2π)

(2n + 1)!
+

22n(22n+2 − 1)π
(2n + 2)!

B2n+2

+
(−1)n−1

2(2π)2n+1
ζ

(
2n + 2,

1
4

)
+

n−1∑

k=1

(−1)k

(2n− 2k + 1)!
ζ(2k + 1)
(1
2π)2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k + 1)!

ζ(2k)
42k

]
(n ∈ N),

(3.7)

and

ζ(2n + 1) =(−1)n−1
(π

3

)2n
[

H2n+1 − log(1
3π)

(2n + 1)!

+
22n(32n+2 − 1)π√

3(2n + 2)!
B2n+2 +

(−1)n−1

2
√

3(2π)2n+1

·
{

ζ

(
2n + 2,

1
3

)
+ ζ

(
2n + 2,

1
6

)}

+
n−1∑

k=1

(−1)k

(2n− 2k + 1)!
ζ(2k + 1)
(1
3π)2k

+2
∞∑

k=1

(2k − 1)!
(2n + 2k + 1)!

ζ(2k)
62k

]
(n ∈ N).

(3.8)
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Indeed the general terms of the infinite series occurring in these three members
[(3.6), (3.7), and (3.8)] have the order estimates:

O
(
k−2n−2 ·m−2k

)
(k →∞; n ∈ N; m = 3, 4, 6),(3.9)

which exhibit the fact that each of the three series representations (3.6), (3.7),
and (3.8) converges more rapidly than Wilton’s result (2.33) and two of them
(cf. Equations (3.7) and (3.8)) at least as rapidly as Srivastava’s result (3.4).

4. FURTHER SERIES REPRESENTATIONS

In their aforecited work on the Ray-Singer torsion and topological field
theories, Nash and O’Connor ([16] and [17]) obtained a number of remarkable
integral expressions for ζ(3), including (for example) the following result [17,
p. 1489 et seq.]:

ζ(3) =
2π2

7
log 2− 8

7

∫ π/2

0
z2 cot z dz.(4.1)

Since [7, p. 51, Equation 1.20(3)]

z cot z = −2
∞∑

k=0

ζ(2k)
( z

π

)2k
(|z| < π),(4.2)

the result (4.1) is obviously equivalent to the series representation (cf. Da̧browski
[6, p. 202]; see also Chen and Srivastava [4, p. 191, Equation (3.19)]):

ζ(3) =
2π2

7

(
log 2 +

∞∑

k=0

ζ(2k)
(k + 1)22k

)
.(4.3)

Moreover, by integrating by parts, it is easily seen that

∫ π/2

0
z2 cot z dz = −2

∫ π/2

0
z log sin z dz,(4.4)

so that the result (4.1) is equivalent also to the integral representation:

ζ(3) =
2π2

7
log 2 +

16
7

∫ π/2

0
z log sin z dz,(4.5)

which was proven in the aforementioned 1772 paper by Euler (cf., e.g., Ayoub
[2, p. 1084]).
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Next, since

i cot iz = coth z =
2

e2z − 1
+ 1 (i :=

√−1),(4.6)

by replacing z in the known expansion (4.2) by 1
2 iπz, it is easily seen that (cf.,

e.g., Koblitz [14, p. 25]; see also Erdélyi et al. [7, p. 51, Equation 1.20(1)])

πz

eπz − 1
+

πz

2
=

∞∑

k=0

(−1)k+1ζ(2k)
22k−1

z2k (|z| < 2).(4.7)

By setting z = it in (4.7), multiplying both sides by tm−1 (m ∈ N), and
then integrating the resulting equation from t = 0 to t = τ (0 < τ < 2),
Srivastava [25] derived the following series representations for ζ(2n + 1) (see
also Srivastava et al. [26]):

ζ(2n + 1) =(−1)n−1 (2π)2n

(2n)!(22n+1 − 1)

·

log 2 +

n−1∑

j=1

(−1)j

(
2n

2j

)
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)

+
∞∑

k=0

ζ(2k)
(k + n)22k

]
(n ∈ N)

(4.8)

and

ζ(2n + 1) =(−1)n−1 (2π)2n

(2n + 1)!(22n − 1)

·

log 2 +

n−1∑

j=1

(−1)j

(
2n + 1

2j

)
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)

+
∞∑

k=0

ζ(2k)(
k + n + 1

2

)
22k

]
(n ∈ N).

(4.9)

For n = 1, (4.9) immediately reduces to the following series representation
for ζ(3):

ζ(3) =
2π2

9

(
log 2 + 2

∞∑

k=0

ζ(2k)
(2k + 3)22k

)
,(4.10)

which was proven independently by (among others) Glasser [10, p. 446, Equa-
tion (12)], Zhang and Williams [33, p. 1585, Equation (2.13)], and Da̧browski



586 H. M. Srivastava

[6, p. 206] (see also Chen and Srivastava [4, p. 183, Equation (2.15)]). And
a special case of (4.8) when n = 1 yields (cf. Da̧browski [6, p. 202]; see also
Chen and Srivastava [4, p. 191, Equation (3.19)])

ζ(3) =
2π2

7

(
log 2 +

∞∑

k=0

ζ(2k)
(k + 1)22k

)
.(4.11)

In view of the familiar sum:
∞∑

k=0

ζ(2k)
(2k + 1)22k

= −1
2

log 2,(4.12)

Euler’s formula (1.11) is indeed a simple consequence of (4.11).
We remark in passing that an integral representation for ζ(2n + 1), which

is easily seen to be equivalent to the series representation (4.8), was given by
Da̧browski [6, p. 203, Equation (16)], who [6, p. 206] mentioned the existence
of (but did not fully state) the series representation (4.9) as well. The series
representation (4.8) is derived also in a forthcoming paper by Borwein et al.
(cf. [3, Equation (57)]).

By suitably combining the series occurring in (4.3), (4.10), and (4.12), it
is not difficult to derive several other series representations for ζ(3), which are
analogous to Euler’s formula (1.11). More generally, since

λk2 + µk + ν

(2k + 2n− 1)(2k + 2n)(2k + 2n + 1)

=
A

2k + 2n− 1
+

B
2k + 2n

+
C

2k + 2n + 1
,

(4.13)

where, for convenience,

A = An(λ, µ, ν) :=
1
2

[
λn2 − (λ + µ)n +

1
4
(λ + 2µ + 4ν)

]
,(4.14)

B = Bn(λ, µ, ν) := −(λn2 − µn + ν),(4.15)

and

C = Cn(λ, µ, ν) :=
1
2

[
λn2 + (λ− µ)n +

1
4
(λ− 2µ + 4ν)

]
,(4.16)

by applying (4.8), (4.9), and another result (proven by Srivastava [25, p. 341,
Equation (3.17)]):

n∑

j=1

(−1)j−1

(
2n + 1

2j

)
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)

= log 2 +
∞∑

k=0

ζ(2k)(
k + n + 1

2

)
22k

(n ∈ N0),
(4.17)
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with n replaced by n− 1, Srivastava [25] derived the following unification of a
large number of known (or new) series representations for ζ(2n + 1) (n ∈ N),
including (for example) Euler’s formula (1.11):

ζ(2n + 1) =
(−1)n−1(2π)2n

(2n)!{(22n+1 − 1)B + (2n + 1)(22n − 1)C}

·
[

1
4
λ log 2 +

n−1∑

j=1

(−1)j

(
2n− 1
2j − 2

)

·
{

2j(2j − 1)A+ [λ(4n− 1)− 2µ]nj + λn

(
n +

1
2

)}

·(2j − 2)!(22j − 1)
(2π)2j

ζ(2j + 1)

+
∞∑

k=0

(λk2 + µk + ν)ζ(2k)
(2k + 2n− 1)(k + n)(2k + 2n + 1)22k

]

(n ∈ N; λ, µ, ν ∈ C),

(4.18)

where A, B, and C are given by (4.14), (4.15), and (4.16), respectively.
Numerous other interesting series representations for ζ(2n + 1), which are

analogous to (4.8) and (4.9), were also given by Srivastava et al. [26]. For the
sake of completeness, we choose to recall their results as follows:

ζ(2n + 1) =(−1)n−1 (2π)2n

(2n + 1)!(32n − 1)

[
log 3 + 4

∞∑

k=0

ζ(2k)
(2k + 2n + 1)32k

+(2n + 1)!
n−1∑

j=1

(−1)j

(2n− 2j + 1)!

(
32j − 1
(2π)2j

)
ζ(2j + 1)

−(2n + 1)!√
3

n+1∑

j=1

(−1)j

(2n− 2j + 2)!

·2ζ(2j, 1
3)− (32j − 1)ζ(2j)

(2π)2j−1

]
(n ∈ N),

(4.19)
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ζ(2n + 1) =(−1)n−1 (2π)2n

(2n)!(32n+1 − 1)

[
log 3 + 2

∞∑

k=0

ζ(2k)
(k + n)32k

+(2n)!
n−1∑

j=1

(−1)j

(2n− 2j)!

(
32j − 1
(2π)2j

)
ζ(2j + 1)

−(2n)!√
3

n∑

j=1

(−1)j

(2n− 2j + 1)!

·2ζ(2j, 1
3)− (32j − 1)ζ(2j)

(2π)2j−1

]
(n ∈ N),

(4.20)

ζ(2n + 1) =(−1)n−1 (2π)2n

(2n + 1)!(22n − 1)

·
[
log 2 + 4

∞∑

k=0

ζ(2k)
(2k + 2n + 1)42k

+(2n + 1)!
n−1∑

j=1

(−1)j

(2n− 2j + 1)!

(
22j − 1
(2π)2j

)
ζ(2j + 1)

−(2n + 1)!
n+1∑

j=1

(−1)j

(2n− 2j + 2)!

·ζ(2j, 1
4)− 22j−1(22j − 1)ζ(2j)

(2π)2j−1

]
(n ∈ N),

(4.21)

ζ(2n + 1) =(−1)n−1 (2π)2n

(2n)!(24n+1 + 22n − 1)

·
[
log 2 + 2

∞∑

k=0

ζ(2k)
(k + n)42k

+(2n)!
n−1∑

j=1

(−1)j

(2n− 2j)!

(
22j − 1
(2π)2j

)
ζ(2j + 1)

−(2n)!
n∑

j=1

(−1)j

(2n− 2j + 1)!

·ζ(2j, 1
4)− 22j−1(22j − 1)ζ(2j)

(2π)2j−1

]
(n ∈ N),

(4.22)
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ζ(2n + 1) =(−1)n−1 (2π)2n

(22n − 1)(32n − 1)

·
[
− 4

(2n + 1)!

∞∑

k=0

ζ(2k)
(2k + 2n + 1)62k

+
n−1∑

j=1

(−1)j

(2n− 2j + 1)!

(
(22j − 1)(32j − 1)

(2π)2j

)
ζ(2j + 1)

+
1√
3

n+1∑

j=1

(−1)j

(2n− 2j + 2)!

·ζ(2j, 1
3) + ζ(2j, 1

6)− 22j−1(32j − 1)ζ(2j)
(2π)2j−1

]
(n ∈ N),

(4.23)

and

ζ(2n + 1) =(−1)n−1 (2π)2n

22n + 32n + 62n − 1

[
2

(2n)!

∞∑

k=0

ζ(2k)
(k + n)62k

−
n−1∑

j=1

(−1)j

(2n− 2j)!

(
(22j − 1)(32j − 1)

(2π)2j

)
ζ(2j + 1)

− 1√
3

n∑

j=1

(−1)j

(2n− 2j + 1)!

·ζ(2j, 1
3) + ζ(2j, 1

6)− 22j−1(32j − 1)ζ(2j)
(2π)2j−1

]
(n ∈ N).

(4.24)

It is not difficult to derive further series representations for ζ(2n + 1) (n ∈
N) by appropriately combining two or more of the results (4.8), (4.9), (4.17),
and (4.19) to (4.24). Thus we can arrive at several general results analogous
(for example) to (4.18).

5. SOME INTERESTING DEDUCTIONS

For λ = 0, the series representation (4.18) simplifies to the form:
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ζ(2n + 1)

=
(−1)n−1(2π)2n

(2n)!{(22n+1 − 1)(µn− ν)− (22n − 1)(n + 1
2)[µ(n + 1

2)− ν]}

·



n−1∑

j=1

(−1)j

(
2n− 1
2j − 2

){
j(2j − 1)

[
ν − µ

(
n− 1

2

)]
− 2µnj

}

·(2j − 2)!(22j − 1)
(2π)2j

ζ(2j + 1)

+
∞∑

k=0

(µk + ν)ζ(2k)
(2k + 2n− 1)(k + n)(2k + 2n + 1)22k

]
(n ∈ N;µ, ν ∈ C).

(5.1)

Furthermore, by setting

λ = µ = 0 and ν = 1

in (4.18) or (alternatively) by setting

µ = 0 and ν = 1

in (5.1), we immediately obtain the series representation:

ζ(2n + 1) =
(−1)n−1(2π)2n

(2n)!{22n(2n− 3)− 2n + 1}

·



n−1∑

j=1

(−1)j

(
2n− 1
2j − 2

)
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)

+2
∞∑

k=0

ζ(2k)
(2k + 2n− 1)(k + n)(2k + 2n + 1)22k

]
(n ∈ N),

(5.2)

which, in the special case when n = 1, was given by Chen and Srivastava [4,
p. 189, Equation (2.45)].

Of the three representations (4.18), (5.1), and (5.2) for ζ(2n + 1) (n ∈ N),
the infinite series in (5.2) converges most rapidly.

For various other suitable special values of the parameters λ, µ, and ν,
we can easily deduce from (4.18) and (5.1) several known (or new) series
representations for ζ(2n + 1) (n ∈ N). For example, if we set

µ = 2 and ν = 2n + 1
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in the series representation (5.1), we shall obtain

ζ(2n + 1) =(−1)n−1 (2π)2n

(2n)!(22n+1 − 1)




n−1∑

j=1

(−1)j

(
2n− 1
2j − 1

)

·(2j)!(2
2j − 1)

(2π)2j
ζ(2j + 1)

−
∞∑

k=0

ζ(2k)
(2k + 2n− 1)(k + n)22k

]
(n ∈ N),

(5.3)

which, in the special case when n = 1, immediately yields Euler’s formula
(1.11).

The following additional series representations for ζ(2n+1) (n ∈ N), which
are analogous to (5.3), can also be deduced similarly from (5.1):

ζ(2n + 1) =(−1)n−1 (2π)2n

(2n)!{(2n− 1)22n − 2n}

·

2n

n−1∑

j=1

(−1)j

(
2n− 1
2j − 2

)
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)

−
∞∑

k=0

ζ(2k)
(k + n)(2k + 2n + 1)22k

]
(n ∈ N)

(5.4)

and

ζ(2n + 1) =(−1)n−1 (2π)2n

(2n + 1)!(22n − 1)

·



n−1∑

j=1

(−1)j

(
4nj − 2j + 1

2j − 1

)(
2n− 1
2j − 2

)

· (2j)!(22j − 1)
(2π)2j

ζ(2j + 1)

−4
∞∑

k=0

ζ(2k)
(2k + 2n− 1)(2k + 2n + 1)22k

]
(n ∈ N).

(5.5)

The special case of each of the last two series representations (5.4) and
(5.5) when n = 1 was given by Zhang and Williams [33, p. 1586].

Next, with a view to further improving the rate of convergence in the
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reasonably rapidly convergent series representation (5.2), we observe that
1

(2k + 2n− 1)(2k + 2n)(2k + 2n + 1)(2k + 2n + 2)

=
1
6

(
1

2k + 2n− 1
− 1

2k + 2n + 2

)
− 1

2
1

(2k + 2n)(2k + 2n + 1)
.

(5.6)

Thus, by applying the series representations (4.17) with n replaced by n − 1,
(4.8) with n replaced by n + 1, and (5.4), we obtain

ζ(2n + 3)

=
2π2{22n+2 + n(2n− 3)(22n − 1)− 1}

(n + 1)(2n + 1)(22n+3 − 1)
ζ(2n + 1)

+(−1)n−1 (2π)2n+2

(2n + 2)!(22n+3 − 1)

·



n−1∑

j=1

(−1)j

{(
2n− 1

2j

)
−

(
2n + 2

2j

)

+6n

(
2n− 1
2j − 2

)}
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)

+12
∞∑

k=0

ζ(2k)
(2k + 2n− 1)(2k + 2n)(2k + 2n + 1)(2k + 2n + 2)22k

]

(n ∈ N),

(5.7)

where the series converges faster than that in (5.2).
In its special case when n = 1, (5.7) readily yields the following improved

version of the series representation derivable from (5.2) for n = 2 (cf. [33, p.
1590, Equation (3.14)]):

ζ(5) =
4π2

31
ζ(3) +

8π4

31

∞∑

k=0

ζ(2k)
(2k + 1)(2k + 2)(2k + 3)(2k + 4)22k

,(5.8)

in which ζ(3) can be replaced by its known value −4π2ζ ′(−2) given by (2.9)
for n = 1.

Yet another rapidly convergent series representation for ζ(2n+3) (n ∈ N),
analogous to (5.7), can be derived by means of the identity:

1
(2k + 2n)(2k + 2n + 1)(2k + 2n + 2)(2k + 2n + 3)

=
1
6

(
1

2k + 2n
− 1

2k + 2n + 3

)
− 1

2
1

(2k + 2n + 1)(2k + 2n + 2)
,

(5.9)
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together with our series representations (4.8), (4.9) with n replaced by n + 1,
and (5.3) with n replaced by n + 1. We thus obtain the series representation:

ζ(2n + 3)

=
2π2{1

3(2n + 1)(2n2 − 4n + 3)(22n − 1)− 22n+1 + 1}
(n + 1)(2n + 1){(2n− 3)22n+2 − 2n} ζ(2n + 1)

+(−1)n−1 (2π)2n+2

(2n + 2)!{(2n− 3)22n+2 − 2n}




n−1∑

j=1

(−1)j

{(
2n

2j

)

−
(

2n + 3
2j

)
+ 3

(
2n + 1
2j − 1

)}
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)

+12
∞∑

k=0

ζ(2k)
(2k + 2n)(2k + 2n + 1)(2k + 2n + 2)(2k + 2n + 3)22k

]

(n ∈ N),

(5.10)

which, in the special case when n = 1, yields

ζ(5) =
2π2

27
ζ(3)− 4π4

9

∞∑

k=0

ζ(2k)
(2k + 2)(2k + 3)(2k + 4)(2k + 5)22k

,(5.11)

where the series obviously converges faster than that derivable from (5.2) for
n = 2.

Lastly, by applying the identity:

1
2k(2k + 2n− 1)(2k + 2n)(2k + 2n + 1)

=
1

2n(2n− 1)(2n + 1)
1
2k
− 1

2(2n− 1)
1

2k + 2n− 1

+
1
2n

1
2k + 2n

− 1
2(2n + 1)

1
2k + 2n + 1

(5.12)

in conjunction with the series representations (4.17) with n replaced by n− 1,
(4.8), (4.9), and the known result (cf., e.g., [12, p. 356, Entry (54.5.3)]):

∞∑

k=1

ζ(2k)
k

t2k = log[πt csc(πt)](5.13)

with t = 1
2 , we arrive at the following series representation for ζ(2n + 1)
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(n ∈ N) :

ζ(2n + 1) =(−1)n−1 (2π)2n

2 · (2n− 1)!{n− 1− (n− 2)22n}

·
[

12n2 − 1
2n2(4n2 − 1)2

− log π

n(4n2 − 1)

−
n−1∑

j=2

(−1)j

(
2n− 2
2j − 3

)
(2j − 1)!(22j − 1)

(2π)2j
ζ(2j + 1)

+
∞∑

k=1

ζ(2k)
k(k + n)(2k + 2n− 1)(2k + 2n + 1)22k

]
(n ∈ N),

(5.14)

where we have also applied the fact that ζ(0) = −1
2 .

For n = 1, (5.14) reduces immediately to Wilton’s formula (cf. Wilton [31,
p. 92] and Hansen [12, p. 357, Entry (54.5.9)]; see also Chen and Srivastava
[4, p. 181, Equation (2.1)]):

ζ(3) =
π2

2

(
11
18
− 1

3
log π +

∞∑

k=1

ζ(2k)
k(k + 1)(2k + 1)(2k + 3)22k

)
.(5.15)

Furthermore, in its special case when n = 2, (5.14) would yield the following
interesting companion of the series representations (5.8) and (5.11):

ζ(5) =
2π4

45

(
log π − 47

60
− 30

∞∑

k=1

ζ(2k)
k(k + 2)(2k + 3)(2k + 5)22k

)
,(5.16)

which does not contain a term involving ζ(3) on the right-hand side.
By eliminating ζ(2n+3) between the results (5.7) and (5.10), we can obtain

a series representation for ζ(2n + 1) (n ∈ N), which would converge as rapidly
as the series in (5.14). We thus find that (cf. Srivastava [25, pp. 548-549,
Equation (3.47)])
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ζ(2n + 1)

= (−1)n−1 (2π)2n

(2n)!∆n




n−1∑

j=1

(−1)j

·
(
{(2n− 3)22n+2 − 2n}

{(
2n− 1

2j

)
−

(
2n + 2

2j

)

+6n

(
2n− 1
2j − 2

)}
− (22n+3 − 1)

{(
2n

2j

)
−

(
2n + 3

2j

)

+3
(

2n + 1
2j − 1

)})
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)

+12
∞∑

k=0

(ξnk + ηn) ζ(2k)
(2k + 2n− 1)(2k + 2n)(2k + 2n + 1)(2k + 2n + 2)(2k + 2n + 3)22k

]

(n ∈ N),

(5.17)

where, for convenience,

∆n :=(22n+3 − 1)
{

1
3
(2n + 1)(2n2 − 4n + 3)(22n − 1)− 22n+1 + 1

}

−{(2n− 3)22n+2 − 2n}{22n+2 + n(2n− 3)(22n − 1)− 1},
(5.18)

ξn := 2
{
(2n− 5)22n+2 − 2n + 1

}
,(5.19)

and

ηn := (4n2 − 4n− 7)22n+2 − (2n + 1)2.(5.20)

In its special case when n = 1, (5.17) yields the following (rather curious)
series representation:

ζ(3) = −6π2

23

∞∑

k=0

(98k + 121)ζ(2k)
(2k + 1)(2k + 2)(2k + 3)(2k + 4)(2k + 5)22k

,(5.21)

where the series obviously converges much more rapidly than that in each of
the celebrated results (1.11) and (1.12).
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6. SYMBOLIC AND NUMERICAL COMPUTATIONS

In this concluding section, we choose to summarize below the results of our
symbolic and numerical computations with the series in (5.21) using Mathe-
matica (Version 4.0) for Linux:

In[1] := (98k + 121)Zeta [2k]/
(
(2k + 1)(2k + 2)(2k + 3)

·(2k + 4)(2k + 5)2q(2k)
)

Out[1] =
(121 + 98k) Zeta [2k]

22k(1 + 2k)(2 + 2k)(3 + 2k)(4 + 2k)(5 + 2k)

In[2] := Sum[%, {k, 1, Infinity}] // Simplify

Out[2] =
121
240

− 23 Zeta[3]
6Pi2

In[3] := N[%]

Out[3] = 0.0372903

In[4] := Sum [N[%1] // Evaluate, {k, 1, 50}]
Out[4] = 0.0372903

In[5] := N Sum [%1 // Evaluate, {k, 1, Infinity}]
Out[5] = 0.0372903

Since ζ(0) = −1
2 , Out[2] evidently validates the series representation (5.21)

symbolically. Furthermore, our numerical computations in Out[3], Out[4], and
Out[5], together, exhibit the fact that only 50 terms (k = 1 to k = 50) of the
series in (5.21) can produce an accuracy of seven decimal places.
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