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Abstract This paper deals with first-order numerical

schemes for image restoration. These schemes rely on a

duality-based algorithm proposed in 1979 by Bermùdez and

Moreno. This is an old and forgotten algorithm that is re-

vealed wider than recent schemes (such as the Chambolle

projection algorithm) and able to improve contemporary

schemes. Total variation regularization and smoothed to-

tal variation regularization are investigated. Algorithms are

presented for such regularizations in image restoration. We

prove the convergence of all the proposed schemes. We il-

lustrate our study with numerous numerical examples. We

make some comparisons with a class of efficient algorithms

(proved to be optimal among first-order numerical schemes)

recently introduced by Y. Nesterov.

Keywords Algorithms · Duality · Total variation

regularization · Image restoration

1 Introduction

During the last 15 years, total variation regularization has

known a great success in image processing [4, 5, 20, 47]. It

has been used in many applications such as image restora-

tion, image deblurring, image zooming, image inpainting,

. . . (see [5, 20] and references therein). In all these ap-

proaches, a total variation term
∫

|Du| is to be minimized in

some way. The typical problem is the case of image restora-

tion [47] with the minimization of a functional of the type:

∫

�

|Du| +
1

2μ
‖f − u‖2 (1)
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∫

|Du| stands for the total variation of u [3], and if u is

regular it is simply
∫

�
|∇u|dx. � is the image domain, a

convex Lipschitz open set in R
2. f is the degraded image to

restore. The minimizer u of functional (1) is the restored im-

age we want to compute (see for instance [18] for a thorough

mathematical analysis of this problem). μ is a weighting pa-

rameter which controls the amount of denoising. In the case

of zero mean Gaussian noise, μ can be related to the stan-

dard deviation of the noise.

From a numerical point of view, total variation is not

straightforward to minimize, since it is not differentiable

in zero. A first approach is to regularize it, and instead to

consider a term as
∫

√

β2 + |∇u|2 dx. We will refer to this

choice as smoothed total variation regularization:

∫

�

√

β2 + |∇u|2 dx +
1

2μ
‖f − u‖2 (2)

The classical approach is then to use the associated

Euler-Lagrange equation to compute the solution. Fixed

step gradient descent [47], or later quasi-Newton methods

[1, 18, 22, 28, 41, 42] have been proposed for instance

(see [5, 20] and references therein). Iterative methods have

proved successful [9, 11, 27]. A projected-subgradient

method can be found in [24].

Ideas from duality have also been proposed: first by Chan

and Golub [21], later by A. Chambolle in [16, 17], and then

generalized in [25]. Chambolle’s projection algorithm [16]

has grown very popular, since it is the first algorithm solving

exactly problem (1) and not an approximation like (2), with

a complete proof of convergence. Moreover, it is straightfor-

ward to implement it. In [53], a very interesting combination

of the primal and dual problems has been introduced. Sec-

ond order cone programming ideas and interior point meth-

ods have proved interesting approaches [34, 35]. Recently, it
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has been shown that graph cuts based algorithms could also

be used [17, 26]. Finally, let us notice that it is shown in [51]

that Nesterov’s schemes [39] provides fast algorithms both

for minimizing functional (1) and (2).

In this paper, we revisit Chambolle’s projection algo-

rithm. We show that a modification of Chambolle projec-

tion algorithm, recently suggested in [17], can be seen as

a particular instance of a more general algorithm proposed

almost 30 years ago by Bermùdez and Moreno [10]. It is

in fact an adaptation of Uzawa algorithm [23] to problem

(1). This is the first main contribution of the paper: shedding

some new light on these projection based type algorithms.

We then apply the approach of Bermùdez and Moreno to

smoothed total variation regularization: this gives a new fast

algorithm to minimize functionals such as (2). This is the

second main contribution of the paper. We also prove the

convergence of this new scheme. Notice that Bermùdez and

Moreno algorithm has already been used for smoothed total

variation based restoration in [2], but with a different nu-

merical scheme. To test the efficiency of these algorithms,

inspired by [51], we have decided to make some compar-

isons with a general class of efficient minimization algo-

rithms introduced by Y. Nesterov in [39]. It has been proved

in [51] that they are indeed very efficient for image restora-

tion. We chose to use these type of algorithms, because as

in the case of Bermùdez and Moreno approach, they con-

sist in first order schemes and it is proved in [39] that they

are optimal (in the sense that no algorithms, using only the

values and gradients of the functional to minimize, has a bet-

ter rate of convergence [38]). We also explain how a recent

improvement of these algorithms in [40] can be applied for

image restoration. We give some numerical examples of all

the schemes introduced in this paper: this is the third main

contribution of the paper. Our experiments are in favor of

Bermùdez-Moreno approach to get a fast approximation for

smoothed total variation regularization, whereas Nesterov

schemes seem to perform better for total variation regu-

larization. Notice that to get a highly accurate solution for

smoothed total variation regularization, Nesterov’s schemes

seem also to be the best choice. However, such an accuracy

is not necessary for image restoration.

Before presenting the plan of the paper, let us emphasize

once more the main contributions of the paper:

• Shedding some new light on the Chambolle projection al-

gorithm [16], by seeing how it can be related to a particu-

lar instance of Bermùdez and Moreno algorithm [10].

• Introducing a new and efficient scheme for smoothed total

variation based image restoration.

• Presenting numerous numerical comparisons with a gen-

eral class of algorithms recently introduced by Nes-

terov [39].

The organization of the paper is the following. In Sect. 2,

we recall Bermùdez-Moreno algorithm [10]. We show how

it can be applied to total variation regularization in Sect. 3.

We also explain the relations between this scheme and

Chambolle’s projection algorithm [16], and we give some

numerical examples. In Sect. 4, we detail how Bermùdez-

Moreno algorithm can be applied to smoothed total varia-

tion based image restoration, providing a new algorithm to

solve this type of problem. We then explain in Sect. 5 how

these schemes can be used for image deblurring. Whereas

Sects. 2 to 5 are related to applications of Bermùdez and

Moreno framework, Sect. 6 concerns a different type of ap-

proach (and thus this section can be read independently).

In Sect. 6, we recall a general class of minimization algo-

rithms introduced by Y. Nesterov in [39]. These algorithms

have proved very efficient in [51] for solving image process-

ing problems. We then explain how a recent improvement of

these algorithms in [40] can be applied for image restoration.

In Sect. 7 we make some comparisons between the different

schemes presented in this paper. Appendix details the proof

of convergence of Bermùdez-Moreno algorithm.

2 Bermùdez-Moreno Algorithm

In this section, we present the algorithm proposed by

Bermùdez and Moreno in [10]. This is a general minimiza-

tion algorithm. Surprisingly, this approach seems to have

been ignored by the image processing community, although

it provides efficient algorithms for solving classical image

processing problems as we will see in the next sections of

the paper. In particular, it gives an algorithm to solve prob-

lem (1) without resorting to some smooth approximation

like problem (2). Notice that A. Chambolle’s paper [16] with

its projection algorithm to solve problem (1) (the first algo-

rithm to solve exactly (1)) was published 12 years after the

seminal work of Rudin at al. [47]. And yet, [10], which was

published 11 years before [47], already provided a similar

algorithm with a proof of convergence. We follow here the

presentation of [10] and [31] (Chap. II.3). The general min-

imization problem considered is the following (and we will

see that this framework can be used in many image process-

ing problems):

inf
z∈V

{

1

2
〈Az, z〉 − 〈g, z〉 + ψ(z)

}

(3)

with V Hilbert space, ψ a proper convex lower semi contin-

uous (l.s.c.) function defined on V :

ψ = φ oB∗ (4)

where E is a Hilbert space, B a bounded linear operator,

B : E → V , B∗ : V → E, φ : E → R. We recall that if H

is a convex function, we say that it is proper if H(x) > −∞
for all x, and if there exists x0 such that H(x0) < +∞. We

denote by dom H the set on which H(x) < +∞ [15, 31].
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Assumptions on A In all the paper, we will make the fol-

lowing assumptions on A: A is assumed to be a linear sym-

metric coercive operator, i.e. there exists α > 0 such that for

all z in V :

〈Az, z〉V ≥ α‖z‖2
V (5)

Notice that it implies in particular that A is a monotone op-

erator, i.e. 〈Ay − Az,y − z〉 ≥ 0 for all y, z ∈ V .

We will also make the following assumptions on A:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A is continuous on the finite dimensional

subspaces of V .

There exists z0 in dom ψ such that:
〈Az,z−z0〉+ψ(z)

‖z‖ → +∞ if ‖z‖ → +∞

(6)

Notice that in the next sections, all these assumptions will

indeed be satisfied. In particular, since we will only consider

operators A of the type A = γ I for some γ > 0, the techni-

cal assumption (6) will be trivially verified.

Notations We use the following notations [44]. If H is a

maximal monotone operator, we denote by Hλ its Yosida

approximation (Lλ is the resolvent of λH ):

Hλ =
I − Lλ

λ
where Lλ = (I + λH)−1 (7)

Bermùdez and Moreno derive their results for H =
∂φ − ωI . Here we choose ω = 0, and we take the operator

H as (φ being defined in (4)):

H = ∂φ (8)

Notice that since φ is assumed to be a convex proper

lower semi continuous function, its subdifferential ∂φ is a

maximal monotone operator [4, 14, 15, 44]. We had to re-

call the notions of subdifferential of a convex function, max-

imal monotone operator, and Yosida approximations, be-

cause Bermùdez and Moreno approach is based on convex

analysis. The algorithm they propose to compute the solu-

tion of (3) relies on the associated Euler-Lagrange equation

(which in this case happens to be a subdifferential inclu-

sion). See Appendix for further details.

Algorithm In [10], Bermùdez and Moreno propose to use

the following algorithm to minimize (3). y0 being arbitrary,

consider the iterative scheme:

{

um = A−1(g − Bym)

ym+1 = Hλ(B
∗um + λym)

(9)

They prove the following convergence result (Proposi-

tion 3.1 in [10]):

Theorem 1 Assume that A is a linear symmetric coercive

operator satisfying (5) and (6), and that φ is a convex proper

lower semi continuous function. Assume furthermore that:

0 <
1

λ
<

2α

‖B∗‖2
(10)

Then the sequence (um) defined by (9) is such that:

limm→+∞ um = u (for the strong topology of V ) with u so-

lution of: g −Au ∈ B∂φ(B∗u), i.e. u unique solution of (3).

Moreover, ym ⇀ y in E weak, with: y ∈ ∂φ(B∗u).

The proof of Theorem 1 is detailed in Appendix.

Relation with Forward-Backward Splitting It was pointed

out to the author by one of the anonymous reviewer that

Bermùdez-Moreno algorithm can be seen as a particular in-

stance of Forward-Backward Splitting applied to the dual

problem of (3); see also Remark 3.2 in [10]. Theorem 1 can

then be deduced as a consequence of results from e.g. [25].

One of the main interest of Theorem 1 is that it is not re-

stricted to the case when φ is a support function [31]. How-

ever, due to the importance of total variation regularization

in image processing, we first consider the case of problem

(1) in Sects. 3 and 3.4. We will consider the case of problem

(2) in Sect. 4, where φ is no longer a support function.

3 Application to Total Variation Regularization

In this section, we show how Bermùdez-Moreno algorithm

(9) can be used for total variation regularization. In Sect. 3.1,

we first consider the continuous setting to derive the link

with Bermùdez-Moreno’s work. In Sect. 3.2, we then con-

sider the discrete case and we show that Bermùdez and

Moreno algorithm consists in solving the dual problem of

(1) with a projected gradient algorithm, whose convergence

is guaranteed thanks to Theorem 1. We give some numerical

examples in Sect. 3.3. In Sect. 3.4, we explain the connec-

tion between Bermùdez-Moreno framework and other exist-

ing approaches.

3.1 Continuous Setting

Let us consider the celebrated ROF model [47]:

inf
u∈L2(�)

J (u) +
1

2μ
‖f − u‖2

L2(�)
(11)

Here J (u) is the total variation of u extended to L2(�)

(since in dimension 2, we have BV (�) ⊂ L2(�) [3]):

J (u) =
{

∫

�
|Du| if u ∈ BV (�)

+∞ otherwise
(12)
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In fact, (11) is a particular case of (3). Indeed, take V =
L2(�), E = (L2(�))2, A = 1

μ
I , g = 1

μ
f . A is of course

coercive with coercivity constant α = 1
μ

. J (u) = ψ(u) =
φ(B∗(u)), and

J (u) = sup
v∈K

〈u,divv〉 (13)

Hence φ is the support function of K (closed convex set in

(L2(�))2):

K =
{

v ∈ (L2(�))2 / divv ∈ L2(�),

‖v‖∞ ≤ 1 with |v| =
√

v2
1 + v2

2

}

(14)

We have:

φ(w) = sup
v∈K

〈w,v〉(L2(�))2 ,

(15)
B = −div = ∇∗, and B∗ = ∇

where we have used the fact that K is symmetric to 0. We

recall that 〈w,v〉(L2(�))2 = 〈w1, v1〉L2(�) + 〈w2, v2〉L2(�).

Moreover, since φ is the support function of K , then

Hλ(v) is the orthogonal projection of v
λ

onto K [10, 44],

i.e.: Hλ(v) = PK( v
λ
), where if x = (x1, x2),

PK(x) =
(

x1

max{1, |x|}
,

x2

max{1, |x|}

)

(16)

Bermùdez-Moreno algorithm (9) in this case is: u0 arbi-

trary, and:

{

um = f + μdivym

ym+1 = PK(ym + 1
λ
∇um)

(17)

Applying Theorem 1, we get the following result:

Proposition 1 If λ >
μ
2
‖B∗‖2, then the sequence (um, ym)

defined by scheme (17) is such that um → u (in L2(�)

strong) and ym ⇀ y (in L2(�)×L2(�) weak), with u solu-

tion of (11).

3.2 Discrete Setting

From now on, and until the end of the paper, we will re-

strict our attention to the discrete setting. We take here

the same notations as in [16]. The image is a two dimen-

sion vector of size N × N . We denote by X the Euclid-

ean space R
N×N , and Y = X × X. The space X will be

endowed with the inner product (u, v) =
∑

1≤i,j≤N ui,jvi,j

and the norm ‖u‖ =
√

(u,u). To define a discrete total vari-

ation, we introduce a discrete version of the gradient oper-

ator. If u ∈ X, the gradient ∇u is a vector in Y given by:

(∇u)i,j = ((∇u)1
i,j , (∇u)2

i,j ), with

(∇u)1
i,j =

{

ui+1,j − ui,j if i < N

0 if i = N
and

(∇u)2
i,j =

{

ui,j+1 − ui,j if j < N

0 if j = N

The discrete total variation of u is then defined by:

J (u) =
∑

1≤i,j≤N

|(∇u)i,j | (18)

We also introduce a discrete version of the divergence

operator. We define it by analogy with the continuous setting

by div = −∇∗ where ∇∗ is the adjoint of ∇: that is, for

every p ∈ Y and u ∈ X, (−divp,u)X = (p,∇u)Y . It is easy

to check that:

(div (p))i,j =

⎧

⎪

⎨

⎪

⎩

p1
i,j − p1

i−1,j if 1 < i < N

p1
i,j if i = 1

−p1
i−1,j if i = N

+

⎧

⎪

⎨

⎪

⎩

p2
i,j − p2

i,j−1 if 1 < j < N

p2
i,j if j = 1

−p2
i,j−1 if j = N

(19)

From now on, we will use these discrete operators. Notice

that in all the rest of the paper (except in the appendix),

we place ourself in the discrete setting. We will sometimes

use continuous notations; however, the reader has to keep in

mind that only the discrete case is considered.

We will use Meyer G space for oscillating patterns

[8, 37]:

G = {v ∈ X/∃g ∈ Y such that v = div (g)} (20)

and if v ∈ G:

‖v‖G = inf
{

‖g‖∞/v = div (g), g = (g1, g2) ∈ Y,

|gi,j | =
√

(g1
i,j )

2 + (g2
i,j )

2
}

(21)

where ‖g‖∞ = maxi,j |gi,j |. Moreover, we will use the no-

tation:

Gμ = {v ∈ G/‖v‖G ≤ μ} (22)

With these classical finite differences, we have: ‖∇u‖2 ≤
8‖u‖2. Hence ‖∇‖2 = ‖∇∗‖2 ≤ 8. And in fact it is possible

to show [16] that ‖∇‖2 = ‖∇∗‖2 = 8.

Let us consider new variables:

vm =
um

μ
, pm = ym, τ =

μ

λ
(23)
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Then we can rewrite (17) into: p0 arbitrary, and

{

vm = f
μ

+ divpm

pm+1 = PK(pm + τ∇vm)
(24)

Applying Theorem 1, we get the following result:

Proposition 2 Let X the Euclidean space R
N×N , and Y =

X × X. If τ < 1
4

, then the sequence (vm,pm) defined by

scheme (24) is such that vm → v in X and pm → p in Y

with μv solution of (11).

Notice that (24) can be written in a more compact way:

pm+1 = PK

(

pm + τ∇
(

f

μ
+ divpm

))

(25)

3.3 Numerical Examples

We show here some numerical experiments with scheme (24).

We will make some comparisons with other existing algo-

rithms in Sect. 7 and study their numerical accuracy. On

Fig. 1, we display the classical images Lenna and camera-

man that we use in this paper to illustrate our study. We also

show their noisy versions (degraded by additive zero mean

Gaussian noise with standard deviation σ = 20, the dynamic

range of the gray values of the image being [0,255]). On

Fig. 2, we show the restoration we get with (24). These

results have the classical behavior of total variation based

image restoration.

3.4 Relation with Chambolle Projection Algorithm

In [16], A. Chambolle proposes a nonlinear projection al-

gorithm to minimize the ROF model (11). This algorithm

is based on the remark that the solution of (11) is given

by u = f − PGμ(f ), where PGμ is the orthogonal projec-

tor onto Gμ (defined by (22)). [16] gives an algorithm to

compute PGμ(f ). It indeed amounts to finding:

min {‖μdiv (p) − f ‖2
X : p/|pi,j | ≤ 1 ∀i, j = 1, . . . ,N} (26)

This problem can be solved by a fixed point method: v0 =
0,p0 = 0, and

⎧

⎨

⎩

vm = f
μ

+ divpm

pm+1
i,j =

pm
i,j +τ(∇vm)i,j

1+τ |(∇vm)i,j |
(27)

It is shown in [16] that if τ < 1/8 in (27), then μvm con-

verges to the solution of (11). In practice, convergence of

(27) is generally observed as long as τ < 1/4. An extension

of this algorithm to color images has been proposed in [13].

The case of more general Hilbert space has been considered

in [7].

In [17], A. Chambolle has proposed a modification of his

projection algorithm. Instead of using (27), he suggests in

[17] to use a simple projected gradient method to compute

the projection PGμ :

⎧

⎨

⎩

vm = f
μ

+ divpm

pm+1
i,j =

pm
i,j +τ(∇vm)i,j

max{1,|pn
i,j +τ(∇vm)i,j |}

(28)

And this last equation is exactly scheme (24). In [17],

A. Chambolle has proved the stability of (28). However,

since the functional is not elliptic [45], the convergence of

the projection algorithm is not straightforward. In this paper,

the convergence of (28) provided τ < 1/4 is a consequence

of Proposition 2. See also [30] where a direct proof of con-

vergence (inspired by this work)) of a similar projection al-

gorithm is proposed. Notice that a partial proof of conver-

gence of the projection algorithm has independently been

proposed in [54]: the authors get the same type of result as

the one of Proposition 2 here, but with only the convergence

of vm in (24) (in their result, the sequence pm is not guaran-

teed to converge). Moreover, as we will see in the next sec-

tion, the general algorithm (9) proposed by Bermùdez and

Moreno [10] can be of interest to other image restoration

problems, such as smoothed total variation regularization

based ones (2). Numerical comparisons of all these schemes

((24), (27)) will be discussed in Sect. 7.2.

The fact that in the case of the ROF problem (11),

Bermùdez-Moreno algorithm (scheme (24) is just a pro-

jected gradient algorithm on the dual problem has many im-

plications:

1. Let us notice that problem (11) is of the type:

inf
u∈Q

E(u) (29)

where E is a convex Lipschitz non differentiable func-

tion, and Q a convex closed set. For this type of prob-

lem, it can be shown [38] (Theorem 3.2.1, p. 138) that no

algorithm (only using the values and gradients of E) has

a better rate of convergence than O( 1√
k
) (in term of ob-

jective function) uniformly on all problems of the form

(29), with k the number of iterations of the algorithm.

Nevertheless, it is also proved in [40] (see also [50, The-

orem 3.12, p. 36]) that the projected gradient method for

minimizing a convex Lipschitz differentiable functional

on a closed convex set is of order O( 1
k
). Scheme (24) is

therefore an algorithm of order O( 1
k
) for solving (11).

2. It is well-known that the projected gradient algorithm is

a particular instance of the proximal forward-backward

algorithm [25]. This provides a general framework for

minimizing the sum of two convex functions. The con-

vergence result of Proposition 2 could also be derived

from [25]. This approach has been used for instance in
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Fig. 1 The classical Lenna and

cameraman image, and their

noisy version (additive zero

mean Gaussian noise with

standard deviation σ = 20)

Fig. 2 Total variation

restoration of the noisy images

presented on the bottom row of

Fig. 1 with scheme (24). In both

cases, the Lagrange multiplier is

μ = 30

[52] to prove the convergence of a similar algorithm

to (24). The connection between the projected gradient

algorithm and the proximal forward-backward algorithm

is emphasized in [29, 33]. Of course, as explained at the

end of Sect. 2, the relation (in the particular case of to-

tal variation regularization) between Bermùdez-Moreno

algorithm and the proximal forward-backward algorithm

comes from the fact that in general Bermùdez-Moreno

framework is a particular instance of Forward Backward

Splitting. See also [48] where the connection is made be-

tween Forward-Backward Splitting and the Split Breg-

man algorithm recently proposed in [36].
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4 Smoothed Total Variation Regularization

In this section, we consider the following problem:

inf
u

∫

�

√

β2 + |∇u|2 dx +
1

2μ
‖f − u‖2

2 (30)

We refer to this problem as the smoothed total variation

based regularization problem. For small values of β it can

be seen as an approximation of (11). This type of regular-

ization is very common in image processing (see [5, 20] and

references therein). Compared to total variation regulariza-

tion, it has the advantage of being a smooth regularization.

And compared to stronger regularization such as ‖∇u‖2, it

has the advantage of not eroding too much the edges of the

image.

In Sect. 4.1, we explain how Bermùdez-Moreno algo-

rithm (9) can be used to solve this problem. The new algo-

rithm we propose has a fixed point iteration step. We show

the convergence of this fixed point iteration in Sect. 4.3. We

will show some numerical examples with this new scheme

in Sect. 4.1.

4.1 Presentation of the Scheme

Let us denote by

φβ(ξ) =
∫

�

√

β2 + |ξ |2 dx (31)

We have

∂φβ(ξ) =
ξ

√

β2 + |ξ |2
(32)

Let us consider the following scheme:

{

um = f + μdivym

ym+1 = I−(I+λ∂φβ )−1

λ
(∇um + λym)

(33)

Applying Theorem 1, we get:

Proposition 3 Let X the Euclidean space R
N×N , and Y =

X × X. If λ > 4μ, then the sequence (um, ym) defined by

scheme (33) is such that um → u in X and ym → y in Y

with u solution of (30).

The second equation of (33) implies:

λym+1 = ∇um + λym − (I + λ∂φβ)−1(∇um + λym) (34)

As in the total variation case, let us set:

vm =
um

μ
and τ =

μ

λ
and ym = pm (35)

(33) becomes:

{

vm = f
μ

+ divpm

(I + λ∂φβ)(λ(τ∇vm + pm − pm+1)) = λ(τ∇vm + pm)

(36)

Let us set:

wm+1 = τ∇vm + pm − pm+1 (37)

From the second line of (36), we get:

wm+1 + ∂φβ(λ(wm+1)) = τ∇vm + pm (38)

But

∂φβ(λwm+1) =
λwm+1

√

β2 + |λwm+1|2
=

wm+1

√

β2

λ2 + |wm+1|2
(39)

We thus get from (38)

wm+1 + wm+1

√

β2τ 2

μ2 + |wm+1|2
= τ∇vm + pm (40)

Using the notations γ = βτ
μ

, and Cm = τ∇vm + pm, the

previous equation becomes:

wm+1

(

1 +
1

√

γ 2 + |wm+1|2

)

= Cm (41)

(41) is easily solved with a fixed point iteration. Indeed we

have the following result:

Proposition 4 Let X the Euclidean space R
N×N , and Y =

X × X. Consider the sequence x0 = wm:

xk+1 = Cm

(

√

γ 2 + |xk|2

1 +
√

γ 2 + |xk|2

)

(42)

Then xk → wm+1 in Y as k → +∞.

The proof of this result will be detailed in Sect. 4.3.

Bermùdez and Moreno algorithm has already been used for

smoothed total variation based restoration in [2]. The au-

thors of [2] use a different approach than in this paper. To

solve (41), they take the square of both sides of (41), and

they use a Newton method to compute |wm+1|. They then

compute wm+1 with (41). But with such an approach, the au-

thors of [2] report poor numerical results. We also tried this

approach, and we have seen the same poor results as in [2].

We therefore advocate the use of the fixed point algorithm

proposed here to solve (41), which we prove to converge

without further assumption (notice that another alternative
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would be to solve directly (41) with Newton method). The

final scheme to solve (30) is thus:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

vm = f
μ

+ divpm

wm+1 = (1 + 1
√

β2τ2

μ2 +|wm+1|2
)−1(τ∇vm + pm)

pm+1 = τ∇vm + pm − wm+1

(43)

The second equation is solved with a fixed point itera-

tion (42). We will see that in practice, a single iteration is

enough, and thus the second line of (43) reduces to:

wm+1 =
(

1 +
1

√

β2τ 2

μ2 + |wm|2

)−1

(τ∇vm + pm) (44)

Applying Theorem 1, we have the following convergence

result:

Proposition 5 Let X the Euclidean space R
N×N , and Y =

X×X. If τ < 1
4

, then the sequence (vm,wm,pm) defined by

scheme (43) is such that vm → v in X, wm → w in Y , and

pm → p in Y with μv solution of (30).

4.2 Interpretation of Scheme (43)

One first needs to remember that we are interested in solv-

ing problem (30). Using the change of notation v = u/μ,

solving (30) is equivalent to solving:

inf
v

∫

√

β2

μ2
+ |∇v|2 dx +

1

2

∥

∥

∥

∥

f

μ
− v

∥

∥

∥

∥

2

(45)

The associated Euler-equation is:

0 = v −
f

μ
− div

(

∇v
√

β2

μ2 + |∇v|2

)

(46)

The most classical methods to solve this equation are the

fixed step gradient descent as in [47], and the quasi-Newton

method (which can be seen also as semi-quadratic regular-

ization) as for instance in [1, 18, 19, 22, 28, 42]. The idea of

the quasi-Newton method is to linearize the non-linear term

in the above equation, and to consider an iterative scheme of

the type:

0 = vm+1 −
f

μ
− div

(

∇vm+1

√

β2

μ2 + |∇vm|2

)

(47)

Here, we propose a different iterative scheme to solve

(46)

0 = vm −
f

μ
− divpm (48)

with

pm =
zm

√

β2

μ2 + |zm|2
(49)

In the limit, we would like to have zm → ∇v. To update pm,

we use the following equation:

pm+1 = pm + τ(∇vm − zm+1) (50)

If (pm) converges, then vm → v with (48), and zm → ∇v

with (50) as m → +∞. The system of equations (48)–(50)

can be rewritten into:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

vm = f
μ

+ divpm

zm+1
(

τ + 1
√

β2

μ2 +|zm+1|2

)

= τ∇vm + pm

pm+1 = pm + τ(∇vm − zm+1)

(51)

If we make the change of variable zm = wm/τ , then

scheme (51) is exactly (43), i.e. Bermùdez-Moreno algo-

rithm for solving problem (30).

4.3 Convergence of the Fixed Point Iteration

In this section, we detail the proof of Proposition 4. The

proof relies on Weizfeld method [19, 32, 49]. We adopt here

the presentation of [19] for Weizfeld method. Let us first

introduce some notations. We consider the following func-

tional:

F(u) =
1

2
‖u − C‖2 + ‖(γ 2 + |u|2)1/4‖2 (52)

We have:

∇F(u) = u − C +
u

√

γ 2 + |u|2
(53)

Let us define:

A(u) = I +
I

√

γ 2 + |u|2
(54)

Notice that u → A(u) is continuous, and that λmin(A(u)) ≥
1, where λmin(M) stands for the smallest eigenvalue of M .

Let us finally define:

G(v,u) = F(u) + 〈v − u,∇F(u)〉 +
1

2
〈v − u, A(u)(v − u)〉

(55)

Notice that G consists in a linearization of F . In fact, G

defines a general Weizfeld method for the problem:

inf
u

F(u) (56)
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Notice that since F is strictly convex and coercive, there

exists a unique u solution of (56), and u is the solution of:

∇F(u) = u

(

1 +
1

√

γ 2 + |u|2

)

− C = 0 (57)

We now define the iteration of Weizfeld method:

um+1 = argminvG(v,um) (58)

Since G is strictly convex and coercive, there exists a

unique um+1 solution of (58). It satisfies the Euler-Lagrange

equation:

∇F(um) + 〈A(um)(um+1 − um)〉 = 0 (59)

i.e.:

um+1

(

1 +
1

√

γ 2 + |um|2

)

= C (60)

which is precisely iteration (42).

Proposition 6 If u is fixed, then for all v we have: G(v,u)−
F(v) ≥ 0.

Proof A standard computation leads to:

G(v,u) − F(v) =
〈

u − v,
−1

2

u + v
√

γ 2 + |u|2

〉

+
∫ (

√

γ 2 + |u|2 −
√

γ 2 + |v|2
)

dx

=
∫ −1

2

|u|2 − |v|2
√

γ 2 + |u|2
dx

+
∫ (

√

γ 2 + |u|2 −
√

γ 2 + |v|2
)

dx

Using the notation a =
√

γ 2 + |u|2 and b =
√

γ 2 + |v|2, we

get:

G(v,u) − F(v) =
∫ (

−1

2

a − b

a
+ a − b

)

dx

=
∫

(a − b)2

2a
dx ≥ 0 (61)

�

The following lemma holds:

Lemma 1 We have for all m:

F(um+1) ≤ F(um) (62)

and

lim
m→+∞

‖um+1 − um‖ = 0 (63)

Proof From Proposition 6, we have F(um+1) ≤
G(um+1, um). But from (58), we get G(um+1, um) ≤
G(um, um) = F(um). We thus deduce inequality (62).

We now concentrate on proving (63). From Proposition 6,

we have:

F(um+1) ≤ G(um+1, um)

= F(um) + 〈um+1 − um,∇F(um)〉

+
1

2
〈um+1 − um, A(um)(um+1 − um)〉

= F(um) −
1

2
〈um+1 − um, A(um)(um+1 − um)〉

where we have used (59). We thus deduce that (since

λmin(A(u)) ≥ 1):

1

2
‖um+1 − um‖2 ≤

1

2
〈um+1 − um, A(um)(um+1 − um)〉

≤ F(um) − F(um+1)

We finally get that:

‖um+1 − um‖ ≤
√

2(F (um) − F(um+1)) (64)

We have just seen before that F(um) is a positive, monotone

decreasing sequence. Hence F(um) is a convergent se-

quence, and in particular F(um) − F(um+1) → 0, which

concludes the proof. �

We are now in position to prove the convergence of the

fixed point iteration as stated in Proposition 4:

Proof From (60), one sees that um is uniformly bounded.

Therefore, up to a subsequence, um converges to some v.

Moreover, from Lemma 1, we see that um+1 also converges

to v. Passing to the limit in (60), we see that v = u where u

is the unique minimizer of (56). We conclude that the whole

sequence um goes to u. �

We end this section by stating a result about the conver-

gence rate of the fixed point algorithm (42). We denote by

ũ the solution of Problem (56). We use the following nota-

tions:

γ m =
G(ũ,um) − F(ũ)

1
2
〈ũ − um, A(um)(ũ − um)〉

(65)

and

η = 1 − λmin(A(ũ)−1∇2F(ũ)) (66)

Proposition 7

1. F(um+1) − F(ũ) ≤ γ m(F (um) − F(ũ)).
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2. η < 1 and 0 ≤ γ m ≤ η, for m sufficiently large. In partic-

ular, F(um) has a linear convergence rate of at most η.

3. um is r-linearly convergent with a convergent rate of at

most
√

η.

Proof We refer the interested reader to the proof of Theorem

6.1 in [19]. �

5 Image Deconvolution

In this section, we consider the problem of image deconvolu-

tion. We explain how Bermùdez-Moreno algorithm (9) can

be applied to this problem, by using the iterative approach

of [9, 27]. In all the previous sections, we have considered

the denoising problem:

1

2μ
‖u − f ‖2 + φβ(u) (67)

with the convention that φ0(u) =
∫

�
|Du|. As probably no-

ticed by the reader, Bermùdez-Moreno scheme can be ap-

plied to functional of the type:

1

2μ
‖Au − f ‖2 + φβ(u) (68)

provided that A is an easily invertible operator. However,

in the case of image deblurring, the operator A is ill-posed,

and we can therefore not apply Bermùdez-Moreno scheme

directly. A possible alternative is to use an iterative approach

as proposed in [27] or [9]. This type of approach has grown

very popular and is now widely used to handle sparsity con-

straints [27]. Here we use the presentation of [9]. The trick

of the method lies in the following result:

Proposition 8 Let B a linear positive symmetric invertible

operator with ‖B‖ < 1. Let C = B(I − B)−1. Then, for all

u we have:

〈Bu,u〉 = inf
w

‖u − w‖2 + 〈Cw,w〉 (69)

Moreover, the minimum is reached for

w = (I + C)−1(u) = (I − B)(u) (70)

Here, we choose ν > 0 such that νA∗A < 1, and we set

B = νA∗A. Let us set:

H(u,w) =
1

2μν

(

‖u − w‖2 + 〈Cw,w〉
)

+
1

2μ

(

‖f ‖2 − 2〈Au,f 〉
)

(71)

Using Proposition 8, it is easy to see that

1

2μ
‖f − Au‖2 = inf

w
H(u,w) (72)

Let us now define

F(u,w) = H(u,w) + φβ(u) (73)

Let us consider the following algorithm:

{

wn = (I − A∗A)(un)

un+1 = argminu(
1

2μν
‖wn + νA∗f − u‖2 + φβ(u))

(74)

Setting vn = wn + νA∗f , it can be written:

{

vn = un + νA∗(f − Aun)

un+1 = argminu(
1

2μν
‖vn − u‖2 + φβ(u))

(75)

The following convergence result is shown in [9]:

Proposition 9 Let X the Euclidean space R
N×N . The

sequence (un, vn) defined by scheme (75) is such that

(un, vn) → (u, v) in X × X with (u, v − νA∗f ) minimizer

of (73).

In practice, to solve the second line of (75) we use

scheme (24) if β = 0 and scheme (33) if β > 0. Notice that

(75) can also be interpreted as a Forward-Backward splitting

algorithm [25] to solve problem (68).

Numerical Results (75) is very easy to implement. Notice

that in such an iterative approach, one of the key point is

to be able to solve each iteration efficiently, which is the

case with scheme (24) or (33). We show some numerical re-

sults on Fig. 3. As expected, total variation regularization

deconvolution gives sharper edges, whereas smoothed to-

tal variation based deconvolution preserves better the tex-

tures.

6 Nesterov Algorithms

In the previous section, we have introduced first order

numerical schemes (24) or (33) to solve image restora-

tion problems. To see how efficient they are, we have de-

cided to compare them with state of the art first order

numerical schemes. It has been shown in [51] that Nes-

terov schemes are very efficient to solve image restoration

problems: they beat all the other existing first order algo-

rithms. These schemes were recently introduced in [38,

39], and they have proved to be a significant improve-

ment in convex optimization. Nevertheless, except in the

work by P. Weiss et al. [51], Nesterov schemes have not

been applied yet in the image processing community. No-

tice that contrary to the previous sections, Sect. 6 is not
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Fig. 3 (a) and (b): degraded

images (convolved with a

Gaussian kernel with standard

deviation η = 5, and then

degraded by a zero mean

Gaussian noise with standard

deviation σ = 10), the original

images are on top row of Fig. 1;

(c) and (d): total variation

restoration with schemes (75)

and (24), with λ = 5; (e) and (f):

smoothed total variation based

restoration with schemes (75)

and (43), with λ = 5 and β = 10

related to Bermùdez and Moreno framework, and thus it

can be read independently. Let us emphasize again that

we present Nesterov algorithms because they are opti-

mal first order schemes, and because we want to compare

Bermùdez and Moreno approach with state of the art first

order schemes.

We first recall Nesterov schemes in Sect. 6.1. Moti-

vated by [51] and our first numerical results, we have

decided to implement some improvements of Nesterov

schemes recently introduced by Y. Nesterov in [40]. A first

variant is presented in Sect. 6.2 and a second one in

Sect. 6.3.
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6.1 Nesterov Schemes

In [38, 39], Y. Nesterov proposes efficient schemes to min-

imize functionals such as (11) or (30). We follow here the

presentation of [51]. We consider the following minimiza-

tion problem:

inf
u∈Q

E(u) (76)

where E is a convex Lipschitz differentiable function, and Q

a convex closed set. We denote by ũ a solution of (76). For

this type of problem, it can be shown [38] (Theorem 2.1.7,

p. 61) that no algorithm (only using the values and gradients

of E) has a better rate of convergence than O( 1
k2 ) uniformly

on all problems of the form (76) (k is the number of itera-

tions of the algorithm).

In the framework developed by Nesterov, the conver-

gence rate is in term of objective function, and not in term of

distance to the minimizer. For instance, a convergence rate

of O( 1
k2 ) for problem (76) means that |E(uk)−E(ũ)| ≤ C

k2 ,

where ũ is the solution of problem (76), and uk the approx-

imation of ũ at iteration k. Of course, without further as-

sumption, it gives no information on the convergence rate

of uk to ũ. To get such a piece of information, a coercivity

hypothesis is needed for the functional E. Nevertheless, as

shown in [51] and in the present paper, the convergence rate

obtained with Nesterov’s results are in accordance with the

behavior of the algorithms (in the sense that if a scheme is

supposed to converge as O( 1
k2 ) and a second one as O( 1

k
),

it is indeed numerically observed that the first scheme con-

verges faster to the solution).

Let us notice that the constant hidden in the conver-

gence rate in Nesterov’s theory is always proportional to L×
‖u0 − ũ‖2, where L is the Lipschitz constant of ∇E, and u0

the intial guess for the minimizer ũ.

In [39] is given an O( 1
k2 ) algorithm for solving prob-

lem (76) which we detail here-after (it is thus optimal in the

sense of Nesterov).

Let ‖.‖ be a norm and d a convex function such that there

exists σ > 0 and x0 in Q satisfying for all x the inequality:

d(x) ≥ σ
2
‖x − x0‖2.

1. Set k = 0, v0 = 0, x0 ∈ Q, L Lipschitz constant of ∇E.

2. Set k = k + 1, and compute ηk = ∇E(xk).

3. Set yk = argminy∈Q(〈ηk, y − xk〉 + 1
2
L‖y − xk‖2).

4. Set vk = vk−1 + k+1
2

ηk .

5. Set zk = argminy∈Q(L
σ
d(x) + 〈vk, z〉).

6. Set xk+1 = 2
k+3

zk + k+1
k+3

yk .

Proposition 10 [39] The previous algorithm ensures that:

0 ≤ E(yk) − E(ũ) ≤
4Ld(ũ)

σ (k + 1)(k + 2)
(77)

The idea behind Nesterov’s scheme is similar to the one

of the conjugate gradient algorithm [23]: the direction of

descent is at step k + 1 is computed by taken into ac-

count the information of the complete sequence of gradient

(∇E(x0), . . . ,∇E(xk)), and not only ∇E(xk).

Primal Nesterov Algorithm For β > 0, we remind the

reader that we set φβ(u) =
∫

√

β2 + |∇u|2 dx. Nesterov al-

gorithm can be used to solve the following problem:

inf
u∈Kα

φβ(f + u) (78)

where Kα = {x ∈ L2/‖x‖2 ≤ α}.
This problem is equivalent to problem (30) (see [18] for

a complete analysis). The advantage of formulation (78) is

that Nesterov’s scheme can directly be applied. See [51] (Al-

gorithm 2, p. 12) for a detailed implementation of this algo-

rithm. We will refer to it as the primal Nesterov algorithm.

We just give here the sketch of the algorithm (PKα is the

orthogonal projection onto Kα):

1. Set k = 0, v0 = 0, x0 = 0, L = ‖div‖2/β = 8/β .

2. Set k = k+1, and compute ηk = −div (
∇(xk+f )√

β2+|∇(xk+f )|2
).

3. Set yk = PKα (xk − ηk/L), with Kα = {x ∈ L2/‖x‖2

≤ α}.
4. Set vk = vk−1 + k+1

2
ηk .

5. Set zk = PKα (−vk/L).

6. Set xk+1 = 2
k+3

zk + k+1
k+3

yk .

7. The output of the algorithm is: u = ylim + f .

Dual Nesterov Algorithm Of course, due to the non-

differentiability in zero of the total variation, Nesterov

scheme cannot be applied directly to problem (11). The ba-

sic idea is to apply Nesterov’s scheme to the dual version

of (11), that is to: inff −u∈Gμ
1
2
‖u‖2, where Gμ is given by

(22), i.e.:

inf
q∈K

E(q) (79)

where E(q) = 1
2
‖f − μdivq‖2 and K = {x ∈ L2 × L2/‖x‖

≤ 1}. If we denote by ũ the solution of (11), and by q̃ the

solution of (79), we have ũ = f − μdiv q̃ .

See [51] (Algorithm 3, p. 20) for a detailed implementa-

tion of this algorithm. We will refer to it as the dual Nesterov

algorithm. We just give here the sketch of the algorithm (PK

is the orthogonal projection onto K):

1. Set k = 0, v0 = 0, x0 = 0, L = μ‖div‖2 = 8μ.

2. Set k = k + 1, and compute ηk = ∇(f − μdiv (xk)).

3. Set yk = PK(xk − ηk/L), with K = {x ∈ L2 × L2/‖x‖
≤ 1}.

4. Set vk = vk−1 + k+1
2

ηk .

5. Set zk = PK(−vk/L).
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6. Set xk+1 = 2
k+3

zk + k+1
k+3

yk .

7. The output of the algorithm is: u = f − μdiv (ylim).

Notice that in the dual Nesterov algorithm, the set K is in-

cluded in L2 × L2; whereas in the case of the primal Nes-

terov algorithm, the set Kα is embedded in L2.

In [51], very good numerical results are reported both for

the primal and the dual Nesterov algorithms (much better

than steepest gradient descent for instance). We have there-

fore decided to use them as reference in the comparisons

presented here-after. We remind the reader that for the pro-

jected gradient scheme (24) for solving (11), we mention

in Sect. 3.4 that the convergence rate is O( 1
k
). This was al-

ready an improvement over the O( 1√
k
) bound for non dif-

ferentiable function [38] (Theorem 3.2.1, p. 138). With the

dual Nesterov algorithm, we have now a O( 1
k2 ) algorithm

for solving problem (11).

6.2 Accelerated Nesterov Algorithm

In [40], Y. Nesterov proposes a way to speed up the mini-

mization algorithms introduced in [38]. The idea is to im-

prove the estimation of the Lipschitz constant of the func-

tional to minimize (in view of equation (77)). In this sub-

section, we show how it can be used for image restoration.

Consider the general minimization problem

inf
u

E(u) + ψ(u) (80)

We set φ(u) = E(u) + ψ(u), and:

ψ(u) = χQ(u) =
{

0 if u ∈ Q

+∞ otherwise
(81)

Problem (80) is therefore the same as (76). As previously,

E is a convex Lipschitz differentiable function, and Q a con-

vex closed set. We denote by ũ a solution of (80). We set:

TL(y) = argminx∈QmL(y, x) (82)

with

mL(y, x) = E(y) + 〈∇E(y), x − y〉 +
L

2
‖x − y‖2 + ψ(x)

(83)

Moreover, it is shown in [40] that

φ′(TL(y)) = L(y − TL(y)) + ∇E(TL(y)) − ∇E(y) (84)

In [40] is given an efficient algorithm for solving problem

(80):

• Set k = 0, A0 = 0, v0 = 0, x0 ∈ Q, L0 = L Lipschitz

constant of ∇E, ψ0(x) = 1
2
‖x − x0‖2. Set γu > 1 and

γd ≥ 1.

• Set L = Lk .

REPEAT: Set a = 1+
√

1+4AkL

2L
.

Set y = Akxk+avk

Ak+a
, and compute TL(y).

If: 〈φ′(TL(y)), y − TL(y)〉 < 1
2L

‖φ′(TL(y))‖2
2,

then L = γuL.

UNTIL: 〈φ′(TL(y)), y − TL(y)〉 ≥ 1
2L

‖φ′(TL(y))‖2
2

DEFINE yk = y, Mk = L, ak+1 = a, Ak+1 = Ak + ak+1,

Lk+1 = Mk/γd , xk+1 = TMk
(yk),

ψk+1(x) = ψk(x) + ak+1(E(xk+1)

+〈∇E(xk+1), x − xk+1〉 + ψ(x)),

vk+1 = argminxψk+1(x).

Output: the output of the algorithm is u = xlim.

The following convergence result is shown in [40]:

Proposition 11 [40] Let LE the Lipschitz constant of ∇E.

Assume that 0 < L0 ≤ LE . Then the previous algorithm en-

sures that:

0 ≤ φ(xk) − φ(ũ) ≤
4γuLE‖ũ − x0‖2

k2
(85)

where we recall that φ(u) = E(u) + ψ(u).

To apply this new algorithm, the only points to check are

how to solve (82) and how to compute vk . This is explained

by the two following lemmas.

Lemma 2 The solution of problem (82) is given by:

TL(y) = PQ

(

y −
1

L
∇E(y)

)

(86)

with PQ orthogonal projection onto Q.

Proof It is easy to see that:

mL(y, x) = C(y) +
L

2

∥

∥

∥

∥

x −
(

y −
1

L
∇E(y)

)
∥

∥

∥

∥

2

2

+ ψ(x)

(87)

where C(y) is a function depending only on y. The result of

the lemma follows from the fact that ψ = χQ. �

Lemma 3 vk = argminxψk(x) is given by

vk = PQ

(

x0 −
k

∑

p=1

ap∇E(xp)

)

(88)

with PQ orthogonal projection onto Q.

Proof Remembering that ψ0(x) = 1
2
‖x − x0‖2, it is easy to

see that:

ψk(x)=C(k)+
k

∑

p=1

apψ(x)+
1

2

∥

∥

∥

∥

x − x0+
k

∑

p=1

ap∇E(xp)

∥

∥

∥

∥

2

2
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(89)

where C(k) is a function depending only on k. The result of

the lemma follows from the fact that ψ = χQ. �

In practice, as proposed in [40], we use γu = γd = 2.

Application to Problem (78) The above algorithm can di-

rectly be applied to (78), with

E(u) = φβ(u + f ) =
∫

√

β2 + |∇(f + u)|2 dx and

ψ(u) = χKα (u) (90)

where Kα = {x ∈ L2/‖x‖2 ≤ α}. Of course, one has:

∇E(u) = −div (
∇(f +u)√

β2+|∇(f +u)|2
).

One just has to set x0 = 0, L = ‖div‖2/β = 8/β . The

solution is given by f +xlim. Notice that here, the projection

onto Q = Kα is straightforward: PKα (x) = αx
max{α,‖x‖2} .

We will refer to this algorithm as the accelerated primal

Nesterov algorithm.

Application to Problem (11) The basic idea is to apply the

accelerated Nesterov scheme to the dual version of (11), that

is to (79)), i.e.:

inf
q

E(q) + ψ(q) (91)

with E(q) = 1
2
‖f − μdivq‖2

2 and ψ(q) = χK(q) with K =
{g ∈ L2 ×L2,

√

g2
1 + g2

2 ≤ 1}. We therefore have: ∇E(q) =
∇(f − μdivq).

One just has to set u0 = 0, L = μ‖div‖2 = 8μ. The

solution is given by f − μdivxlim. Notice that here, the

projection onto Q = K is straightforward: PK(x1, x2) =
1

max{1,‖x‖} (x1, x2)), with x = (x1, x2) and ‖x‖ =
√

x2
1 + x2

2 .

We will refer to this algorithm as the accelerated dual

Nesterov algorithm.

6.3 Variant for the Accelerated Nesterov Algorithm

In [40], Y. Nesterov proposes in fact a more general algo-

rithm than the one we have presented in Sect. 6.2. We show

here how it can be used to solve image restoration problems.

We still consider the general minimization problem

inf
u

E(u) + ψ(u) (92)

But this time ψ is assumed to be a strongly convex function

with parameter μψ > 0: in the case when ψ is C2, it means

that the smallest eigenvalue of ∇2ψ is μψ > 0.

We set φ(u) = E(u) + ψ(u). As previously, E is a con-

vex Lipschitz differentiable function We denote by ũ a solu-

tion of (92). Moreover, in [40] is given an efficient algorithm

for solving problem (92): this is exactly the algorithm pre-

sented in Sect. 6.2, the only difference being that in the step

REPEAT, instead of setting a = 1+
√

1+4AkL

2L
, we set:

a =
b +

√
b2 + 4Akb

2
with b =

1 + μψAk

L
(93)

The following convergence result is shown in [40]:

Proposition 12 [40] Let LE the Lipschitz constant of E,

and μψ the convexity parameter of ψ . Assume that 0 <

L0 ≤ LE . Then the previous algorithm ensures that (85) still

holds. Moreover, we also have:

0 ≤ φ(xk) − φ(ũ)

≤ γuLE‖ũ − x0‖2

(

1 +
√

μψ

8γuLE

)−2(k−1)

(94)

Notice that (84) still holds in this case. To apply this new

algorithm, the only points to check are how to solve (82) and

how to compute vk . We particularize the problem, and we

consider the restoration problem (30), i.e. in (92) we take:

E(u) = φβ(u + f ) =
∫

√

β2 + |∇(f + u)|2 dx and

ψ(u) =
1

2μ
‖u‖2 (95)

Notice that we have:

LE = ‖div‖2/β = 8/β and μψ =
1

μ
(96)

The two following lemmas hold.

Lemma 4 The solution of problem (82) is given by:

TL(y) =
Ly − ∇E(y)

L + 1
μ

(97)

Proof It is easy to see that:

∇x(mL(y, x)) = ∇E(y) + L(x − y) +
x

μ
(98)

�

Lemma 5 vk = argminxψk(x) is given by:

vk =
1

1 +
∑k

p=1 ap

μ

(

x0 −
k

∑

p=1

ap∇E(xp)

)

(99)

Proof Remembering that ψ0(x) = 1
2
‖x − x0‖2, it is easy to

see that:
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ψk(x) =
1

2
‖x − x0‖2 +

k
∑

p=1

apψ(x) +
k

∑

p=1

ap(E(xp)

+〈∇E(xp), x − xp〉) (100)

�

In the next section, we will refer to this algorithm as

the variant of the accelerated primal Nesterov algorithm. In

practice, we take x0 = 0, γu = 2 and γd = 2.

7 Numerical Examples

In this section, we present some numerical examples with

the schemes introduced in this paper. See also [6] for more

numerical results. Notice that all the experiments presented

in this paper were run with Matlab, on a laptop with a

processor at 2 GHz and 2 Gb of RAM. In all the presented al-

gorithms, the cost of one iteration of the algorithm is propor-

tional to the size of the image. This cost is around 0.03 sec-

ond for a 256×256 image with either the fixed point algo-

rithm (43), the projected gradient algorithm (24), or Cham-

bolle projection algorithm (27). The primal or dual Nes-

terov algorithms (Sect. 6.1) have a cost per iteration which

is twice higher. This cost per iteration is between 8 and 10

times higher with the different variants of Nesterov algo-

rithms (Sects. 6.2 and 6.3).

In Sect. 7.1, we consider the case of smoothed total varia-

tion regularization, and in Sect. 7.2 we are interested in total

variation regularization.

7.1 Smoothed Total Variation Regularization

Restoration Results Obtained with the New Scheme (43)

We illustrate here the efficiency of scheme (43) (based on

Bermùdez and Moreno framework) to solve problem (30).

This new scheme (43) has the advantages of being simple

and stable. Moreover, it seems quite fast (less then 2 seconds

for a 256×256 image to get a normalized L2 error smaller

than 0.5 with β = 1, the images having their values in the

range [0;255]). On Fig. 4, we show the restoration results

we get on the noisy images of Fig. 1. The curvature pa-

rameter β of (43) is fixed to 10. As expected, the textures

are better preserved with this model than with total variation

regularization (compare with Fig. 2), but the edges are not

as sharp.

Influence of the Number of Iterations in the Fixed Point Loop

(42) We now want to see the speed of convergence of (43),

and how it depends on the number of iterations in loop (42),

and on the parameter β . For different values of β , we com-

pute an ideal image by running 10 000 iterations of (43) with

500 iterations for the fixed point (42). We can then compute

at each iteration the L2 error between a computed image

with (43) and the target ideal image. On Fig. 5, we show the

behavior of the algorithm with respect to the number of iter-

ations for the fixed point iteration, for different values of β .

Clearly, it shows that 1 iteration is a very good choice: this

will be our choice until the end of the paper. It is also clear

that the convergence of (43) is much faster for large values

of β .

Notice that there exist some theoretical convergence re-

sults about iterative schemes using an inner fixed-point loop.

For instance, it is shown in [12] that one fixed-point iteration

of the method of [46] is enough to get convergence (for the

algorithm of [46]). This confirms the numerical observation

made in this paper that in the inner fixed-point loop, one it-

eration may be sufficient to get convergence.

Comparisons with Nesterov Schemes On Fig. 6, we com-

pare our new algorithm (43) with the primal Nesterov algo-

rithm (Sect. 6.1), the accelerated primal Nesterov algorithm

(Sect. 6.2), and the variant of the accelerated primal Nes-

terov algorithm (Sect. 6.3). Notice that since algorithm (43)

uses a fixed point iteration, we refer to it as fixed point al-

gorithm in the caption of Fig. 6. The convergence speed of

these three last algorithms depends on the Lipschitz con-

stant of the energy to minimize: the smaller this constant,

the faster the method. It thus means here the larger β , the

faster the method. Notice that here the images we consider

have their range in [0,255] (while for instance in [51] the

images are normalized in [0,1]: this has some impact on the

values β proposed here).

To make comparisons, we compute the L2-norm of the

difference between the original image and the ideal image

(obtained by running (43) with 10 000 iterations). We then

set this L2-norm as the constraint in the primal Nesterov

algorithm and the accelerated primal Nesterov algorithm.

It is to be noticed that such a choice makes a small bias in

favor of our scheme (43). However, the obtained results are

sufficiently convincing to forget this bias.

It can be seen that, the larger β , the faster the algorithms.

For large values of β , all the algorithms are fast. However,

when β decreases to zero, then scheme (43) seems to bring a

significant increase in speed of convergence towards a good

approximation. It seems indeed that (43) can lead to a good

approximation of the minimizer with few iterations. How-

ever, when one is interested in getting a very accurate so-

lution, then the variant of the accelerated primal Nesterov

algorithm seems to be the best choice. This is in accordance

with the result of Proposition 12. Notice that the cost per

iteration of scheme (43) is twice lower than for the primal

Nesterov algorithm, while the accelerated primal Nesterov

algorithm and its variant are between 4 and 5 times slower

per iteration than the primal Nesterov algorithm.
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Fig. 4 Smoothed total variation

based restoration of the noisy

images presented on the bottom

row of Fig. 1 with scheme (43)

with β = 10. In both cases, the

Lagrange multiplier is μ = 30

Fig. 5 Comparisons of the number of iterations for the fixed point

loop (41) in algorithm (43): 1 or 200. The L2 error is given with re-

spect to the number of iterations of (43) (vertical logarithmic scale).

Graph (a) is with β = 0.1: after 60 iterations of (43), both errors are

the same. Graph (b) is with β = 10: after 10 iterations of (43), both

errors are the same. We thus advocate to use only 1 iteration for the

fixed point iteration (42)

Notice that the quality of the restored image obtained

with scheme (43) after a few iterations (10 iterations for

β = 25, 20 iterations for β = 10, 80 iterations for β = 1,

200 iterations for β = 0.1) is visually very good: the nor-

malized L2 error is then smaller than 0.3. For a restoration

purpose, there is no need for the accuracy of the variant of

the accelerated primal Nesterov algorithm. It is more im-

portant to have a fast approximation than a slow and very

accurate solution.

7.2 Total Variation Regularization

In this section, we consider problem (11). We want to com-

pare five different algorithms. The first one is the projec-

tion algorithm of [16]: we refer to it as Chambolle projec-

tion algorithm. We use τ = 0.249 in (27). The second one is

the modification of this algorithm as proposed in [17], and

which we proved to be Bermùdez-Moreno algorithm (24) in

the case of problem (11): since it is an adaptation of Uzawa

method [23] to problem (11), we refer to it as Uzawa algo-

rithm. We use τ = 0.249 in (24). The third algorithm we use

here is the dual Nesterov algorithm presented in Sect. 6.1, as

proposed in [51]. Motivated by the results of [39] and [51],

we use it as the reference algorithm. The fourth algorithm

we use here is the accelerated dual Nesterov algorithm of

[40] presented in Sect. 6.2. The fifth algorithm we use is our

new scheme (43). Since it uses a fixed point algorithm, we

refer to it as fixed point method.

For a given image and a given regularization parameter

μ, a reference ideal image is computed by running 10 000
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Fig. 6 Speed of convergence (smoothed total variation regularization):

the L2 error is given with respect to the number of iterations (vertical

logarithmic scale). Graph (a) and (b) is with β = 0.1; Graph (c) and (d)

with β = 1; Graph (e) with β = 10; Graph (f) with β = 25. The range

of the image is between 0 and 255. On graphs (a), (c), (d), (e) and

(f), from top to bottom are the speed of convergence of the fixed point

based algorithm (43), the speed of the primal Nesterov algorithm, the

speed of the accelerated primal Nesterov algorithm, the speed of the

variant of the accelerated primal Nesterov algorithm. On graphs (b)

and (d), the primal Nesterov algorithm is not shown. Notice that the

time for 1 iteration of the primal Nesterov algorithm is around twice

the time for 1 iteration of the fixed point based algorithm (43). The ac-

celerated primal Nesterov algorithm and its variant are between 4 and

5 times slower per iteration than the primal Nesterov algorithm. To get

a fast approximation, the fixed point based algorithm (43) seems to be

the best choice (the accuracy is good enough for image restoration). To

get a highly accurate solution, the variant of the accelerated Nesterov

scheme seems to be the most efficient
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iterations with the dual Nesterov algorithm. Here, the bias

will therefore be in favor of the dual Nesterov algorithm.

However, we think that the results are convincing enough to

forget this bias.

A convergence speed result is presented on Fig. 7: we

give the L2-norm of ũ − un, where un is the computed im-

age at iteration n, and ũ the ideal image to obtain. As can

be seen on Fig. 7, the dual Nesterov algorithm is faster then

Uzawa algorithm, which is itself faster than Chambolle pro-

jection algorithm. The accelerated dual Nesterov algorithm

seems to be the best choice to get a highly accurate solution

(50 iterations to get a normalized L2 error of 0.3). How-

ever, 1 iteration with the accelerated dual Nesterov algo-

rithm is around 4 times slower than with the dual Nesterov

algorithm: the dual Nesterov algorithm seems thus a good

compromise when one is interested in getting a very good

approximation. Nevertheless, 1 iteration with the dual Nes-

terov algorithm is around 2 times slower than with Uzawa,

Chambolle, or scheme (43) (while all three have the same

computation time per iteration). For typical image restora-

tion problems (with Gaussian noise), (24) seems 30% faster

then (27) (for instance, it takes 70 iterations for (24) to get

a normalized L2 error of 1 while it takes 110 iterations for

(27) to get the same accuracy). Algorithm (43) seems to be a

good alternative when one is only interested in getting an ap-

proximation with a small number of iterations; for instance,

scheme (43) is the fastest (in term of computation time) to

get a normalized L2 error of 2 (around 30 iterations).

In [51], the authors explain that the dual Nesterov al-

gorithm is much faster then the projected gradient method

(24) (Uzawa algorithm) for total variation regularization. We

confirm that it is indeed much faster when one is interested

in computing an accurate solution. Notice also that in [51],

the comparison criterion used is the value of the total vari-

ation of the computed image. This is indeed the quantity

which is controlled in Nesterov’s approach for solving (11)

(see Proposition 10). Here, the criterion is the L2 difference

of the computed solution for some iteration with the ideal

solution. Figure 7 is surely in favor of the approach devel-

oped in [51]. However, the difference during the first iter-

ations is not that large, and thus the projected gradient al-

gorithm (24) (Uzawa algorithm) can still be considered as

a good method when one is only interested in getting a fast

approximation of the solution.

Dual Nesterov Algorithm for Solving (30) In view of

Fig. 7, one should be tempted to use the dual Nesterov algo-

rithm for solving (30). It is easy to compute the dual prob-

lem. If we denote by ũ the solution of (30), then we have

ũ = f − μdiv p̃ with p̃ solution of:

inf
p∈K

1

2μ
‖μdivp − f ‖2 − β

∫
√

1 − |p|2 dx (101)

Fig. 7 Speed of convergence (total variation regularization): the L2

norm of the error is given at each iteration (vertical logarithmic scale).

(a) gives the speed of convergence for iterations 1 to 600, and (b) for

iterations 100 to 600. On graph (a), from top to bottom are the speed

of convergence of the fixed point based algorithm (43) with β = 0.1,

the speed of convergence of Chambolle projection algorithm (27) with

τ = 0.249, the speed of Uzawa scheme (24) with τ = 0.249, the speed

of the dual Nesterov algorithm, and the speed of the accelerated dual

Nesterov algorithm. On graph (b) are only shown the dual Nesterov

algorithm, and the accelerated dual Nesterov algorithm. 1 iteration

with the accelerated dual Nesterov algorithm is around 4 times slower

than with the dual Nesterov algorithm. But 1 iteration with the dual

Nesterov algorithm is itself around 2 times slower than with Uzawa,

Chambolle, or scheme (43) (while all three have the same computation

time per iteration). To get a highly accurate solution, the accelerated

dual Nesterov algorithm seems to be the best choice. However, the dual

Nesterov algorithm seems to be the best compromise when one is only

interested in getting a good approximation (which is the case for image

restoration)

where K = {p ∈ L2 ×L2 / ‖p‖∞ ≤ 1}. However, the gradi-

ent of the functional in (101) is not Lipschitz, and we there-

fore cannot use directly the dual Nesterov algorithm.
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Appendix: Proof of Convergence of Bermùdez-Moreno

Algorithm

In this section, we follow [10] and [31] (Chap. II.3). Our

goal is to give the reader some intuition on why the result

of Theorem 1 holds. We remind the reader that we use the

notations: Hλ = I−Lλ

λ
, with Lλ = (I + λH)−1 and H = ∂φ

with φ proper convex lower semi continuous function. We

will use the next lemma:

Lemma 6

1

λ2

∥

∥Lλ(v
1) − Lλ(v

2)
∥

∥

2 +
∥

∥Hλ(v
1) − Hλ(v

2)
∥

∥

2

≤
1

λ2
‖v1 − v2‖2 (102)

Proof This is an immediate consequence of defini-

tions (7). �

Problem (3) is related to:

∀z, 〈Au,z − u〉 + ψ(z) − ψ(u) ≥ 〈g, z − u〉 (103)

The relation is given by the next lemma (whose proof is

straightforward (see [31, Proposition 2.2, p. 37]):

Lemma 7 u is solution of (103) if and only if u is solution

of (3).

We remind the reader that B∂φ(B∗u) = ∂ψ(u) (see [31,

Proposition 5.7, p. 27]). Problem (103) is related to the sub-

differential inclusion:

g − Au ∈ B∂φ(B∗u) (104)

The relation is given by the next proposition:

Proposition 13 u is solution of (104) if and only if u is so-

lution of (103).

Proof The fact that u solution of (104) implies that u so-

lution of (103) is a direct consequence of the definition of

the subdifferential of a convex function [31]. The recipro-

cal result is more complicated, and we refer the reader to

Chap. II.3 of [31] for a detailed proof. �

We will make use of the next lemma (Lemma 2.1 in [10]):

Lemma 8 H maximal monotone operator. Then the two fol-

lowing conditions are equivalent:

(i) y ∈ H(v)

(ii) y = Hλ(v + λy)

An immediate consequence of the previous lemma is the

following result:

Proposition 14 u is a solution of (104) if and only if (u, y)

is a solution of:

{

Au = g − By

y = Hλ(B
∗u + λy)

(105)

We are now in position to prove Theorem 1.

Proof From (102), we get:

1

λ2
‖Lλ(B

∗u + λy) − Lλ(B
∗um + λym)‖2

E + ‖y − ym+1‖2
E

≤
1

λ2
‖B∗(u − um) + λ(y − ym)‖2

E

= ‖y − ym‖2
E +

2

λ
〈B∗(u − um), y − ym〉E

+
1

λ2
‖B∗(u − um)‖2

E (106)

But if we subtract the first line of (9) to the first line of

(105), we have: A(u − um) = B(ym − y). Taking the inner

product with (u − um), we deduce:

〈A(u − um), u − um〉 = 〈B(ym − y),u − um〉

= 〈ym − y,B∗(u − um)〉 (107)

Hence:

〈y − ym,B∗(u − um)〉 = 〈−A(u − um), u − um〉

≤ −α‖u − um‖2
E

≤
−α

‖B∗‖2
‖B∗(u − um)‖2

E (108)

We now deduce from (106) that:

1

λ2
‖Lλ(B

∗u + λy) − Lλ(B
∗um + λym)‖2

E + ‖y − ym+1‖2
E

≤
1

λ

(

1

λ
−

2α

‖B∗‖2

)

‖B∗(u − um)‖2 + ‖y − ym‖2
E (109)

We eventually get that, since 0 < 1
λ

< 2α

‖B∗‖2 , as long as

um �= u: ‖y − ym+1‖E < ‖y − ym‖E . We deduce that

‖y − ym‖2
E is a convergent sequence in R. Thus passing to
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the limit in (109), we get: limm→+∞ ‖B∗(u − um)‖E = 0.

Using (108), we eventually get that um → u.

There remains to prove that ym also converges. We

first remark that now, passing to the limit in (109), we

get: Lλ(B
∗um + λym) → Lλ(B

∗u + λy). But since Lλ =
I − λHλ, we get with the second line of (105) that:

Lλ(B
∗u + λy) = B∗u. From the second line of (9), we get:

ym+1 = Hλ(B
∗um + λym)

= ym +
1

λ
(B∗um − Lλ(B

∗um + λym)) (110)

Passing to the limit, we eventually get that: limm→+∞{ym+1

−ym} = 0. Now we can conclude that ym ⇀ y in E weak,

since the application

v ∈ E → Hλ(B
∗u(v) + λv) (111)

with u(v) solution of: Au = g − Bv, is non expansive (see

[43, Corollary 4, p. 199]). �
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