
Kutbi et al. Journal of Inequalities and Applications 2014, 2014:126
http://www.journalofinequalitiesandapplications.com/content/2014/1/126

RESEARCH Open Access

Some fixed point results for multi-valued
mappings in b-metric spaces
Marwan Amin Kutbi1, Erdal Karapınar2,3*, Jamshaid Ahmad4 and Akbar Azam4

*Correspondence:
erdalkarapinar@yahoo.com;
erdal.karapinar@atilim.edu.tr
2Department of Mathematics,
Atilim University, İncek, Ankara
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Abstract
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1 Introduction and preliminaries
The notion of metric space, introduced by Fréchet in , is one of the cornerstones of
not only mathematics but also several quantitative sciences. Due to its importance and
application potential, this notion has been extended, improved and generalized in many
different ways. An incomplete list of the results of such an attempt is the following: quasi-
metric space, symmetric space, partial metric space, cone metric space, G-metric space,
probabilistic metric space, fuzzy metric space and so on.
In this paper, we pay attention to the concept of b-metric space. The notion of b-metric

space was introduced by Czerwik [] in  to extend the notion of metric space. In this
interesting paper, Czerwik [] observed a characterization of the celebrated Banach fixed
point theorem [] in the context of complete b-metric spaces. Following this pioneer paper,
several authors have devoted their attention to research the properties of a b-metric space
and have reported the existence and uniqueness of fixed points of various operators in the
setting of b-metric spaces (see, e.g., [–] and some reference therein).
The aim of this paper is to generalize various known results proved by Kikkawa and

Suzuki [], Mot and Petrusel [], Dhompongsa and Yingtaweesittikul [] to the case of
b-metric spaces and give an example to illustrate our main results.

Definition  Let X be any nonempty set. An element x in X is said to be a fixed point
of a multi-valued mapping T : X → X if x ∈ Tx, where X denotes the collection of all
nonempty subsets of X.

Let (X,d) be a metric space. Let CB(X) be the collection of all nonempty, closed and
bounded subsets of X. In the sequel, we use the following notations:

d(a,A) = inf
{
d(a,x) : x ∈ A

}
,
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δ(A,B) = sup
{
d(a,B) : a ∈ A

}
,

δ(B,A) = sup
{
d(b,A) : b ∈ B

}

and

H(A,B) =max
{
δ(A,B), δ(B,A)

}

for any A,B ∈ CB(X).
Notice that H is called the Hausdorff metric induced by the metric d.
We start with recalling some basic definitions and lemmas on b-metric spaces. The def-

inition of a b-metric space is given by Czerwik [] (see also [, ]) as follows.

Definition  Let X be a nonempty set X and s ≥  be a given real number. A function
d : X ×X →R+ is called a b-metric provided that, for all x, y, z ∈ X,

(bms) d(x,x) = ,
(bms) d(x, y) = d(y,x),
(bms) d(x, z) ≤ s(d(x, y) + d(y, z)).

Note that a (usual) metric space is evidently a b-metric space. However, Czerwik [, ]
showed that a b-metric on X need not be a metric on X (see also [, , ]). The following
example shows that a b-metric on X need not be a metric on X.

Example  (cf. []) Let X = {a,b, c} and d(a, c) = d(, c) = m ≥ , d(c,b) = d(b,a) =
d(b, c) = d(c,b) = , and d(a,a) = d(b,b) = d(c, c) = . Then d(x, y) ≤ m

 [d(x, z) + d(z, y)] for
all x, y, z ∈ X. Ifm > , then the ordinary triangle inequality does not hold.

Let (X,d) be a b-metric space. We cite the following lemmas from Czerwik [, , ] and
Singh et al. [].

Lemma  Let (X,d) be a b-metric space. For any A,B ∈ CB(X) and any x, y ∈ X, we have
the following:
() d(x,B)≤ d(x,b) for any b ∈ B,
() d(x,B)≤H(A,B),
() d(x,A)≤ s(d(x, y) + d(y,B)).

Remark  Let (X,d) be a b-metric space andA be a nonempty set in (X,d) and x ∈ A, then
we have

d(x,A) =  ⇔ x ∈ A = A,

where A denotes the closure of A with respect to the induced metric d. Note that A is
closed in (X,d) if and only if A = A.

Remark  The mapping d in a b-metric space (X,d) need not be jointly continuous (see,
e.g., [, ]).
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Lemma  Let A and B be nonempty closed and bounded subsets of a b-metric space (X,d)
and q > . Then, for all a ∈ A, there exists b ∈ B such that d(a,b)≤ qH(A,B).

Lemma  Let (X,d) be a b-metric space. Let A and B be in CB(X). Then, for each α > 
and for all b ∈ B, there exists a ∈ A such that d(a,b)≤H(A,B) + α.

The following result was proved by Aydi et al. in [].

Theorem  Let (X,d) be a complete b-metric space and let F : X → CB(X) be a multi-
valued mapping such that for all x, y ∈ X,

H(Fx,Fy)≤ rM(x, y), (.)

where  ≤ r < 
s+s <  and

M(x, y) =max
{
d(x, y),d(x,Fx),d(y,Fy),d(x,Fy),d(y,Fx)

}
.

Then F has a fixed point in X , that is, there exists u ∈ X such that u ∈ Fu.

The following preliminary lemma will play a crucial role in the sequel.

Lemma  [] Let (X,d) be a complete b-metric space and let {xn} be a sequence in X such
that d(xn+,xn+) ≤ βd(xn,xn+) for all n = , , , . . . ,where ≤ β < .Then {xn} is a Cauchy
sequence in X provided that sβ < .

2 Main results
In this section we state and prove our main results. Inspired the results of Aydi et al. [],
we establish a Kikkawa and Suzuki type fixed point theorem in the framework of b-metric
spaces as follows.

Theorem  Let (X,d) be a complete b-metric space and let F : X → CB(X) be a multi-
valued mapping. Then, for s ≥ , define a strictly decreasing function σ from [, ) onto
(  , ] by σ (r) = 

(+sr) , where r <


s+s < , such that

σ (r)d(x,Fx)≤ sd(x, y) �⇒ H(Fx,Fy)≤ rd(x, y) (.)

for all x, y ∈ X. Then there exists u ∈ X such that u ∈ Fu.

Proof If d(x, y) = , then by (.) we deduce that x = y is a fixed point of F . Hence the proof
is completed. Thus, throughout the proof, we assume that d(x, y) >  for all x, y ∈ X. Take

α =



(


s + s
– r

)

and

β = r + α =



(


s + s
+ r

)
.
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Due to the assumption r < 
s+s , we conclude that α >  and  < β < . Let x ∈ X be arbi-

trary and x ∈ Fx. Owing to (.), we have

σ (r)d(x,Fx) ≤ σ (r)d(x,x) ≤ sd(x,x),

which yields that

H(Fx,Fx)≤ rd(x,x).

By Lemma , there exists x ∈ Fx. Now, by using the previous inequality, we obtain

d(x,x)≤H(Fx,Fx) + αd(x,x)≤ rd(x,x) + αd(x,x) = βd(x,x),

where β = r + α. On the other hand, we have

σ (r)d(x,Fx) ≤ σ (r)d(x,x)

≤ d(x,x)

≤ sd(x,x).

Thus, we derive that

H(Fx,Fx) ≤ rd(x,x)

by condition (.). Employing Lemma  again, there exists x ∈ Fx such that

d(x,x)≤H(Fx,Fx) ≤ rd(x,x) + αd(x,x) ≤ βd(x,x).

Continuing in this way, we can construct a sequence {xn} in X such that xn+ ∈ Fxn and

d(xn,xn+) ≤ βnd(x,x) (.)

for all n ∈N. Having in mind s ≥  together with β = 
 (


s+s + r) and r < 

s+s , one can easily
obtain that sβ < . Taking Lemma  into account, we conclude that the sequence {xn} is a
Cauchy sequence in (X,d). Since the b-metric space (X,d) is complete, there exists u ∈ X
such that limn→+∞ d(xn,u) = . Due to fact that β < , we can easily observe that

lim
n→+∞d(xn,xn+) = ,

by using inequality (.). Notice that the condition (bms) yields

d(xn+,u) ≤ s
(
d(xn+,xn) + d(xn,u)

)
.

Consequently, we have

lim
n→+∞d(xn+,u) = .
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In what follows, we shall show that

d(u,Fx)≤ srd(u,x)

for all x ∈ X\{u}. Since d(xn,u) →  as n→ +∞, there exists n ∈N such that

d(xn,u) ≤ 

d(u,x)

for all n ∈N with n≥ n. Then we have

σ (r)d(xn,Fxn) ≤ d(xn,Fxn) ≤ d(xn,xn+) ≤ s
(
d(xn,u) + d(u,xn+)

)

≤ s

d(u,x)≤ sd(u,x) – sd(xn,u)

≤ sd(xn,x),

and hence by assumption (.) we get H(Fxn,Fx)≤ rd(xn,x). Further, we have

d(u,Fx) ≤ s
(
d(u,xn+) + d(xn+,Fx)

)
≤ s

(
d(u,xn+) +H(Fxn,Fx)

)
≤ s

(
d(u,xn+) + rd(xn,x)

)
.

Letting n → +∞ in the inequality above, we obtain

d(u,Fx)≤ rsd(u,x) (.)

for all x ∈ X\{u}.
Next, we prove that

H(Fx,Fu)≤ rd(x,u)

for all x ∈ X with x 
= u. For all n ∈N, we choose vn ∈ Fx such that

d(u, vn)≤ d(u,Fx) +

n
d(x,u).

Then, using (.) and the previous inequality, we get

d(x,Fx) ≤ d(x, vn) ≤ s
(
d(x,u) + d(u, vn)

)

≤ s
(
d(x,u) + d(u,Fx) +


n
d(x,u)

)

≤
(
d(x,u) + srd(u,x) +


n
d(x,u)

)

= s
(
 + sr +


n

)
d(x,u).
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Hence, for all n ∈N, we obtain σ (r)d(x,Fx)≤ sd(x,u). So, we have

H(Fx,Fu)≤ rd(x,u).

Finally, if for some n ∈ N we have xn = xn+, then xn is a fixed point of F . Consequently,
throughout the proof we assume that xn 
= xn+ for all n ∈ N. This implies that there exists
an infinite subset J of N such that xn 
= u for all n ∈ J . By Lemma , we have

d(u,Fu) ≤ s
(
d(u,xn+) + d(xn+,Fu)

)
≤ s

(
d(u,xn+) +H(Fxn,Fu)

)
≤ s

(
d(u,xn+) + rd(xn,u)

)
.

Letting n → +∞ in the inequality above, with n ∈ J , we find that

d(u,Fu) = .

By Remark , we deduce that u ∈ Fu and hence u is a fixed point of F . �

Remark  Taking s =  in Theorem  (it corresponds to the case of metric spaces), the
condition on r < 

 , σ (r) =


+r , we find Theorem . of Kikkawa and Suzuki. Hence, Theo-
rem  is an extension of the result of Kikkawa et al. [], which itself improves the theorem
of Nadler [].

In the case where T : X → X is a single-valued mapping on a b-metric space, we have
the following corollary (it is a consequence of Theorem ).

Corollary  Let (X,d) be a complete b-metric space and let F : X → X be a single-valued
mapping. Define a strictly decreasing function σ from [, ) onto (  , ] by σ (rs) = 

+sr , r <


s+s <  such that

σ (rs)d(x,Fx)≤ sd(x, y) �⇒ d(Fx,Fy)≤ rd(x, y) (.)

for all x, y ∈ X. Then there exists u ∈ X such that u = Fu.

Proof It follows by applying Theorem  and the fact that H(Fx,Fy) = d(Fx,Fy). �

Remark  Corollary  implies the corresponding result of Suzuki [] if we take s = .

The following theorem is a result of Reich type [] as well as a generalization of Kikkawa
and Suzuki type in the framework of b-metric spaces.

Theorem  Let (X,d) be a complete b-metric space and let F : X → CB(X) be a multi-
valued mapping. If for s ≥  there exist nonnegative numbers a, b, c with s(a+ b+ c) ∈ [, )
and θ = –sb–sc

+sa such that

θd(x,Fx)≤ sd(x, y) �⇒ H(Fx,Fy)≤ ad(x, y) + bd(x,Fx) + cd(y,Fy) (.)

for all x, y ∈ X, then F has a fixed point.

http://www.journalofinequalitiesandapplications.com/content/2014/1/126
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Proof Let x ∈ X be arbitrary and x ∈ Fx, then we have

θd(x,Fx) ≤ θd(x,x) ≤ sd(x,x).

By condition (.) we get

H(Fx,Fx)≤ ad(x,x) + bd(x,Fx) + cd(x,Fx).

Let h ∈ (, 
s(a+b+c) ), then by Lemma  there exists x ∈ Fx such that

d(x,x)≤ hH(Fx,Fx),

which yields

d(x,x) ≤ hH(Fx,Fx) ≤ h
(
ad(x,x) + bd(x,Fx) + cd(x,Fx)

)
≤ h(a + b)d(x,x) + hcd(x,x)

≤ h(a + b)
 – hc

d(x,x).

Now, we have

θd(x,Fx) ≤ θd(x,x) ≤ sd(x,x).

Due to assumption (.), we get

H(Fx,Fx) ≤ ad(x,x) + bd(x,Fx) + cd(x,Fx).

Taking Lemma  into account, we conclude that there exists x ∈ Fx such that

d(x,x)≤ hH(Fx,Fx).

Consequently, we have

d(x,x) ≤ hH(Fx,Fx) ≤ h
(
ad(x,x) + bd(x,Fx) + cd(x,Fx)

)
≤ h(a + b)d(x,x) + hcd(x,x)

≤ h(a + b)
 – hc

d(x,x).

Continuing in a similar way, we can obtain a sequence {xn} of successive approximations
for F , starting from x, satisfying the following:
(a) xn+ ∈ Fxn for all n ∈N;
(b) d(xn,xn+) ≤ knd(x,x) for all n ∈ N,

where k = h(a+b)
–hc < . Now, following the lines in the proof of Theorem , we deduce

that the sequence {xn} converges to some u ∈ X with respect to the metric d, that is,
limn→+∞ d(xn,u) = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/126
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For this purpose, we first claim that

d(u,Fx)≤ s
(
a +

b
θ

)
d(u,x) + scd(x,Fx)

for all x ∈ X\{u}. Since d(xn,u) →  as n → +∞ under the metric d, there exists n ∈ N

such that

d(xn,u) ≤ 

d(u,x)

for each n≥ n. Then we have

θd(xn,Fxn) ≤ d(xn,Fxn) ≤ d(xn,xn+)

≤ s
(
d(xn,u) + d(u,xn+)

)

≤ s
(


d(u,x)

)
≤ s

(
d(u,x) – d(xn,u)

)

≤ sd(xn,x),

which implies that

H(Fxn,Fx) ≤ ad(xn,x) + bd(xn,Fxn) + cd(x,Fx)

≤ ad(xn,x) +
b
θ
d(xn,x) + cd(x,Fx)

=
(
a +

b
θ

)
d(xn,x) + cd(x,Fx)

for all n ≥ n. Thus we have

d(u,Fx) ≤ s
(
d(u,xn+) + d(xn+,Fx)

)
≤ s

(
d(u,xn+) +H(Fxn,Fx)

)

≤ s
(
d(u,xn+) +

(
a +

b
θ

)
d(xn,x) + cd(x,Fx)

)

for all n ≥ n. Letting n→ +∞, we get

d(u,Fx)≤ s
(
a +

b
θ

)
d(u,x) + scd(x,Fx)

for all x ∈ X\{u}.
Next, we show that

H(Fx,Fu)≤
(
a +

bs
θ

)
d(x,u) + cd(u,Fu)

for all x ∈ X with x 
= u. Now, for all n ∈N, there exists yn ∈ Fx such that

d(u, yn)≤ d(u,Fx) +

n
d(x,u).
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On the other hand, we have

d(x,Fx) ≤ d(x, yn)≤ s
(
d(x,u) + d(u, yn)

)
= s

(
d(x,u) + d(u, yn)

)

≤ s
(
d(x,u) + d(u,Fx) +


n
d(x,u)

)

≤ s
(
d(x,u) + s

(
a +

b
θ

)
d(u,x) + cd(x,Fx) +


n
d(x,u)

)

= s
(
 + sa +

sb
θ

+
s
n

)
d(x,u) + scd(x,Fx)

for all n ∈N. Letting n→ +∞ in the inequality above, we derive that

( – sc)d(x,Fx)≤ s
(
 + sa +

sb
θ

)
d(x,u).

Hence, we have θd(x,Fx)≤ sd(x,u), which implies

H(Fx,Fu) ≤ ad(x,u) + bd(x,Fx) + cd(u,Fu)

≤
(
a +

bs
θ

)
d(x,u) + cd(u,Fu)

for all x ∈ X \ {u}.
Finally, if for some n ∈ N we have xn = xn+, then xn is a fixed point of F . Assume that

xn 
= xn+ for all n ∈ N. Thus, there exists an infinite subset J of N such that xn 
= u for all
n ∈ J . Now, for all n ∈ J , we have

d(u,Fu) ≤ s
(
d(u,xn+) + d(xn+,Fu)

)
≤ s

(
d(u,xn+) +H(Fxn,Fu)

)

≤ s
(
d(u,xn+) +

(
a +

sb
θ

)
d(xn,u) + cd(u,Fu)

)
.

Letting n → +∞ with n ∈ J , we get

d(u,Fu) = .

By Remark , we deduce that u ∈ Fu and hence u is a fixed point of F . �

Remark  Taking s =  in Theorem  (it corresponds to the case of metric spaces), with
a + b + c ∈ [, ), θ = –b–c

+a , we get Theorem . of Mot and Petrusel [] which itself is an
extension of the theorem given in Reich [], p., as well as a generalization of Kikkawa-
Suzuki’s Theorem ..

If T : X → X is a single-valued mapping on a b-metric space, we have the following
corollary which is a consequence of Theorem .

http://www.journalofinequalitiesandapplications.com/content/2014/1/126
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Corollary  Let (X,d) be a complete b-metric space and let F : X → X be a single-valued
mapping. If for s ≥  there exist nonnegative numbers a, b, c with s(a + b + c) ∈ [, ) and
θ = –sb–sc

+sa such that

θd(x,Fx)≤ sd(x, y) �⇒ d(Fx,Fy)≤ ad(x, y) + bd(x,Fx) + cd(y,Fy) (.)

for all x, y ∈ X, then F has a fixed point.

Remark  If we take s =  in Corollary , we immediately get a Kikkawa-Suzuki type fixed
point theorem for a Reich-type single-valued operator, see [, ].

Example  Let X = [,∞) and d(x, y) = |x – y| for all x, y ∈ X. Then d is a b-metric on X
with s =  and (X,d) is complete. Also, d is not a metric on X. Define F : X → CB(X) by

Fx =
[
,  +

x


]

for all x, y ∈ X. Consider H(Fx,Fy) = 
 (x – y) = 

d(x, y), where r =

 < 

 = 
s+s < . So all

the conditions of Theorem  are satisfied. Moreover,  and  are the two fixed points of F .
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