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1 Introduction

The existence and uniqueness of a fixed point was given by Banach [2] in 1922,

which was acclaimed as Banach contraction principle and plays an important role

in the development of various results connected with Fixed point Theory and Ap-

proximation Theory. The Banach fixed point theorem or the contraction principle

concerns certain mappings of a complete metric space into itself. It lays down con-

ditions; sufficient for the existence and uniqueness of a fixed point. Besides, this

famous classical theorem gives an iteration process through which we can obtain

better approximation to the fixed point. Banach’s fixed point theorem has rendered

a key role in solving systems of linear algebraic equations involving iteration pro-

cess. Iteration procedures are used in nearly every branch of applied mathematics,

convergence proof and also in estimating the process of errors, very often by an

application of Banach’s fixed point theorem.

Later lots of improvements have been done by many authors such as Kannan

[17] investigated the extension of Banach fixed point theorem by removing the

completeness of the space with different sufficient conditions. Chatterji [4,5] con-

sidered in his work by taking various contraction conditions for self mappings in

metric space which are derived from the theorem of Zamfirescu [32] taking suit-

able combinations of positive constants. Rational type of contractions leads to

obtain a unique fixed point in complete metric space was investigated by Dass
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and Gupta [7]. Fisher [8] developed the approach of Kannan [16] and proved

analogous results involving two mappings on a complete metric space. A gener-

alization of Banach fixed point theorem was given by Jaggi [13] which involved a

continuous map satisfying certain inequality involving rational expression. Kan-

nan’s study of fixed point theory involving uniformly convex Banach space and

strictly Banach space was improved and sharpened by Jaggi [14] in the same year.

Sharma and Yuel [27] obtained a unique fixed point by taking a continuous self

mapping satisfying a rational type contraction in a complete metric space. There

exists an extensive literature on fixed point theorems for various contractive con-

ditions whose comprehensive survey can be found in Paliwal [20], Pathak [23],

Reich [24], Rhoades [25], Smart [29] and Hussain et al. [12]. A unique common

fixed point for a pair of continuous self mappings or continuous non self mappings

studied by Bajaj [1], Chatterji [6], Fisher [9], Ganguly and Bandyopadhay [10].

Wong [31] obtained fixed point by replacing the constants by suitable non negative

real valued functions. Common fixed point for a sequence of mappings obtained

by Nadler [19]. A fixed point for a non continuous self map satisfying an integral

type contraction was given by Gairola and Rawat [11].

The Banach principle has been extended and generalized by several authors

in various spaces such as quasi-metric spaces, b-metric spaces, convex Banach

spaces, G-metric spaces, cone metric spaces, partial ordered metric spaces, normed

spaces by Koparde and Waghmode [18], Pandhare and Waghmode [21], Pandhare

[22], Seshagiri Rao et al. [26], Veerapandi et al. [30] and so on.

The main aim of this paper is to investigate the existence and uniqueness of a

common fixed point for a pair of continuous self mapping T1, T2, some positive

integers powers p, q of a pair of continuous self mappings T
p

1 , T
q

2 and then further

generalized to a sequence of continuous self mappings in the space. These results

generalize and extend the results of [3, 7, 15, 17, 21, 24, 26, 28] in the literature.

2 Main Results

We start this section with the following theorem.

Theorem 2.1. Let X be a closed subset of a Hilbert space and T1, T2 be two con-

tinuous self mappings on X satisfying the following contraction condition, then

T1 and T2 have a unique common fixed point in X:

||T1x− T2y|| ≤ a1

||x− T1x|| [1 + ||y − T2y||]

1 + ||x− y||
+ a2

||y − T2y|| [1 + ||y − T1x||]

1 + ||x− y||

+ a3
||x− T2y|| [1 + ||y − T1x||]

1 + ||x− y||
+ a4

||x− y|| [1 + ||T1x− T2y||]

1 + ||x− y||
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+ a5

||x− y|| [1 + ||x− T1x||]

1 + ||y − T2y||
+ a6

||x− T1x|| [1 + ||x− T2y||]

1 + ||y − T2y||

+ a7
||x− T2y|| [1 + ||T1x− T2y||]

1 + ||x− y||
+ a8

||x− y|| [1 + ||x− T2y||]

1 + ||x− y||

+ a9

||x− T1x||+ ||y − T2y||+ ||x− y||

1 + ||x− T1x|| ||x− T2y|| ||y − T2y|| ||x− y||

+ a10

||x− T2y||
2 + ||y − T1x||

2

||x− T2y||+ ||y − T1x||
+ a11 [||x− T1x||+ ||y − T2y||]

+ a12 [||x− T2y||+ ||y − T1x||] + a13||x− y||.

For all x, y ∈ Xand x 6= y, where ai(i = 1, 2, 3, . . . , 13)are non-negative reals

with 0 ≤
∑8

i=1 ai + 3a9 + 2
∑12

i=10 ai + a13 < 1.

Proof. A sequence {xn} for an arbitrary point x0 ∈ X defined as follows

x2n+1 = T1x2n, x2n+2 = T2x2n+1, for n = 0, 1, 2, . . . .

Now to show that the sequence {xn} is a Cauchy sequence in X for that consider

the following

||x2n+1 − x2n|| = ||T1x2n − T2x2n−1||

≤ a1

||x2n − T1x2n|| [1 + ||x2n−1 − T2x2n−1||]

1 + ||x2n − x2n−1||

+ a2
||x2n−1 − T2x2n−1|| [1 + ||x2n−1 − T1x2n||]

1 + ||x2n − x2n−1||

+ a3

||x2n − T2x2n−1|| [1 + ||x2n−1 − T1x2n||]

1 + ||x2n − x2n−1||

+ a4

||x2n − x2n−1|| [1 + ||T1x2n − T2x2n−1||]

1 + ||x2n − x2n−1||

+ a5
||x2n − x2n−1|| [1 + ||x2n − T1x2n||]

1 + ||x2n−1 − T2x2n−1||

+ a6

||x2n − T1x2n|| [1 + ||x2n − T2x2n−1||]

1 + ||x2n−1 − T2x2n−1||

+ a7
||x2n − T2x2n−1|| [1 + ||T1x2n − T2x2n−1||]

1 + ||x2n − x2n−1||

+ a8

||x2n − x2n−1|| [1 + ||x2n − T2x2n−1||]

1 + ||x2n − x2n−1||
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+ a9
||x2n − T1x2n||+ ||x2n−1 − T2x2n−1||+ ||x2n − x2n−1||

1 + ||x2n − T1x2n|| ||x2n − T2x2n−1|| ||x2n−1 − T2x2n−1|| ||x2n − x2n−1||

+ a10

||x2n − T2x2n−1||
2 + ||x2n−1 − T1x2n||

2

||x2n − T2x2n−1||+ ||x2n−1 − T1x2n||

+ a11 [||x2n − T1x2n||+ ||x2n−1 − T2x2n−1||]

+ a12 [||x2n − T2x2n−1||+ ||x2n−1 − T1x2n||] + a13||x2n − x2n−1||

which implies that

||x2n+1 − x2n|| = p(n)||x2n − x2n−1||,

where

p(n) =
A1 + (a2 + 2a9 + a10 + a11 ++a12)||x2n − x2n−1||

A2 + (1 − a1 − a2 − a4 − a5 − a9 − a10 − a11 − a12)||x2n − x2n−1||
,

and A1 = a2 + a4 + a5 + a8 + 2a9 + a10 + a11 + a12 + a13 and A2 = 1 − a1 −
a6 − a9 − a10 − a11 − a12.

Clearly, λ = p(n) < 1,∀n = 1, 2, 3, . . . , and hence in general, we get

||xn+1 − xn|| = λ||xn − xn−1||.

Continuing the above process, we get

||xn+1 − xn|| = λn||x1 − x0||, n ≥ 1,

taking n → ∞, we obtain ||xn+1 − xn|| → 0. Hence, it follows that {xn} is a

Cauchy sequence in X and so it has a limit µ in X . Since the sequences {x2n+1} =
{T1x2n} and {x2n+2} = {T2x2n+1} are subsequences of {xn}, and also these sub

sequences have the same limit µ in X .

Next to show that µ is a common fixed point of T1 and T2 . Now let us consider

the following inequality

||µ− T1µ|| = ||(µ− x2n+2) + (x2n+2 − T1µ)||

≤ ||µ− x2n+2||+ ||T1µ− T2x2n+1||

≤ a1
||µ− T1µ|| [1 + ||x2n+1 − T2x2n+1||]

1 + ||µ− x2n+1||

+ a2

||x2n+1 − T2x2n+1|| [1 + ||x2n+1 − T1µ||]

1 + ||µ− x2n+1||

+ a3
||µ− T2x2n+1|| [1 + ||x2n+1 − T1µ||]

1 + ||µ− x2n+1||

+ a4

||µ− x2n+1|| [1 + ||T1µ− T2x2n+1||]

1 + ||µ− x2n+1||
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+ a5
||µ− x2n+1|| [1 + ||µ− T1µ||]

1 + ||x2n+1 − T2x2n+1||
+ a6

||µ− T1µ|| [1 + ||µ− T2x2n+1||]

1 + ||x2n+1 − T2x2n+1||

+ a7

||µ− T2x2n+1|| [1 + ||T1µ− T2x2n+1||]

1 + ||µ− x2n+1||

+ a8
||µ− x2n+1|| [1 + ||µ− T2x2n+1||]

1 + ||µ− x2n+1||

+ a9

||µ− T1µ||+ ||x2n+1 − T2x2n+1||+ ||µ− x2n+1||

1 + ||µ− T1µ|| ||µ− T2x2n+1|| ||x2n+1 − T2x2n+1|| ||µ− x2n+1||

+ a10

||µ− T2x2n+1||
2 + ||x2n+1 − Tµ||2

||µ− T2x2n+1||+ ||x2n+1 − T1µ||

+ a11 [||µ− T1µ||+ ||x2n+1 − T2x2n+1||]

+ a12 [||µ− T2x2n+1||+ ||x2n+1 − T1µ||] + a13||µ− x2n+1|+ ||µ− x2n+2|.

Letting n → ∞, we obtain ||µ−T1µ|| ≤ (a1+a6+a9+a10+a11+a12)||µ−T1µ||,
since a1 + a6 + a9 + a10 + a11 + a12 < 1, it follows immediately that T1µ = µ.

Similarly, from hypothesis, we can get T2µ = µ by considering the following

||µ− T2µ|| = ||(µ− x2n+1) + (x2n+1 − T2µ)||.

Finally, we want to show that µ is a unique fixed point of T1, T2. Let us suppose

that υ(µ 6= υ) is also a common fixed point of T1 and T2. Then, in view of

hypothesis, we have

||µ− υ|| = ||T1µ− T2υ||

≤ a1

||µ− T1µ|| [1 + ||υ − T2υ||]

1 + ||µ− υ||
+ a2

||υ − T2υ|| [1 + ||υ − T1µ||]

1 + ||µ− υ||

+ a3

||µ− T2υ|| [1 + ||υ − T1µ||]

1 + ||µ− υ||
+ a4

||µ− υ|| [1 + ||T1µ− T2υ||]

1 + ||µ− υ||

+ a5

||µ− υ|| [1 + ||µ− T1µ||]

1 + ||υ − T2υ||
+ a6

||µ− T1µ|| [1 + ||µ− T2υ||]

1 + ||υ − T2υ||

+ a7

||µ− T2υ|| [1 + ||T1µ− T2υ||]

1 + ||µ− υ||
+ a8

||µ− υ|| [1 + ||µ− T2υ||]

1 + ||µ− υ||

+ a9
||µ− T1µ||+ ||υ − T2υ||+ ||µ− υ||

1 + ||µ− T1µ|| ||µ− T2υ|| ||υ − T2υ|| ||µ− υ||

+ a10
||µ− T2υ||

2 + ||υ − T1µ||
2

||µ− T2υ||+ ||υ − T1µ||
+ a11 [||µ− T1µ||+ ||υ − T2υ||]

+ a12 [||µ− T2υ||+ ||υ − T1µ||] + a13||µ− υ||.
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Thus,

||µ− υ|| ≤ (a3 + a4 + a5 + a7 + a8 + a9 + a10 + 2a12 + a13)||µ− υ|| < ||µ− υ||

which is a contradiction and hence it follows that µ = υ. So, the common fixed

point µ is unique in X .

Corollary 2.2. Let X be a closed subset of a Hilbert space and T : X → X be a

continuous self mapping satisfying the following inequality

||Tx− Ty|| ≤ a1

||x− Tx|| [1 + ||y − Ty||]

1 + ||x− y||
+ a2

||y − Ty|| [1 + ||y − Tx||]

1 + ||x− y||

+ a3
||x− Ty|| [1 + ||y − Tx||]

1 + ||x− y||
+ a4

||x− y|| [1 + ||Tx− Ty||]

1 + ||x− y||

+ a5

||x− y|| [1 + ||x− Tx||]

1 + ||y − Ty||
+ a6

||x− Tx|| [1 + ||x− Ty||]

1 + ||y − Ty||

+ a7
||x− Ty|| [1 + ||Tx− Ty||]

1 + ||x− y||
+ a8

||x− y|| [1 + ||x− Ty||]

1 + ||x− y||

+ a9

||x− Tx||+ ||y − Ty||+ ||x− y||

1 + ||x− Tx|| ||x− Ty|| ||y − Ty|| ||x− y||

+ a10

||x− Ty||2 + ||y − Tx||2

||x− Ty||+ ||y − Tx||
+ a11 [||x− Tx||+ ||y − Ty||]

+ a12 [||x− Ty||+ ||y − Tx||] + a13||x− y||

for all x, y ∈ X and x 6= y, where ai (i = 1, 2, 3, . . . , 13) are non-negative reals

with 0 ≤
∑8

i=1 ai + 3a9 + 2
∑12

i=10 ai + a13 < 1. Then T has a unique fixed point

in X .

Proof. Set T1 = T2 = T in Theorem 2.1.

Remark 2.3. The following results are obtained from the above Corollary 2.2 by

taking variations in the variables, making some of the real constants to zeros and

restricting the space from Hilbert space to metric space.

(i) Kannan [17] type mapping in Hilbert space can get by taking ai = 0, i =
1, 2, 3, . . . , 10, 12, 13 in Corollary 2.2.

(ii) The extended Kannan [17] type condition in Hilbert space can obtain by re-

placing ai = 0, i = 1, 2, 3, . . . , 10, 12 in Corollary 2.2.
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(iii) Chatterjee [3] contraction condition in Hilbert space can get by putting ai =
0, i = 1, 2, 3, . . . , 11, 13 in Corollary 2.2.

(iv) The extended contraction type condition of Chatterjee [3] in Hilbert space

can get by giving ai = 0, i = 1, 2, 3, . . . , 11 in Corollary 2.2.

(v) Sharm et al. [28] type contraction can obtain from Corollary 2.2 by replacing

ai = 0, i = 1, 2, 3, . . . , 9, 11, 12.

(vi) Taking variations in variables and putting a4 = a5 = a6 = a7 = a8 =
0, a11 = β, we obtain the result of [15].

(vii) Dass and Gupta [7] result can be found on taking ai = 0(i = 2, 3, . . . , 10) in

restricting the Hilbert space to the metric space and taking the variations in

the variables.

(viii) A comparison reveals that Corollary 2.2 reduces to [26] on taking a2 = a4 =
a5 = a6 = a7 = a8 = a9 = a10 = 0.

Theorem 2.4. Let X be a closed subset of a Hilbert space and let T1, T2 be two

continuous self mappings on X satisfying

||T p

1 x− T
q

2 y|| ≤ a1

||x− T
p

1 x||
[

1 + ||y − T
q

2 y||
]

1 + ||x− y||

+ a2

||y − T
q

2 y||
[

1 + ||y − T
p

1 x||
]

1 + ||x− y||
+ a3

||x− T
q

2 y||
[

1 + ||y − T
p

1 x||
]

1 + ||x− y||

+ a4

||x− y||
[

1 + ||T p

1 x− T
q

2 y||
]

1 + ||x− y||
+ a5

||x− y||
[

1 + ||x− T
p

1 x||
]

1 + ||y − T
q

2 y||

+ a6

||x− T
p

1 x||
[

1 + ||x− T
q

2 y||
]

1 + ||y − T
q

2 y||
+ a7

||x− T
q

2 y||
[

1 + ||T p

1 x− T
q

2 y||
]

1 + ||x− y||

+ a8

||x− y||
[

1 + ||x− T
q

2 y||
]

1 + ||x− y||

+ a9

||x− T
p

1 x||+ ||y − T
q

2 y||+ ||x− y||

1 + ||x− T
p

1 x|| ||x− T
q

2 y|| ||y − T
q

2 y|| ||x− y||

+ a10

||x− T
q

2 y||
2 + ||y − T

p

1 x||
2

||x− T
q

2 y||+ ||y − T
p

1 x||
+ a11

[

||x− T
p

1 x||+ ||y − T
q

2 y||
]

+ a12

[

||x− T
q

2 y||+ ||y − T
p

1 x||
]

+ a13||x− y||

for all x, y ∈ X and x 6= y, where ai(i = 1, 2, 3, . . . , 13) are non-negative reals

with 0 ≤
∑8

i=1 ai+3a9 +2
∑12

i=10 ai+a13 < 1 and p, q are two positive integers.

Then T1 and T2 have a unique common fixed point in X .
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Proof. From Theorem 2.1, T
p

1 and T
q

2 have a unique common fixed point µ ∈ X ,

so that T
p

1 µ = µ and T
q

2 µ = µ.

From T
p

1 (T1µ) = T1(T
p

1 µ) = T1µ, it follows that T1µ is a fixed point of T
p

1 . But µ

is a unique fixed point of T
p

1 . Therefore T1µ = µ. Similarly, we can get T2µ = µ.

Hence, µ is a common fixed point of T1 and T2. For uniqueness, let υ be another

fixed point of T1 and T2, so that T1υ = T2υ = υ. Then from hypothesis, we have

||µ− υ|| = ||T p

1 µ− T
q

2 υ||

≤ a1

||µ− T
p

1 µ||
[

1 + ||υ − T
q

2 υ||
]

1 + ||µ− υ||
+ a2

||υ − T
q

2 υ||
[

1 + ||υ − T
p

1 µ||
]

1 + ||µ− υ||

+ a3

||µ− T
q

2 υ||
[

1 + ||υ − T
p

1 µ||
]

1 + ||µ− υ||
+ a4

||µ− υ||
[

1 + ||T p

1 µ− T
q

2 υ||
]

1 + ||µ− υ||

+ a5

||µ− υ||
[

1 + ||µ− T
p

1 µ||
]

1 + ||υ − T
q

2 υ||
+ a6

||µ− T
p

1 µ||
[

1 + ||µ− T
q

2 υ||
]

1 + ||υ − T
q

2 υ||

+ a7

||µ− T
q

2 υ||
[

1 + ||T p

1 µ− T
q

2 υ||
]

1 + ||µ− υ||
+ a8

||µ− υ||
[

1 + ||µ− T
q

2 υ||
]

1 + ||µ− υ||

+ a9

||µ− T
p

1 µ||+ ||υ − T
q

2 υ||+ ||µ− υ||

1 + ||µ− T
p

1 µ|| ||µ− T
q

2 υ|| ||υ − T
q

2 υ|| ||µ− υ||

+ a10

||µ− T
q

2 υ||
2 + ||υ − T

p

1 µ||
2

||µ− T
q

2 υ||+ ||υ − T
p

1 µ||
+ a11

[

||µ− T
p

1 µ||+ ||υ − T
q

2 υ||
]

+ a12

[

||µ− T
q

2 υ||+ ||υ − T
p

1 µ||
]

+ a13||µ− υ||

⇒ ||µ− υ|| ≤ (a3 + a4 + a5 + a7 + a8 + a9 + a10 + 2a12 + a13)||µ− υ||

⇒ µ = υ, since a3 + a4 + a5 + a7 + a8 + a9 + a10 + 2a12 + a13 < 1.

Hence, µ is a unique common fixed point of T1 and T2 in X .

This completes the proof of the theorem.

In the upcoming theorem, we have taken a sequence of continuous self mappings

on a closed subset of a Hilbert space converging point wise to a limit mapping and

show that if this limit mapping has a fixed point then this fixed point is also the

limit of fixed points of the mappings of the sequence.

Theorem 2.5. Let X be a closed subset of a Hilbert space and let {Ti} be a se-

quence of continuous self mappings on X converging point wise to a continuous
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map T and let

||Tix− Tiy|| ≤ a1

||x− Tix|| [1 + ||y − Tiy||]

1 + ||x− y||
+ a2

||y − Tiy|| [1 + ||y − Tix||]

1 + ||x− y||

+ a3

||x− Tiy|| [1 + ||y − Tix||]

1 + ||x− y||
+ a4

||x− y|| [1 + ||Tix− Tiy||]

1 + ||x− y||

+ a5

||x− y|| [1 + ||x− Tix||]

1 + ||y − Tiy||
+ a6

||x− Tix|| [1 + ||x− Tiy||]

1 + ||y − Tiy||

+ a7

||x− Tiy|| [1 + ||Tix− Tiy||]

1 + ||x− y||
+ a8

||x− y|| [1 + ||x− Tiy||]

1 + ||x− y||

+ a9
||x− Tix||+ ||y − Tiy||+ ||x− y||

1 + ||x− Tix|| ||x− Tiy|| ||y − Tiy|| ||x− y||

+ a10
||x− Tiy||

2 + ||y − Tix||
2

||x− Tiy||+ ||y − Tix||
+ a11 [||x− Tix||+ ||y − Tiy||]

+ a12 [||x− Tiy||+ ||y − Tix||] + a13||x− y||

for all x, y ∈ X and x 6= y, where ai(i = 1, 2, 3, . . . , 13) are non-negative reals

with 0 ≤
∑8

i=1 ai + 3a9 + 2
∑12

i=10 ai + a13 < 1. If each Ti has a fixed point µi

and T has a fixed point µ, then the sequence {µi} converges to µ.

Proof. Since µi is a fixed point of Ti, then we have

||µ− µn|| = ||Tµ− Tnµn||

= ||(Tµ− Tnµ) + (Tnµ− Tnµn)|| ≤ ||Tµ− Tnµ||+ ||Tnµ− Tnµn||

≤ a1
||µ− Tnµ|| [1 + ||µn − Tnµn||]

1 + ||µ− µn||
+ a2

||µn − Tnµn|| [1 + ||µn − Tnµ||]

1 + ||µ− µn||

+ a3

||µ− Tnµn|| [1 + ||µn − Tnµ||]

1 + ||µ− µn||
+ a4

||µ− µn|| [1 + ||Tnµ− Tnµn||]

1 + ||µ− µn||

+ a5

||µ− µn|| [1 + ||µ− Tnµ||]

1 + ||µn − Tnµn||
+ a6

||µ− Tnµ|| [1 + ||µ− Tnµn||]

1 + ||µn − Tnµn||

+ a7

||µ− Tnµn|| [1 + ||Tnµ− Tnµn||]

1 + ||µ− µn||
+ a8

||µ− µn|| [1 + ||µ− Tnµn||]

1 + ||µ− µn||

+ a9

||µ− Tnµ||+ ||µn − Tnµn||+ ||µ− µn||

1 + ||µ− Tnµ|| ||µ− Tnµn|| ||µn − Tnµn|| ||µ− µn||

+ a10

||µ− Tnµn||
2 + ||µn − Tnµ||

2

||µ− Tnµn||+ ||µn − Tnµ||
+ a11 [||µ− Tnµ||+ ||µn − Tnµn||]

+ a12 [||µ− Tnµn||+ ||µn − Tnµ||] + a13||µ− µn||+ ||Tµ− Tnµ||.
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Letting n → ∞, so that Tnµ → Tµ, Tnµn → µn and Tµ = µ, we get

lim
n→∞

||µ− µn|| ≤ (a4 + a5 + a7 + a8 + a9 + a10 + 2a12 + a13) lim
n→∞

||µ− µn||.

So, lim
n→∞

||µ − µn|| = 0, since a4 + a5 + a7 + a8 + a9 + a10 + 2a12 + a13 < 1.

Thus, µn → µ as n → ∞. This completes the proof.

Example 2.6. The following is an example of Theorem 2.1:

Let T1, T2 : [0, 1] → [0, 1] be defined as T1x = x
2

and T2x = x
4

, for all x ∈ [0, 1].
Then with usual norm ||x− y|| =| x− y | one can see that 0 is the only common

fixed point of T1 and T2.

Example 2.7. For an example of Corollary 2.2, let T : [0, 1] → [0, 1] be a mapping

defined by Tx = x3

6
, for all x ∈ [0, 1]. Obviously, 0 is the only fixed point of T

with usual norm ||x− y|| =| x− y |, for all x ∈ [0, 1].

3 Conclusions

The Banach contraction principle has been refined and extended on a closed subset

of a Hilbert space to a pair of continuous self mappings involving more number

of rational terms in the contractive condition. The same result is extended for the

positive integers powers of a pair of continuous self mappings and then further

developed to a sequence of continuous self mappings in the space. In all different

cases, we have observed the existence and uniqueness of a common fixed point in

the space. From these results we have obtained well known results in the literature

at particular cases.

Acknowledgments. We would like to thank the referees for carefully reading of

our manuscript and for their valuable suggestions and remarks which improve the
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