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Abstract: This paper investigates certain Jacobi polynomials that involve one parameter and gen-
eralize the well-known orthogonal polynomials called Chebyshev polynomials of the third-kind.
Some new formulas are developed for these polynomials. We will show that some of the previous
results in the literature can be considered special ones of our derived formulas. The derivatives of the
moments of these polynomials are derived. Hence, two important formulas that explicitly give the
derivatives and the moments of these polynomials in terms of their original ones can be deduced as
special cases. Some new expressions for the derivatives of different symmetric and non-symmetric
polynomials are expressed as combinations of the generalized third-kind Chebyshev polynomials.
Some new linearization formulas are also given using different approaches. Some of the appearing
coefficients in derivatives and linearization formulas are given in terms of different hypergeometric
functions. Furthermore, in several cases, the existing hypergeometric functions can be summed using
some standard formulas in the literature or through the employment of suitable symbolic algebra, in
particular, Zeilberger’s algorithm.

Keywords: orthogonal polynomials; Chebyshev polynomials; recurrence relations; connection and
linearization formulas; generalized hypergeometric functions

1. Introduction

Orthogonal polynomials in general and Jacobi polynomials, in particular, occupy
distinguished places due to their great use in applied mathematics (see, for instance, [1–4]).
It is commonly known that symmetric classes and non-symmetric classes of polynomials are
included in the Jacobi polynomial class. The most well-known used classes of polynomials
are the classes of Gegenbauer, Legendre and the four classes of Chebyshev polynomials.
Chebyshev polynomials of the third- and fourth-kinds are the two non-symmetric classes
of polynomials, whereas the other four classes of polynomials are symmetric. Recently,
Abd-Elhameed and Alkenedri in [5] investigated a non-symmetric class of polynomials
that generalizes the class of Chebyshev polynomials of the third-kind. On the basis of the
use of the spectral Galerkin method, they additionally utilized this class of polynomials to
handle particular linear and non-linear ordinary differential equations.

Chebyshev polynomials are pivotal in many branches. The well-known kinds of
Chebyshev polynomials are special kinds of the Jacobi polynomials, whereas the other two
kinds of Chebyshev polynomials, namely Chebyshev polynomials of the fifth and sixth
kinds are special types of the so-called ultraspherical polynomials (see, [6,7]). Each kind
of the six kinds of Chebyshev polynomials has its role in different fields, in particular in
the scope of numerical analysis and approximation theory. For example, the author in [8]
obtained numerical solutions of integral and integro-differential equations employing the
third-kind Chebyshev polynomials. In [9], the authors employed a certain shifted second-
kind Chebyshev operational matrix of fractional integration to treat some types of fractional
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differential equations. The authors in [10] developed certain tau and Galerkin operational
matrices of derivatives for handling Emden–Fowler third-order-type equations based on
using Chebyshev polynomials of the second-kind and a type of their modified polynomials.
Some other contributions regarding different kinds of Chebyshev polynomials can be found
in [11–14].

Linearization and connection formulas between the different special functions in gen-
eral and orthogonal polynomials, in particular, are crucial. One can be referred for some
applications to these formulas to [15,16]. There are several considerable old and recent
contributions concerning these formulas. In this regard, and for some old contributions,
one can be referred to [17–19]. Other important contributions can be found in [20–24]. Re-
garding some recent articles that deal with the linearization formulas of Jacobi polynomials
and their different classes, one can be referred to the papers of Abd-Elhameed [25,26].

Hypergeometric functions and their generalized functions are crucial in mathematical
analysis and its applications. Almost all important functions and polynomials may be
represented in terms of them. For example, the linearization and connection coefficients
between different polynomials can be expressed in terms of generalized hypergeometric
functions of certain arguments. As an important example, the connection coefficients
between two different parameters Jacobi polynomials can be expressed in terms of a certain
terminating hypergeometric function of the type 3F2(1) that can be reduced in some specific
choices of the Jacobi polynomials parameters. In addition, the authors in [27] derived
some new linearization formulas of Jacobi polynomials based on reducing some types
of hypergeometric functions. Moreover, the high-order derivatives of some celebrated
polynomials can be linked with their original polynomials by coefficients that involve
hypergeometric functions. For instance, the authors in [28] found new formulas that
express the derivatives of the fifth-kind Chebyshev polynomials in terms of their original
ones. The linking coefficients involve terminating hypergeometric functions of the type
4F3(1).

It is interesting to investigate various polynomial sequences in general and orthogonal
polynomials in particular. The authors in [29] investigated two types of generalized Fi-
bonacci and generalized Lucas polynomials, and they developed some connection formulas
between them. The authors in [30] investigated general odd and even central factorial poly-
nomial sequences. The same authors suggested an approach for investigating orthogonal
polynomials sequence based on matrix calculus in [31]. The authors in [32] developed
recurrence relations and determinant forms for general polynomial sequences. A matrix
approach for the semiclassical and coherent orthogonal polynomials is developed in [33].
The establishment of the different formulas related to special functions is crucial in nu-
merical analysis. For example, the derivatives expressions of different polynomials in
terms of their original ones serve in obtaining numerical solutions to different types of
differential equations. The authors found new formulas for the derivatives of the third-
and fourth-kinds of Chebyshev polynomials in [34]. In addition, they employed them to
deal with some types of even-order boundary value problems. The author in [35] found
new formulas for the derivatives of Chebyshev polynomials of the sixth-kind. Furthermore,
these expressions served to obtain a numerical solution to the non-linear one-dimensional
Burgers’ equation.

The main aim of this article is to theoretically investigate the generalized third-kind
Chebyshev polynomials. Several formulas concerning these polynomials are established.
Some of the well-known formulas in the literature are obtained as special cases of our
developed formulas. Some connections between these polynomials with some celebrated
polynomials are given. We think that most of the formulas presented in this paper are new
and useful in a wide range of applications.

The paper is organized as follows. The next section presents some properties of
Jacobi polynomials in general and some special classes of Jacobi polynomials in particular.
In addition, some properties for some other polynomials are stated. Section 3 derives
the formula that expresses the derivatives of the moments of the generalized third-kind
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polynomials. Some important specific formulas are deduced as special cases. Section 4
derives other expressions for the derivatives of the generalized third-kind Chebyshev
polynomials but in terms of different symmetric and non-symmetric polynomials. Some
connection formulas are presented as special cases of the derivatives formulas. Some
linearization formulas involving the generalized third-kind Chebyshev polynomials are
given in Section 5. A few final remarks are presented in Section 6.

2. Preliminaries and Some Essential Formulas

This section is devoted to displaying some properties and formulas of the classical
Jacobi classical polynomials. Some formulas concerning a class of polynomials that general-
izes the third-kind Chebyshev class are also given. An overview of some other polynomials
is also presented.

2.1. Some Fundamental Properties and Connection Formulas of Jacobi Polynomials

This section focuses on presenting some fundamental properties of Jacobi polynomials.
Some connection formulas between different classes of Jacobi polynomials are presented.
Some formulas concerned with the generalized third-kind generalized polynomials that
will be useful throughout the paper are also displayed.

It is well-known that the Jacobi polynomials can be represented as

P(γ,δ)
r (x) =

(γ + 1)r

r! 2F1

(
−r, r + γ + δ + 1

γ + 1

∣∣∣∣1− x
2

)
.

From now on, we will use the following normalized Jacobi polynomials that are used
in [25]:

V(γ,δ)
r (x) = 2F1

(
−r, r + γ + δ + 1

γ + 1

∣∣∣∣1− x
2

)
.

The above polynomials satisfy the following property:

V(γ,δ)
r (1) = 1, r = 0, 1, 2, . . . .

Among the main advantages of Jacobi polynomials is that they include four celebrated
classes of Chebyshev polynomials. In fact, we have

Tr(x) = V(− 1
2 ,− 1

2 )
r (x), Ur(x) = (r + 1)V( 1

2 , 1
2 )

r (x),

Vr(x) = V(− 1
2 , 1

2 )
r (x), Wr(x) = (2r + 1)V( 1

2 ,− 1
2 )

r (x),

where Tr(x), Ur(x), Vr(x), and Wr(x) represent respectively, the first-, second-, third-, and
fourth- kinds Chebyshev polynomials.

Furthermore, the two symmetric polynomials, namely Legendre and ultraspherical
polynomials can be deduced as special cases of the polynomial V(γ,δ)

r (x). We have

U(λ)
r (x) = V(λ− 1

2 ,λ− 1
2 )

r (x), Pr(x) = V(0,0)
r (x),

while U(λ)
r (x), and Pr(x) denote respectively, the ultraspherical and Legendre polynomials.
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The four different types of Chebyshev polynomials have the following trigonometric
representations, which we comment on here (see [36]):

Tr(x) = cos(r θ), Ur(x) =
sin((r + 1) θ)

sin θ
,

Vr(x) =
cos
((

r + 1
2

)
θ
)

cos
(

θ
2

) , Wr(x) =
sin
((

r + 1
2

)
θ
)

sin
(

θ
2

) ,

where θ = cos−1(x).
The trigonometric representations of the four kinds of Chebyshev polynomials imply

that each kind of them can be defined for negative subscripts. We refer here to the following
identities ([16]):

T−r(x) = Tr(x), U−r(x) = −Ur−2(x),

V−r(x) = Vr−1(x), W−r(x) = −Wr−1(x).

One can consult the important books [36,37] for properties of Jacobi polynomials and
their special classes.

2.2. Connection Formulas Between Different Jacobi Polynomials

The connection problems between different classes of Jacobi polynomials are important.
The following theorem, which connects two different parameters of Jacobi polynomials,
will be useful to derive our results in the upcoming sections.

Theorem 1 ([5]). For every non-negative integer m, the following connection formula holds:

V(α,β)
m (x) =

m

∑
r=0

ξr,m V(λ,µ)
m−r (x), (1)

where the linearization coefficients ξr,m are given by

ξr,m =
m! Γ(α + 1) Γ(2m− r + α + β + 1) Γ(m− r + λ) Γ(m− r + λ + µ + 1)

(m− r)! r! Γ(m− r + α + 1) Γ(m + α + β + 1)Γ(λ + 1)Γ(2m− 2r + λ + µ + 1)
×

3F2

(
−r, 1− r + m + λ, 1− r + 2m + α + β

2− 2r + 2m + λ + µ, 1− r + m + α

∣∣∣∣1).
(2)

Remark 1. It is worth noting here that the terminating hypergeometric function that appears in
(2) cannot be summed in general, but for some particular choices of the involved parameters, it can
be summed. In the following two corollaries, we give two important specific connection formulas
that will be useful in the sequel.

Corollary 1. For every non-negative integer m, the following connection formula holds:

V(α,α)
m (x) =

m + 2α + 1
2m + 2α + 1

V(α,α+1)
m (x) +

m
2m + 2α + 1

V(α,α+1)
m−1 (x). (3)

Proof. If we start with the connection Formula (1) for the following choices: β = λ = α,
and µ = α + 1, then the connection coefficients ξr,m in such case are given by

ξr,m =
m! Γ(m− r + 2α + 2)Γ(2m− r + 2α + 1)

(m− r)! r! Γ(m + 2α + 1)Γ(2m− 2r + 2α + 2)
×

3F2

(
−r, m− r + α + 1, 2m− r + 2α + 1

2m− 2r + 2α + 3, m− r + α + 1

∣∣∣∣1).
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It is not difficult to see that

3F2

(
−r, m− r + α + 1, 2m− r + 2α + 1

2m− 2r + 2α + 3, m− r + α + 1

∣∣∣∣1) =


1, r = 0,

1
2m + 2 α + 1

, r = 1,

0, otherwise,

and therefore the coefficients ξr,m reduce to

ξr,m =


m + 2α + 1

2m + 2 α + 1
, r = 0,

m
2m + 2 α + 1

, r = 1,

0, otherwise.

Corollary 2. For every non-negative integer m, the following connection formula holds:

V(α,α+1)
m (x) =

m

∑
r=0

(−1)r (m− r + 1)r (2m + 2α− 2r + 1)
(m + 2α− r + 1)r+1

V(α,α)
m−r (x). (4)

Proof. Setting β = α + 1, λ = µ = α in (1) produces the formula shown below:

V(α,α+1)
m (x) =

m!
Γ(m + 2α + 2)

m

∑
r=0

Γ(1− r + m + 2α) Γ(−r + 2(m + α + 1))
r! (m− r)! Γ(1− 2r + 2m + 2α)

×

2F1

(
−r,−r + 2(m + α + 1)

2(1− r + m + α

∣∣∣∣1)V(α,α+1)
m−r (x).

Chu–Vandemond’s identity enables one to compute the last 2F1(1) in the form

2F1

(
−r,−r + 2(m + α + 1)

2(1− r + m + α

∣∣∣∣1) =
(−1)r r! Γ(2(1− r + m + α))

Γ(−r + 2(m + α + 1))
,

and thus the connection Formula (4) can be obtained.

2.3. Some Fundamental Properties of the Generalized Third-Kind Chebyshev Polynomials

Among the classes of Jacobi polynomials that were recently investigated in [5] is the
class of the polynomials V(α,α+1)

j (x), j ≥ 0. This class is of interest since it generalizes the
third-kind Chebyshev polynomials class. The following three lemmas concerning these
polynomials are of fundamental importance to derive some of our proposed results in
what follows.

Lemma 1 ([5]). Let j be a non-negative integer. The polynomials V(α,α+1)
j (x) has the following rep-

resentation:

V(α,α+1)
j (x) =

⌊
j
2

⌋
∑
r=0

Ar,j xj−2r +

⌊
j−1

2

⌋
∑
r=0

Br,j xj−2r−1, (5)

where

Ar,j =
(−1)r 2j−2r+2α+1 j! Γ(α + 1) Γ

(
j− r + α + 3

2
)

√
π r! (j− 2r)! Γ(j + 2α + 2)

,

Br,j =
(−1)r+1 j! 2j−2r+2α Γ(α + 1) Γ

(
j− r + α + 1

2

)
√

π r! (j− 2r− 1)! Γ(j + 2α + 2)
,
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where bzc denotes the well-known floor function.

Lemma 2 ([5]). For every non-negative integer j, the following inversion formula holds:

xj =

⌊
j
2

⌋
∑
i=0

Fi,j V(α,α+1)
j−2i (x) +

⌊
j−1

2

⌋
∑
i=0

Gi,j V(α,α+1)
j−2i−1 (x), (6)

where

Fi,j =
2−1−j−2α

√
π j! Γ(2− 2i + j + 2α)

i! (j− 2i)! Γ(α + 1) Γ
( 3

2 − i + j + α
) , (7)

Gi,j =
2−1−j−2α

√
π j! Γ(1− 2i + j + 2α)

i! (j− 2i− 1)! Γ(α + 1) Γ
( 3

2 − i + j + α
) . (8)

2.4. An Overview on a Generalized Class of Fibonacci Polynomials

This section presents an overview of some other polynomials. Among the impor-
tant symmetric classes of polynomials are the classes of Fibonacci polynomials and their
generalizations. Recently, Abd-Elhameed et al. in [38] investigated a type of general-
ized Fibonacci polynomials. This class of polynomials can be generated by the following
recurrence relation:

FA,B
k (x) = A x FA,B

k−1(x) + B FA,B
k−2(x), FA,B

0 (x) = 1, FA,B
1 (x) = A x, k ≥ 2. (9)

It is to be noted that several celebrated classes of polynomials can be obtained as special
cases of the generalized class FA,B

k (x) (see, [38]). For example, the Fibonacci polynomials
Fk+1(x) are a special case of FA,B

k (x). In fact, we have:

Fk+1(x) = F1,1
k (x).

Among the important properties of the polynomials FA,B
k (x) is the moment formula

for these polynomials. Rewriting the recurrence relation (9) in the form:

x FA,B
k (x) =

1
A

FA,B
k+1(x)− B

A
FA,B

k−1(x),

then it is easy to obtain the moment formula for the generalized class FA,B
k (x). The moment

formula for these polynomials is stated in the following lemma.

Lemma 3. Let r and k be any two non-negative integers. The following moment formula applies:

xr FA,B
k (x) =

r

∑
m=0

(
r
m

)
A−r(−B)m FA,B

k+r−2m(x). (10)

Proof. The proof can be easily calculated by induction based on the application of the
recurrence relation (9).

3. Derivatives of the Moments of the Generalized Third-Kind Chebyshev Polynomials

This section is devoted to deriving expressions for the derivatives of the moments
of the polynomials V(α,α+1)

k (x). In fact, we will state and prove two important theorems.

The first theorem expresses the derivatives of the moments of V(α,α+1)
k (x) in terms of their

original polynomials. We comment here that the following two expressions can be obtained
as special cases:

1. The moments formula for V(α,α+1)
k (x).
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2. The derivatives expression for the polynomials V(α,α+1)
k (x).

The second theorem gives the formula for the derivatives of the moments of V(α,α+1)
k (x)

in terms of the ultraspherical polynomials.

Theorem 2. Let k, r, and q be non-negative integers with k + r ≥ q. The following formula is
valid:

Dq
(

xr V(α,α+1)
k (x)

)
=
b 1

2 (k+r−q)c
∑
p=0

Hp,k,q,r V(α,α+1)
k+r−q−2p(x) +

b 1
2 (k+r−q−1)c

∑
p=0

H̄p,k,q,r V(α,α+1)
k+r−q−2p−1(x), (11)

where the coefficients Hp,k,q,r and H̄p,k,q,r are given respectively by the following formulas:

Hp,k,q,r =
2q−rk! Γ(k− 2p− q + r + 2α + 2)
(k− 2p− q + r)! Γ(k + 2α + 2)

×

p

∑
`=0

(−1)` (k− 2`+ r− 1)! Γ
(

k− `+ α + 1
2

)
(k− 2`)! `! (p− `)! Γ

(
k− `− p− q + r + α + 3

2
)×(

(k− 2`)(`− p) +
1
2
(k− 2`+ r)(2k− 2`+ 2α + 1)

)
,

(12)

H̄p,k,q,r =
2−1−r+q Γ(k + r− 2p− q + 2α + 1)
(k + r− 2p− q− 1)! Γ(k + 2α + 2)

×

p

∑
`=0

(−1)` k! (k− 2`+ r− 1)! Γ
(

k− `+ α + 1
2

)
`! (p− `)! (k− 2`)! Γ

(
k− `+ r− p− q + α + 3

2
)
)

× (2(k− 2`)(p + q) + r(2`+ 2α + 1)).

(13)

Proof. Making use of the analytic form of the polynomials V(α,α+1)
k (x) in (5) enables one

to write the moments derivatives Dq
(

xr V(α,α+1)
k (x)

)
in the form

Dq
(

xr V(α,α+1)
k (x)

)
=
b k

2c
∑
`=0

Ā`,k,r,q xk+r−2`−q +
b k−1

2 c
∑
`=0

B̄`,k,r,q xk+r−2`−q−1, (14)

where

Ā`,k,r,q =
(−1)` 2k−2`+2α+1k! Γ(α + 1)Γ

(
k− `+ α + 3

2
)
(k− 2`− q + r + 1)q√

π `! (k− 2`)! Γ(k + 2α + 2)
,

B̄`,k,r,q =
(−1)`+1 2k−2`+2α k! Γ(α + 1) Γ

(
k− `+ α + 1

2

)
(k− 2`− q + r)q

√
π `! (k− 2`− 1)! Γ(k + 2α + 2)

.
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Now, the inversion Formula (6) converts Formula (14) into the following one:

Dq
(

xr V(α,α+1)
k (x)

)
=
b k

2c
∑
`=0

Ā`,k,r,q

b 1
2 (k+r−2`−q)c

∑
p=0

Fp,k+r−2`−q V(α,α+1)
k+r−2`−q−2p(x)

+
b 1

2 (k+r−2`−q−1)c
∑
p=0

Gp,k+r−q−2` V(α,α+1)
k+r−2`−2p−q−1(x)


+
b k−1

2 c
∑
`=0

B̄`,k,r,q

b 1
2 (k+r−2`−q−1)c

∑
p=0

Fp,k+r−2`−q−1V(α,α+1)
k+r−2`−2p−q−1(x)

+
b 1

2 (k+r−2`−q−2)c
∑
p=0

Gp,k+r−2`−q−1 V(α,α+1)
k+r−2`−2p−q−2(x)

,

where the coefficients Fi,k and Gi,k are, respectively, given in (7) and (8). Some lengthy
manipulations lead to the following formula:

Dq
(

xr V(α,α+1)
k (x)

)
=
b 1

2 (k+r−q)c
∑
p=0

Hp,k,q,r V(α,α+1)
k+r−q−2p(x) +

b 1
2 (k+r−q−1)c

∑
p=0

H̄p,k,q,rV(α,α+1)
k+r−2p−q−1(x),

where the coefficients Hp,k,q,r and H̄p,k,q,r are given by (12) and (13). This proves Theorem 2.

Remark 2. Two important formulas can be obtained as two consequences of Formula (11). More
precisely, the high-order derivatives formula of the polynomials V(α,α+1)

k (x) can be deduced by
setting r = 0, while the moment’s formula can be obtained from Formula (11) by setting q = 0. The
following two corollaries exhibit these formulas.

Corollary 3. Let r and k be non-negative integers. One has the following moment formula:

xr V(α,α+1)
k (x) =

b k+r
2 c

∑
p=0

Wp,k,r V(α,α+1)
k+r−2p (x) +

b 1
2 (k+r−1)c

∑
p=0

W̄p,k,r V(α,α+1)
k+r−2p−1(x), (15)

where

Wp,k,r =
k! Γ(k + r− 2p + 2α + 2)

2r (k + r− 2p)! Γ(k + 2α + 2)
×

p

∑
`=0

(−1)` (k− 2`+ r− 1)! Γ
(

k− `+ α + 1
2

)
`! (k− 2`)! (p− `)! Γ

(
k− `+ r− p + α + 3

2
)×(

(k− 2`)(`− p) +
1
2
(k− 2`+ r) (2k− 2`+ 2α + 1)

)
,

W̄p,k,r =
k! Γ(k + r− 2p + 2α + 1)

2r+1 (k + r− 2p− 1)! Γ(k + 2α + 2)
×

p

∑
`=0

(−1)` (r + 2`r + 2kp− 4`p + 2rα) (k− 2`+ r− 1)! Γ
(

k− `+ α + 1
2

)
`! (k− 2`)! (p− `)! Γ

(
k− `+ r− p + α + 3

2
) .

Proof. If we set q = 0 in Formula (11), then Formula (15) can be obtained.
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Corollary 4. Let k and q be non-negative integers such that k ≥ q. The following derivatives
formula holds

DqV(α,α+1)
k (x) =

2q k!
(q− 1)! Γ(k + 2α + 2)

×
⌊

k−q
2

⌋
∑
p=0

(p + q− 1)! Γ
(
k− p + α + 3

2
)
Γ(k− 2p− q + 2α + 2)

p! (k− 2p− q)! Γ
(
k− p− q + α + 3

2
) V(α,α+1)

k−q−2p(x)

+
b 1

2 (k−q−1)c
∑
p=0

(p + q)! Γ
(

k− p + α + 1
2

)
Γ(k− 2p− q + 2α + 1)

p! (k− 2p− q− 1)! Γ
(
k− p− q + α + 3

2
) V(α,α+1)

k−q−2p−1(x)

.

(16)

Proof. Setting r = 0 in Formula (11) produces the formula shown below:

DqV(α,α+1)
k (x) =

2q−1 k!
Γ(k + 2α + 2)

⌊
k−q

2

⌋
∑
p=0

(2k− 2p + 2α + 1)Γ(k− 2p− q + 2α + 2)
(k− 2p− q)!

×

p

∑
`=0

(−1)` Γ
(

k− `+ α + 1
2

)
`! (p− `)! Γ

(
k− `− p− q + α + 3

2
)V(α,α+1)

k−q−2p(x)

+
2qk!

Γ(k + 2α + 2)

b 1
2 (k−q−1)c

∑
p=0

(p + q)Γ(k− 2p− q + 2α + 1)
(k− 2p− q− 1)!

×

p

∑
`=0

(−1)` Γ
(

k− `+ α + 1
2

)
`! (p− `)! Γ

(
k− `− p− q + α + 3

2
)V(α,α+1)

k−q−2p−1(x).

(17)

Using the identity:

p

∑
`=0

(−1)` Γ
(

k− `+ α + 1
2

)
`! (p− `)! Γ

(
k− `− p− q + α 3

2
)

=
Γ
(

k + α + 1
2

)
p! Γ
(
k− p− q + α + 3

2
) 2F1

(
−p,− 1

2 − k + p + q− α
1
2 − k− α

∣∣∣∣1),

along with the Chu–Vandermonde identity, serves to convert Formula (17) into the follow-
ing form:

DqV(α,α+1)
k (x) =

2qk!
(q− 1)! Γ(k + 2α + 2)

×
⌊

k−q
2

⌋
∑
p=0

(p + q− 1)! Γ
(
k− p + α + 3

2
)
Γ(k− 2p− q + 2α + 2)

p! (k− 2p− q)! Γ
(
k− p− q + α + 3

2
) V(α,α+1)

k−q−2p(x)

+
b 1

2 (k−q−1)c
∑
p=0

(p + q)! Γ
(

k− p + α + 1
2

)
Γ(k− 2p− q + 2α + 1)

p! (k− 2p− q− 1)! Γ
(
k− p− q + α + 3

2
) V(α,α+1)

k−q−2p−1(x)

.

Remark 3. It is to be noted here that the result in (16) fits with the same result obtained in [5].

Now, we give the formula that expresses the derivatives of the moments of the poly-
nomials V(α,α+1)

k (x) in terms of the ultraspherical polynomials. This formula generalizes
important formulas that may be deduced as special cases.
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Theorem 3. Let k, r, and q be non-negative integers with k + r ≥ q. The following formula is
valid:

Dq
(

xr V(α,α+1)
k (x)

)
=

22−m+q+2α−2λ(k + m)! Γ(α + 1)Γ
(
k + α + 3

2
)

Γ(k + 2α + 2)Γ
(

λ + 1
2

) ×

b 1
2 (k+m−q)c

∑
p=0

(k + m− 2p− q + λ)Γ(k + m− 2p− q + 2λ)

p! (k + m− 2p− q)! Γ(k + m− p− q + λ + 1)
×

4F3

(
−p, 1

2 −
k
2 ,− k

2 ,−k−m + p + q− λ

− k
2 −

m
2 , 1

2 −
k
2 −

m
2 ,− 1

2 − k− α

∣∣∣∣1)U(λ)
k+m−q−2p(x)

+
22−m+q+2α−2λk(k + m− 1)! Γ(α + 1)Γ

(
k + α + 1

2

)
Γ(k + 2α + 2)Γ

(
λ + 1

2

) ×

b 1
2 (k+m−q)c

∑
p=0

(1− k−m + 2p + q− λ)Γ(k + m− 2p− q + 2λ− 1)
p! (k + m− 2p− q− 1)! Γ(k + m− p− q + λ)

×

4F3

(
−p, 1

2 −
k
2 , 1− k

2 , 1− k−m + p + q− λ
1
2 −

k
2 −

m
2 , 1− k

2 −
m
2 , 1

2 − k− α

∣∣∣∣1)U(λ)
k+m−q−2p−1(x).

(18)

Proof. The proof is similar to that given in the proof of Theorem 2. It is based on utilizing
the power form representation of the polynomials V(α,α+1)

k (x) along with the utilization of
the inversion formula of the ultraspherical polynomials given by [39]

xp =
21−pΓ(λ + 1)

Γ(2λ + 1)

b p
2 c

∑
t=0

(p− 2t + λ)p! Γ(p− 2t + 2λ)

t! (p− 2t)! Γ(p− t + λ + 1)
U(λ)

p−2t(x).

As consequences of Theorem 3, the moments of the polynomials V(α,α+1)
k (x) are given

in terms of the ultraspherical polynomials. In addition, the derivatives of these polynomials
are expressed in terms of the ultraspherical polynomials. The following two corollaries
exhibit these results.

Corollary 5. The moments of the polynomials V(α,α+1)
k (x) can be expressed in terms of the ultras-

pherical polynomials as

xr V(α,α+1)
k (x) =

22−r+2α−2λ(k + r)! Γ(α + 1)Γ
(
k + α + 3

2
)

Γ(k + 2α + 2)Γ
(

λ + 1
2

) ×

b k+r
2 c

∑
p=0

(k + r− 2p + λ)Γ(k + r− 2p + 2λ)

p! (k + r− 2p)! Γ(k + r− p + λ + 1) 4F3

(
−p, 1

2 −
k
2 ,− k

2 ,−k− r + p− λ

− k
2 −

r
2 , 1

2 −
k
2 −

r
2 ,− 1

2 − k− α

∣∣∣∣1)U(λ)
k+r−2p(x)

+
22−r+2α−2λk(k + r− 1)! Γ(α + 1)Γ

(
k + α + 1

2

)
Γ(k + 2α + 2)Γ

(
λ + 1

2

) ×

b 1
2 (k+r−1)c

∑
p=0

(1− k− r + 2p− λ)Γ(k + r− 2p + 2λ− 1)
p! (k + r− 2p− 1)! Γ(k + r− p + λ)

×

4F3

(
−p, 1

2 −
k
2 , 1− k

2 , 1− k− r + p− λ
1
2 −

k
2 −

r
2 , 1− k

2 −
r
2 , 1

2 − k− α

∣∣∣∣1)U(λ)
k+r−2p−1(x).

(19)

Proof. Formula (19) can be directly obtained from Formula (18) only by setting q = 0.
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Remark 4. It is worth noting that the two 4F3(1) hypergeometric functions that appear in (19) can
be summed for specific choices of the included parameters. Hence, simple moment formulas can be
deduced. The following corollary gives one of these formulas.

Corollary 6. For two non-negative integers r and k such that k ≥ r, the following moment
formula holds:

xr Vk(x) = 2−rr!
b k+r

2 c
∑
p=0

1
p! (r− p)!

(Uk+r−2p(x)−Uk+r−2p−1(x)).

Proof. The substitution by α = − 1
2 and λ = 1 in (19) produces the formula shown below:

xr Vk(x) = 2−r(k + r)!
b k+r

2 c
∑
p=0

k + r− 2p + 1
p! (k + r− p + 1)! 4F3

(
−p,−1− k− r + p, 1

2 −
k
2 ,− k

2
−k,− k

2 −
r
2 , 1

2 −
k
2 −

r
2

∣∣∣∣1)Uk+r−2p(x)

+ 2−r(k + r− 1)!
b 1

2 (k+r−1)c
∑
p=0

2p− r− k
p! (k + r− p)! 4F3

(
−p,−k− r + p, 1

2 −
k
2 , 1− k

2 ,
1− k, 1

2 −
k
2 −

r
2 , 1− k

2 −
r
2

∣∣∣∣1)Uk+r−2p−1(x).

(20)

We can employ any suitable symbolic algorithm to reduce the two 4F3(1) that appear
in (20). Now, set

Mp,k,r = 4F3

(
−p,−1− k− r + p, 1

2 −
k
2 ,− k

2
−k,− k

2 −
r
2 , 1

2 −
k
2 −

r
2

∣∣∣∣1),

and

M̄p,k,r = 4F3

(
−p,−k− r + p, 1

2 −
k
2 , 1− k

2 ,
1− k, 1

2 −
k
2 −

r
2 , 1− k

2 −
r
2

∣∣∣∣1).

Zeilberger’s algorithm (see, [40]) enables one to obtain the following recurrence rela-
tions satisfied respectively by Mp,k,r and M̄p,k,r:

(p− 1)(p− r− 2)(k− 2 p + r + 5)Mp−2,k,r + (−2 p + k + r + 3)×(
2 k p− k r− 2 p2 + 2 p r− 2 k + 6 p− 2 r− 4

)
Mp−1,k,r

+ (k− p + 1)(k− p + r + 2)(k− 2 p + r + 1)Mp,k,r = 0, M0,k,r = 1, M1,k,r =
r

k + r− 1
,

(21)

(p− 1)(p− r− 2)(k− 2 p + r + 4)M̄p−2,k,r + (r + 2− 2 p + k)×(
2 kp− kr− 2 p2 + 2 p r− 2 k + 4 p− r− 2

)
M̄p−1,k,r

+ (k− p + r + 1)(k− p)(k + r− 2 p) M̄p,k,r = 0, M̄0,k,r = 1, M̄1,k,r =
r

k + r− 2
.

(22)

The exact solutions of (21) and (22) are given respectively by

Mp,k,r =
(r− p + 1)p

(k + r− 2p + 1)(k + r− p + 2)p−1
, (23)

M̄p,k,r =
(r− p + 1)p

(k + r− 2p).(k + r− p + 1)p−1
. (24)

The substitution by (23) and (24) into (20) yields the following simplified moment for-
mula

xr Vk(x) = 2−rr!
b k+r

2 c
∑
p=0

1
p! (r− p)!

(Uk+r−2p(x)−Uk+r−2p−1(x)).
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This finalizes the proof of Corollary 6.

Corollary 7. Let k and q be non-negative integers such that k ≥ q. The following derivatives
formula holds

DqV(α,α+1)
k (x) =

2q+2α−2λ+2k! Γ(α + 1)Γ
(
k + α + 3

2
)

Γ(k + 2α + 2)Γ
(

λ + 1
2

) ×

⌊
k−q

2

⌋
∑
p=0

(k− 2p− q + λ)Γ(k− 2p− q + 2λ)
(
q + α− λ + 3

2
)

p

p! (k− 2p− q)! Γ(k− p− q + λ + 1)
(
k− p + α + 3

2
)

p

×(
U(λ)

k−q−2p(x)− 2(k− 2p− q)(k− 2p− q + λ− 1)(k− p− q + λ)

(2k− 2p + 2α + 1)(k− 2p− q + λ)(k− 2p− q + 2λ− 1)
U(λ)

k−q−2p−1(x)
)

.

(25)

Proof. Setting r = 0 in Formula (18) produces the formula shown below:

DqV(α,α+1)
k (x) =

2q+2α−2λ+2 k! Γ(α + 1)Γ
(
k + α + 3

2
)

Γ(k + 2α + 2) Γ
(

λ + 1
2

) ×


⌊

k−q
2

⌋
∑
p=0

(k− 2p− q + λ)Γ(k− 2p− q + 2λ)

p! (k− 2p− q)! Γ(k− p− q + λ + 1) 2F1

(
−p,−k + p + q− λ

− 1
2 − k− α

∣∣∣∣1)U(λ)
k−q−2p(x)

+
b 1

2 (k−q−1)c
∑
p=0

(1− k + 2p + q− λ)Γ(k− 2p− q + 2λ− 1)
p! (k− 2p− q− 1)! Γ(k− p− q + λ)

×

2F1

(
−p, 1− k + p + q− λ

1
2 − k− α

∣∣∣∣1) U(λ)
k−q−2p−1(x)

)
.

Based on the Chu–Vandermonde identity, it is easy to see the following two identities

2F1

(
−p,−k + p + q− λ

− 1
2 − k− α

∣∣∣∣1) =

(
α− λ + q + 3

2
)

p(
k + α + 3

2 − p
)

p

,

2F1

(
−p, 1− k + p + q− λ

1
2 − k− α

∣∣∣∣1) =

(
α− λ + q + 3

2
)

p(
k + α + 1

2 − p
)

p

,

and therefore, Formula (25) can be obtained.

Corollary 8. Assume that k and q are non-negative integers such that k ≥ q. The following
derivative formulas hold:

DqV(α,α+1)
k (x) =

2q+2α+1k! Γ(α + 1)Γ
(
k + α + 3

2
)

Γ(k + 2α + 2)

⌊
k−q

2

⌋
∑
p=0

(
k− 2p− q + 1

2

)
(q + α + 1)p

p! Γ
(
k− p− q + 3

2
)(

k− p + α + 3
2
)

p

×(
Pk−q−2p(x)− (2k− 4p− 2q− 1) (2k− 2p− 2q + 1)

(2k− 4p− 2q + 1)(2k− 2p + 2α + 1)
Pk−q−2p−1(x)

)
,

(26)
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DqV(α,α+1)
k (x) =

2q+2α+1k! Γ(α + 1)Γ
(
k + α + 3

2
)

√
πΓ(k + 2α + 2)

⌊
k−q

2

⌋
∑
p=0

Γ
(
k− p + α + 3

2
)

Γ
(

p + q + α + 3
2
)

p! (k− p− q)! Γ
(
k + α + 3

2
)
Γ
(
q + α + 3

2
)×(

ck−q−2p Tk−q−2p(x) +
2 ck−q−2p−1 (−k + p + q))

2k− 2p + 2α + 1
Tk−q−2p−1(x)

)
,

(27)

DqV(α,α+1)
k (x) =

2q+2α+1k! Γ(α + 1)Γ
(
k + α + 3

2
)

√
πΓ(k + 2α + 2)

⌊
k−q

2

⌋
∑
p=0

Γ
(
k− p + α + 3

2
)
Γ
(

p + q + α + 1
2

)
p! (k− p− q + 1)! Γ

(
k + α + 3

2
)
Γ
(

q + α + 1
2

)×
(
(k− 2p− q + 1)Uk−2p−q(x) +

2(k− p− q + 1)(−k + 2p + q)
2k− 2p + 2α + 1

Uk−2p−q−1(x)
)

,

(28)

where ck is defined as

ck =

{
1
2 , k = 0,
1, k > 0.

(29)

Proof. Setting λ = 1
2 , 0, 1, in (25) yields, respectively, (26), (27), and (28).

The following corollary gives the derivatives of the Chebyshev polynomials of the
third-kind in terms of the Legendre and Chebyshev polynomials of the first- and second-kinds.

Corollary 9. Assume that k and q are non-negative integers such that k ≥ q. The following
derivative formulas hold:

DqVk(x) =2q√π k!

⌊
k−q

2

⌋
∑
p=0

(
k− 2p− q + 1

2

)(
q + 1

2

)
p

p! Γ
(
k− p− q + 3

2
)
(k− p + 1)p

×(
Pk−2p−q(x)− (2k− 4p− 2q− 1)(2k− 2p− 2q + 1)

2(k− p)(2k− 4p− 2q + 1)
Pk−2p−q−1(x)

)
,

(30)

DqVk(x) =2q+1k!

⌊
k−q

2

⌋
∑
p=0

(p + q)! (k− p)!
p! q! (k− p− q)! k!

×(
ck−2p−q Tk−2p−q(x) +

ck−2p−q−1 (−k + p + q)
k− p

Tk−2p−q−1(x)

)
,

(31)

DqVk(x) =2q q!

⌊
k−q

2

⌋
∑
p=0

(p + q− 1)! (k− p)!
p! (q− 1)! (k− p− q + 1)! k!

×(
(k− 2p− q + 1)Uk−2p−q(x) +

2(k− p− q + 1)(−k + 2p + q)
2k− 2p + 2α + 1

Uk−2p−q−1(x)
)

,

(32)

where ck is defined in (29).

Proof. Setting α = − 1
2 in (26), (27), and (28) yields, respectively, (30), (31), and (32).

4. Some New Expressions for the Derivatives of Different Polynomials

This section is dedicated to developing new derivative formulas for various polynomi-
als in terms of the polynomials V(α,α+1)

k (x). Inversion formulas for these formulas will also
be obtained.
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4.1. Expressions of the Derivatives of Some Polynomials in Terms of V(α,α+1)
k (x)

Theorem 4. Assume that k and q are non-negative integers such that k ≥ q. The following
derivative formula for Hermite polynomials holds:

Dq Hk(x) =
2q−2α−1√π k!

Γ(α + 1)
×

⌊
k−q

2

⌋
∑
p=0

(−1)p Γ(k− 2p− q + 2α + 2) 1F1
(
−p; k− 2p− q + α + 3

2 ; 1
)

p! (k− 2p− q)! Γ
(
k− 2p− q + α + 3

2
) V(α,α+1)

k−q−2p(x)

+
b 1

2 (k−q−1)c
∑
p=0

(−1)p (k− 2p− q) Γ(k− 2p− q + 2α + 2) 1F1
(
−p; k− 2p− q + α + 3

2 ; 1
)

(k− 2p− q + 2α + 1) p! (k− 2p− q)! Γ
(
k− 2p− q + α + 3

2
) V(α,α+1)

k−q−2p−1(x)

.

(33)

Proof. The proof can be calculated using the power form representation of the Hermite
polynomials given by [39]

Hk(x) = k!
b k

2c
∑

m=0

(−1)m2k−2m

m! (k− 2m)!
xk−2m,

along with the inversion Formula (6).

Theorem 5. Assume that k and q are non-negative integers such that k ≥ q. The following
derivative formula for the generalized Fibonacci polynomials FA,B

k (x) that is defined in (9) holds:

DqFA,B
k (x) =

2−1−k+q−2α Ak√πk!
Γ(α + 1)

⌊
k−q

2

⌋
∑
p=0

Γ(k− 2p− q + 2α + 2)
p! (k− 2p− q)! Γ

(
k− p− q + α + 3

2
)×

2F1

(
−p,− 1

2 − k + p + q− α
−k

∣∣∣∣−4 B
A2

)
×(

V(α,α+1)
k−q−2p(x) +

(k− 2p− q)
k− 2p− q + 2α + 1

V(α,α+1)
k−q−2p−1(x)

)
.

Proof. Similar to the proof of Theorem 4.

Theorem 6. Assume that k and q are non-negative integers such that k ≥ q. The following
derivative formula for the ultraspherical polynomials holds

DqU(λ)
k (x) =

2q−2α+2λ−2k! Γ
(

λ + 1
2

)
Γ(k + λ)

Γ(α + 1)Γ(k + 2λ)
×

⌊
k−q

2

⌋
∑
p=0

Γ(k− 2p− q + 2α + 2)
( 3

2 − p− q + α− λ
)

p

p! (k− 2p− q)! Γ
(
k− p− q + α + 3

2
)
(1− k− λ)p

×(
V(α,α+1)

k−q−2p(x) +
(k− 2p− q)

k− 2p− q + 2α + 1
V(α,α+1)

k−q−2p−1(x)
)

.

(34)

Proof. Similar to the proof of Theorem 4.
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Corollary 10. The following are, respectively, the expressions of the derivatives of the Legendre,
Chebyshev polynomials of the first- and second-kinds in terms of the polynomials V(α,α+1)

k (x) as

DqPk(x) =
2q−2α−1Γ

(
k + 1

2

)
Γ(α + 1)

⌊
k−q

2

⌋
∑
p=0

Γ(k− 2p− q + 2α + 2)(1− p− q + α)p

p! (k− 2p− q)! Γ
(
k− p− q + α + 3

2
)( 1

2 − k
)

p

×

(
Vα,α+1

k−2p−q(x) +
(k− 2p− q)

k− 2p− q + 2α + 1
Vα,α+1

k−2p−q−1(x)
)

, k ≥ q,

(35)

DqTk(x) =
2q−2α−2√πk!

Γ(α + 1)

⌊
k−q

2

⌋
∑
p=0

Γ(k− 2p− q + 2α + 2)
( 3

2 − p− q + α
)

p

p! (k− 2p− q)! Γ
(
k− p− q + α + 3

2
)
(1− k)p

×(
V(α,α+1)

k−2p−q(x) +
(k− 2p− q)

k− 2p− q + 2α + 1
V(α,α+1)

k−2p−q−1(x)
)

, k ≥ q,

(36)

DqUk(x) =
2q−2α−1√πk!

Γ(α + 1)

⌊
k−q

2

⌋
∑
p=0

Γ(k− 2p− q + 2α + 2)
(

1
2 − p− q + α

)
p

p! (k− 2p− q)! Γ
(
k− p− q + α + 3

2
)
(−k)p

×(
V(α,α+1)

k−2p−q(x) +
(k− 2p− q)

k− 2p− q + 2α + 1
V(α,α+1)

k−2p−q−1(x)
)

, k ≥ q.

(37)

Proof. Formulas (35), (36), and (37) can be obtained directly as special cases of (34) setting,
respectively, λ = 1

2 , 0, and 1.

Corollary 11. The following are, respectively, the expressions of the derivatives of the Legendre,
Chebyshev polynomials of the first- and second-kinds in terms of the Chebyshev polynomials of the
third-kind Chebyshev polynomials Vk(x).

DqPk(x) =
2qΓ
(

k + 1
2

)
√

π

⌊
k−q

2

⌋
∑
p=0

(
q + 1

2

)
p

p! (k− p− q)!
(

k− p + 1
2

)
p

(
Vk−2p−q(x) + Vk−2p−q−1(x)

)
,

k ≥ q,

(38)

DqTk(x) =2q−1k!

⌊
k−q

2

⌋
∑
p=0

(q)p

p! (k− p− q)! (k− p)p

(
Vk−2p−q(x) + Vk−2p−q−1(x)

)
, k ≥ q, (39)

DqUk(x) =2qk!

⌊
k−q

2

⌋
∑
p=0

(q + 1)p

p! (k− p− q)! (k− p + 1)p

(
Vk−2p−q(x) + Vk−2p−q−1(x)

)
, k ≥ q. (40)

Proof. Formulas (38), (39), and (40) are special ones of, respectively, (35), (36), and (37) only
setting α = − 1

2 .

4.2. Expressions for the Derivatives of V(α,α+1)
k (x) in Terms of Some Other Polynomials

In this section, some of the inversion formulas to the derivative formulas given in
Section 4.1 can be introduced using similar techniques. Some of these results are displayed
without proof.
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Theorem 7. Assume that k and q are non-negative integers such that k ≥ q. The following formula
is valid for the derivatives of V(α,α+1)

k (x):

DqV(α,α+1)
k (x) =

2q+2α+1k! Γ(α + 1)Γ
(
k + α + 3

2
)

√
πΓ(k + 2α + 2)

⌊
k−q

2

⌋
∑
p=0

1F1

(
−p;− 1

2 − k− α;−1
)

p! (k− 2p− q)!
Hk−q−2p(x)

−
2q+2α+1k! Γ(α + 1)Γ

(
k + α + 1

2

)
√

πΓ(k + 2α + 2)

b 1
2 (k−q−1)c

∑
p=0

1F1

(
−p; 1

2 − k− α;−1
)

p! (k− 2p− q− 1)!
Hk−q−2p−1(x).

(41)

Theorem 8. Assume that k and q are non-negative integers such that k ≥ q. The following formula
is valid for the derivatives of V(α,α+1)

k (x):

DqV(α,α+1)
k (x) =

2k+2α+1 A−k+qk! Γ(α + 1)Γ
(
k + α + 3

2
)

√
πΓ(k + 2α + 2)

×
⌊

k−q
2

⌋
∑
p=0

(−1)p+1Bp(−1− k + 2p + q)
p! (k− p− q + 1)! 2F1

(
−p,−1− k + p + q
− 1

2 − k− α

∣∣∣∣−A2

4 B

)
FA,B

k−q−2p(x)

+
2k+2α A1−k+qk! Γ(α + 1)Γ

(
k + α + 1

2

)
√

πΓ(k + 2α + 2)
×

b 1
2 (k−q−1)c

∑
p=0

(−1)p Bp (−k + 2p + q)
p! (k− p− q)! 2F1

(
−p,−k + p + q

1
2 − k− α

∣∣∣∣−A2

4 B

)
FA,B

k−q−2p−1(x).

4.3. Some Connection Formulas

Since all the results in Sections 4.1 and 4.2 are valid for q = 0, for every derivatives
formula, we can easily deduce a connection formula. In this section, we will present two of
these formulas.

Corollary 12. The Hermite-generalized third-kind Chebyshev and the generalized third-kind Her-
mite connection formulas are:

Hk(x) =
2−1−2α

√
πk!

Γ(α + 1)

b k
2c

∑
p=0

(−1)p Γ(k− 2p + 2α + 2) 1 F1
(
−p; k− 2p + α + 3

2 ; 1
)

p! (k− 2p)! Γ(k− 2p + α + 3
2 )

V(α,α+1)
k−2p (x)

+
b k−1

2 c
∑
p=0

(−1)p(k− 2p)Γ(k− 2p + 2α + 2) 1 F1
(
−p; k− 2p + α + 3

2 ; 1
)

p!(k− 2p)!(k− 2p + 2α + 1) Γ(k− 2p + α + 3
2 )

V(α,α+1)
k−2p−1(x)

,

(42)

V(α,α+1)
k (x) =

22α+1 k! Γ(α + 1)Γ
(
k + α + 3

2
)

√
π Γ(k + 2α + 2)

b k
2c

∑
p=0

1F1

(
−p;− 1

2 − k− α;−1
)

p! (k− 2p)!
Hk−2p(x)

−
22α+1k! Γ(α + 1) Γ

(
k + α + 1

2

)
√

π Γ(k + 2α + 2)

b 1
2 (k−1)c
∑
p=0

1F1

(
−p; 1

2 − k− α;−1
)

p! (k− 2p− 1)!
Hk−2p−1(x).

(43)

Corollary 13. Formula (42) can be immediately obtained from Formula (33) by setting q = 0,
while Formula (43) can be immediately obtained from Formula (41) by setting q = 0.

5. Some New Linearization Formulas Involving V (α,α+1)
k (x)

This section is confined to presenting some linearization formulas involving the
polynomials V(α,α+1)

k (x).
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Theorem 9. Let i and j be any non-negative integer. The following linearization formula applies

V(α,α+1)
i (x)V(α,α)

j (x) =
4αi! j! Γ(α + 1)

√
πΓ
(

α + 1
2

)
Γ(i + 2α + 3)Γ(j + 2α + 1)

×

min(i,j)

∑
p=0

Γ
(
i− p + α + 3

2
)
Γ
(

j− p + α + 1
2

)
Γ
(

p + α + 1
2

)
Γ(i + j− p + 2α + 2)

p! (i− p)! (j− p)! Γ
(
i + j− p + α + 3

2
) V(α,α+1)

j+i−2p (x)

+
min(i,j)

∑
p=0

Γ
(

i− p + α + 1
2

)
Γ
(

j− p + α + 1
2

)
Γ
(

p + α + 3
2
)
Γ(i + j− p + 2α + 1)

p! (i− p)! (j− p− 1)! Γ
(

α + 1
2

)
Γ(i + j− p + α)

V(α,α+1)
j+i−2p−1(x)

.

(44)

Proof. If we make use of the power form representation of the V(α,α)
j (x), then we can write

V(α,α+1)
i (x)V(α,α)

j (x) =

⌊
j
2

⌋
∑
r=0

Hr,j xj−2rV(α,α+1)
i (x), (45)

where Hr,j is given by

Hr,j =
(−1)r2j−2r−1 j! Γ

(
j− r + α + 1

2

)
Γ(2α + 2)

(j− 2r)! r! Γ
(
α + 3

2
)
Γ(j + 2α + 1)

.

The moment formula that is given in Equation (15) enables one to convert (45) into the
following one:

V(α,α+1)
i (x)V(α,α)

j (x) =

⌊
j
2

⌋
∑
r=0

Hr,j

b 1
2 (i+j−2r)c

∑
p=0

Up,i,j−2r V(α,α+1)
i+j−2r−2p(x)

+
b 1

2 (i+j−2r−1)c
∑
p=0

Ūp,i,j−2r V(α,α)
i+j−2r−2p−1(x)

,

(46)

where the coefficients Up,j,m and Ūp,j,m are as given by the following formulas:

Up,j,m =
p

∑
`=0

(−1)` 2−m j! (j− 2`+ m− 1)! Γ
(

j− `+ α + 1
2

)
Γ(j + m− 2p + 2α + 2)

`! (j− 2`)! (p− `)! (j + m− 2p)! Γ
(

j− `+ m− p + α + 3
2
)
Γ(j + 2α + 2)

×(
(j− 2`)(`− p) +

1
2
(j− 2`+ m)(2j− 2`+ 2α + 1)

)
,

Ūp,j,m =
p

∑
`=0

(−1)` 2−1−m(m + 2`m + 2jp− 4`p + 2mα)j!(j− 2`+ m− 1)!
`!(j− 2`)!(j + m− 2p− 1)!(p− `)!Γ

(
j− `+ m− p + α + 3

2
)
Γ(j + 2α + 2)

×

Γ
(

j− `+ α +
1
2

)
Γ(j + m− 2p + 2α + 1).

After some lengthy algebraic computations, Formula (46) can be transformed into:

V(α,α+1)
i (x)V(α,α)

j (x) =

⌊
i+j
2

⌋
∑
p=0

Mp,i,j V(α,α+1)
i+j−2p (x) +

b 1
2 (i+j−1)c

∑
p=0

M̄p,i,j V(α,α+1)
i+j−2p−1(x),

where the coefficients Mp,i,j and M̄p,i,j

Mp,i,j =
p

∑
`=0

H`,j Up−`,i,j−2`,
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and

M̄p,i,j =
p

∑
`=0

H`,j Ūp−`,i,j−2`.

Making use of any suitable symbolic algorithm, and in particular, Zeilberger’s algo-
rithm [40], it can be shown that Mp,i,j and M̄p,i,j satisfy, respectively, the two following
recurrence relations of order one:

(p + 1)(2i− 2p + 2α + 1)(2j− 2p + 2α− 1)(i + j− p + 2α + 1)Mp+1,i,j

− (i− p)(j− p)(2i + 2j− 2p + 2α + 1)(2p + 2α + 1)Mp,i,j = 0,
(47)

with the initial value:

M0,i,j =
4α Γ(α + 1) Γ

(
i + α + 3

2
)

Γ
(

j + α + 1
2

)
Γ(i + j + 2α + 2)

√
π Γ
(
i + j + α + 3

2
)
Γ(i + 2α + 2)Γ(j + 2α + 1)

,

and

(p + 1)(1− 2j + 2p− 2α)(2i− 2p + 2α− 1)(i + j− p + 2α) M̄p+1,i,j

− (i− p)(1− j + p)(2i + 2j− 2p + 2α + 1)(2p + 2α + 3) M̄p,i,j,
(48)

with the initial value:

M̄0,i,j =
22α−1 j (2α + 1) Γ(α + 1)Γ

(
i + α + 1

2

)
Γ
(

j + α + 1
2

)
Γ(i + j + 2α + 1)

√
π Γ
(
i + j + α + 3

2
)
Γ(i + 2α + 2)Γ(j + 2α + 1)

.

The two recurrence relations in (47) and (48) can be solved to give:

Mp,i,j =
4αi! j! Γ(α + 1)Γ

(
i− p + α + 3

2
)
Γ
(

j− p + α + 1
2

)
Γ
(

p + α + 1
2

)
Γ(i + j− p + 2α + 2)

√
π p! (i− p)! (j− p)! Γ

(
α + 1

2

)
Γ
(
i + j− p + α + 3

2
)
Γ(i + 2α + 2)Γ(j + 2α + 1)

,

and

M̄p,i,j =
4αi! j! Γ(α + 1)Γ

(
i− p + α + 1

2

)
Γ
(

j− p + α + 1
2

)
Γ
(

p + α + 3
2
)
Γ(i + j− p + 2α + 1)

√
π p! (i− p)! (j− p− 1)! Γ

(
α + 1

2

)
Γ
(
i + j− p + α + 3

2
)
Γ(i + 2α + 2)Γ(j + 2α + 1)

.

Therefore, Formula (44) can be obtained.

Remark 5. Taking the limit as α tends to − 1
2 , a specific linearization formula of Formula (44) can

be obtained. The following corollary exhibits this result.

Corollary 14. Let i and j be any non-negative integers. The following linearization formula holds:

Vi(x) Tj(x) =
1
2
(
Vi+j(x) + Vj−i−1(x)

)
. (49)

Remark 6. The linearization Formula (49) can be translated into the following simple trigonomet-
ric identity:

cos
((

j + i + 1
2

)
θ
)
+ cos

((
j− i− 1

2

)
θ
)
= 2 cos

((
i + 1

2

)
θ
)

cos(jθ).

Theorem 10. Let i and j be any non-negative integer. The following linearization formula applies
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V(α,α)
i (x)V(α,α)

j (x) =
22α−1 j! Γ(α + 1)√

πΓ(i + 2α + 2) Γ(j + 2α + 1)
×

min(i,j)

∑
p=0

(i + j− 2p)Γ
(

i− p + α + 1
2

)
Γ
(

j− p + α + 1
2

)
Γ(i + j− p + 2α + 1)(i− p + 1)p

(
α + 1

2

)
p

(j− p)! p! Γ
(
i + j− p + α + 3

2
) ×(

(i + j− 2p + 2α + 1)
i + j− 2p

V(α,α+1)
i+j−2p (x) + V(α,α+1)

i+j−2p−1(x)
)

.

(50)

Proof. We make use of the following linearization formula (see [37])

V(α,α)
i (x)V(α,α)

j (x) =
4α Γ(α + 1)√

π Γ(i + 2α + 1)Γ(j + 2α + 1)
×

min(i,j)

∑
p=0

Γ
(

i− p + α + 1
2

)
Γ
(

j− p + α + 1
2

)
Γ(i + j− p + 2α + 1)(i− p + 1)p (j− p + 1)p

(
α + 1

2

)
p

p! Γ
(

i + j− 2p + α + 1
2

)(
i + j− 2p + α + 3

2
)

p

×

V(α,α)
i+j−2p(x).

(51)

If we insert the connection Formula (3) into the last linearization formula, then the
linearization Formula (50) can be obtained.

As a special case of Theorem 10, the following linearization formula can be deduced
by taking the limit as α tends to − 1

2 .

Corollary 15. Let i and j be any non-negative integers. The following linearization formula holds:

Ti(x) Tj(x) =
1
4
(
Vi+j(x) + Vi+j−1(x) + Vj−i(x) + Vj−i−1(x)

)
. (52)

Remark 7. The linearization Formula (52) can be translated into the following trigonometric iden-
tity:

cos
((

i + j + 1
2

)
θ
)
+ cos

((
i + j− 1

2

)
θ
)
+ cos

((
j− i + 1

2

)
θ
)
+ cos

((
j− i− 1

2

)
θ
)

= 4 cos(i θ) cos(j θ) cos
(

θ

2

)
.

Theorem 11. Let i and j be any non-negative integer. The following linearization formula applies

V(α,α+1)
i (x)V(α,α)

j (x) =
min(i,j)

∑
p=0

Gp,i,j V(α,α)
i+j−2p(x) +

min(i,j)

∑
p=0

Ḡp,i,j V(α,α)
i+j−2p−1(x), (53)

where the linearization coefficients Gp,i,j and Ḡp,i,j are given by the following formulas:

Gp,i,j =
4α Γ(α + 1)√

π Γ(j + 2α + 1)
×

p

∑
`=0

(2i− 4`+ 2α + 1) Γ
(

i− `− p + α + 1
2

)
Γ
(

j + `− p + α + 1
2

)
Γ(i + j− `− p + 2α + 1)

(p− `)! Γ
(

i + j− 2p + α + 1
2

)
Γ(i− 2`+ 2α + 1)

×

(i− 2`+ 1)2`(i− `− p + 1)p−`(j + `− p + 1)p−`
(

α + 1
2

)
p−`(

i + j− 2p + α + 3
2
)

p−`(i− 2`+ 2α + 1)2`+1
,
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Ḡp,i,j =
22α−1i! j! Γ(α + 1)

√
π Γ
(

α + 1
2

)
Γ(i + 2α + 2) Γ(j + 2α + 1)

×

p

∑
`=0

(1− 2i + 4`− 2α)(2i + 2j− 4p + 2α)Γ
(

i− `− p + α− 1
2

)
Γ
(

j + `− p + α + 1
2

)
)

(i− `− p− 1)! (j + `− p)! (p− `)!
×

Γ
(

p− `+ α + 1
2

)
Γ(i + j− `− p + 2α)

Γ
(

i + j− `− p + α + 1
2

) .

Proof. Based on the connection Formula (4), we can write

V(α,α+1)
i (x)V(α,α)

j (x) =
i

∑
k=0

Mk,iV
(α,α)
i−k (x)V(α,α)

j (x),

where the coefficients Mk,i are given by the following formula

Mk,i =
(−1)k (2i− 2k + 2α + 1)(i− k + 1)k

(i− k + 2α + 1)k+1
.

Based on the linearization Formula (51), we have

V(α,α+1)
i (x)V(α,α)

j (x) =
i

∑
k=0

Mk,i

min(i−k,j)

∑
`=0

B`,i−k,j V(α,α)
i+j−k−2`(x),

where the coefficients Bp,i,j are given by

Bp,i,j =
4αΓ(α + 1)Γ

(
i− p + α + 1

2

)
Γ
(

j− p + α + 1
2

)
Γ(i + j− p + 2α + 1)

√
π p! Γ

(
i + j− 2p + α + 1

2

)
Γ(i + 2α + 1)Γ(j + 2α + 1)

×

(i− p + 1)p(j− p + 1)p

(
α + 1

2

)
p(

i + j− 2p + α + 3
2
)

p

.

Some algebraic computations lead to the following linearization formula

V(α,α+1)
i (x)V(α,α)

j (x) =
min(i,j)

∑
p=0

(
p

∑
`=0

M2`,i, Bp−`,i−2`,j

)
V(α,α)

i+j−2p(x)

+
min(i,j)

∑
p=0

(
p

∑
`=0

M2`+1,iBp−`,i−2`−1,j

)
V(α,α)

i+j−2p−1(x).

The last formula leads to the linearization Formula (53).

Corollary 16. Let i and j be any non-negative integers. The following linearization formula holds:

Vi(x) Tj(x) =
2i

∑
p=0

(−1)p Ti+j−p(x). (54)

Proof. Formula (54) can be obtained as a special case of Formula (53) taking the limit as α
tends to − 1

2 .
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Remark 8. The linearization Formula (54) can be translated into the following trigonometric identity:

2i

∑
p=0

(−1)p cos((j + i− p)θ) =
cos
((

i + 1
2

)
θ
)

cos(j θ)

cos
(

θ
2

) .

The following theorem exhibits the product formula of the polynomials V(α,α+1)
k (x)

with the generalized Fibonacci polynomials that are defined in (9) in terms of the general-
ized Fibonacci polynomials.

Theorem 12. Let i and j be any non-negative integers, the following linearization formula holds:

V(α,α+1)
i (x) FA,B

j (x) =
2i+2α+1 A−i Γ(α + 1) Γ

(
1
2 (2i + 2α + 3)

)
√

π Γ(i + 2α + 2)
×

i

∑
p=0

(−B)p
(

i
p

)
2F1

(
−p,−i + p
− 1

2 − i− α

∣∣∣∣− A2

4 B

)
FA,B

j+i−2p(x)

−
2i+2α A1−i i! Γ(α + 1)Γ

(
1
2 (2i + 2α + 1)

)
√

π Γ(i + 2α + 2)

i−1

∑
p=0

(−B)p

p! (i− p− 1)!
×

2F1

(
−p, 1− i + p

1
2 − i− α

∣∣∣∣− A2

4B

)
FA,B

j+i−2p−1(x).

(55)

Proof. The analytic form of the polynomials V(α,α+1)
k (x) allows us to write

V(α,α+1)
i (x) FA,B

j (x) =
i! Γ(α + 1)√

π Γ(i + 2α + 2)

b i
2c

∑
r=0

(−1)r 2i−2r+2α+1 Γ
(
i− r + α + 3

2
)

r! (i− 2r)!
xi−2r FA,B

j (x)

+
b i−1

2 c
∑
r=0

(−1)r+1 2i−2r+2α Γ
(

i− r + α + 1
2

)
r! (i− 2r− 1)!

xi−2r−1 FA,B
j (x)

.

The moment formula of the generalized Fibonacci polynomials in (10) turns the last
formula into the following one:

V(α,α+1)
i (x) FA,B

j (x) =
i! Γ(α + 1)√

π Γ(i + 2α + 2)

b i
2c

∑
r=0

(−1)r A−i+2r 2i−2r+2α+1 Γ
(
i− r + α + 3

2
)

r! (i− 2r)!
×

i−2r

∑
m=0

(−B)m
(

i− 2r
m

)
FA,B

j+i−2r−2m(x) +
b i−1

2 c
∑
r=0

(−1)r+1 A1−i+2r2i−2r+2αΓ
(

i− r + α + 1
2

)
r! (i− 2r− 1)!

×

i−2r−1

∑
m=0

(−B)m
(

i− 2r− 1
m

)
FA,B

j+i−2r−2m−1(x)

)
,
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which can be transformed again after some algebraic computations into the following form:

V(α,α+1)
i (x) FA,B

j (x) =
i! Γ(α + 1)√

π Γ(i + 2α + 2)
× i

∑
p=0

p

∑
`=0

(−1)` 2i−2`+2α+1 A−i+2` (−B)p−` (i−2`
p−`) Γ

(
i− `+ α + 3

2
)

`! (i− 2`)!
FA,B

j+i−2p(x)

+
i−1

∑
p=0

p

∑
`=0

(−1)`+12i−2`+2α A1−i+2`(−B)p−`Γ
(

i− `+ α + 1
2

)
`! (i− `− p− 1)! (p− `)!

FA,B
j+i−2p−1(x)

.

Making use of the two following identities:

p

∑
`=0

(−1)` 2i−2`+2α+1 A−i+2` (−B)p−` (i−2`
p−`)Γ

(
i− `+ α + 3

2
)

`! (i− 2`)!

=
2i+2α+1 A−i (−B)p ( i

p)Γ
(
i + α + 3

2
)

i! 2F1

(
−p,−i + p
− 1

2 − i− α

∣∣∣∣− A2

4 B

)
,

p

∑
`=0

(−1)`+1 2i−2`+2α A1−i+2` (−B)p−` Γ
(

i− `+ α + 1
2

)
`! (i− `− p− 1)! (p− `)!

= −
2i+2α A1−i(−B)pΓ

(
i + α + 1

2

)
p! (i− p− 1)! 2F1

(
−p, 1− i + p

1
2 − i− α

∣∣∣∣− A2

4 B

)
.

Therefore, the linearization Formula (55) can be obtained.

Remark 9. For the case corresponding to B = −A2

4 , the linearization Formula (55) reduces to
a simple linearization formula due to the Chu–Vandermond identity. This case is treated in the
following corollary.

Corollary 17. For all non-negative integers i and j, the following linearization formula holds:

V(α,α+1)
i (x) FA,−A2

4
j (x) =

Γ(α + 1) Γ
(
i + α + 3

2
)

√
π Γ(i + 2α + 2)

i

∑
p=0

2i−2p+2α+1 A−i+2p ( i
p)
(
α + 3

2
)

p(
i− p + α + 3

2
)

p

FA,−A2
4 B

i+j−2p(x)

−
i! Γ(α + 1) Γ

(
i + α + 1

2

)
√

π Γ(i + 2α + 2)

i−1

∑
p=0

2i−2p+2α A1−i+2p (α + 3
2
)

p

(i− p− 1)! p!
(

i− p + α + 1
2

)
p

FA,−A2
4 B

i+j−2p−1(x).

(56)

Proof. Setting B = − A2

4 in Formula (55) yields

V(α,α+1)
i (x) FA,−A2

4
j (x) =

Γ(α + 1)Γ
(
i + α + 3

2
)

√
πΓ(i + 2α + 2)

i

∑
p=0

2i−2p+2α+1 A2p−i
(

i
p

)
2F1

(
−p,−i + p
− 1

2 − i− α

∣∣∣∣1) FA,−A2
4 B

i+j−2p(x)

−
i!Γ(α + 1)Γ

(
i + α + 1

2

)
√

πΓ(i + 2α + 2)

i−1

∑
p=0

2i−2p+2α A2p−i+1

p!(i− p− 1)! 2F1

(
−p, 1− i + p

1
2 − i− α

∣∣∣∣1) FA,−A2
4 B

i+j−2p−1(x).

(57)

Based on Chu–Vandermond identity, the following two identities apply:
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2F1

(
−p,−i + p
− 1

2 − i− α

∣∣∣∣1) =

(
α + 3

2
)

p(
α + i− p + 3

2
)

p

,

2F1

(
−p, 1− i + p

1
2 − i− α

∣∣∣∣1) =

(
α + 3

2
)

p(
α + i− p + 1

2

)
p

.

Inserting the last two identities into (57) leads to the following linearization formula:

V(α,α+1)
i (x) FA,−A2

4
j (x) =

Γ(α + 1)Γ
(
i + α + 3

2
)

√
πΓ(i + 2α + 2)

i

∑
p=0

2i−2p+2α+1 A−i+2p( i
p)
(
α + 3

2
)

p(
i− p + α + 3

2
)

p

FA,−A2
4 B

i+j−2p(x)

−
i!Γ(α + 1)Γ

(
i + α + 1

2

)
√

πΓ(i + 2α + 2)

i−1

∑
p=0

2i−2p+2α A1−i+2p(α + 3
2
)

p

(i− p− 1)!p!
(

i− p + α + 1
2

)
p

FA,−A2
4 B

i+j−2p−1(x).

Remark 10. For A = 2, and B = 1, Formula (56) turns into:

V(α,α+1)
i (x) Tj(x) =

22α+1Γ(α + 1)
√

π Γ
(
α + 3

2
)

Γ(i + 2α + 2)

i

∑
p=0

(
i
p

)
Γ
(

i− p + α +
3
2

)
Γ
(

p + α +
3
2

)
Tj+i−2p(x)

−
22α+1i!Γ(α + 1)Γ

(
i + α + 1

2

)
√

πΓ(i + 2α + 2)

i−1

∑
p=0

(
α + 3

2
)

p

p!(i− p− 1)!
(

i− p + α + 1
2

)
p

Tj+i−2p−1(x).

6. Conclusions

In this article, a class of Jacobi polynomials is investigated. This class generalizes the
third-kind Chebyshev polynomials. Various interesting formulas concerned with these
polynomials were developed. Expressions for the derivatives of these polynomials in terms
of different polynomials were presented. Connections with some other polynomials were
also deduced. Some linearization formulas involving the generalized third-kind Chebyshev
polynomials were given. Symbolic algebra was employed in a variety of formulas to reduce
the coefficients that involve hypergeometric functions. We do believe that other classes of
polynomials of Jacobi polynomials can be investigated using similar approaches to those
followed in this article.
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