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Abstract. This paper deals with some kinematical aspects of shells of revolution whose
torsionless axisymmetrical deformation may be finite or one with small strain accompa-
nied by large or moderately large rotation. The results are summarized in the form of three
theorems.

1. Preliminary remark. The purpose of this paper is to state and prove certain purely
kinematical results for torsionless axisymmetrical deformation of shells of revolution. The
deformation of the shell may be finite or one with small strain accompanied by large or
moderately large rotation. Since the results obtained are purely kinematical, they hold for
all materials and are not necessarily limited to elastic shells. We utilize a direct formula-
tion of the theory of shells based on a 2-dimensional continuum model as a Cosserat
surface with a single director [1,2], but the corresponding kinematical developments can
be also effected from an appropriate approximation for the position vector in the
3-dimensional theory (see, e.g., [2, Eq. (2.25)]).

For readers' convenience, we recall that a Cosserat surface is a body comprising a
material surface embedded in a Euclidean 3-space, together with a single deformable
vector field—called director—attached to every material point of Sf. The director, which
is not necessarily along the unit normal to the surface surface Sf, has in particular the
property that it remains unaltered in length under superposed rigid body motions.1
Clearly, a Cosserat surface is not just a 2-dimensional surface; but is, in fact, endowed
with some structure in the form of an additional primitive kinematical vector field. The
magnitude of the director along the normals to the reference surface may be regarded as

•Received June 21, 1983. The results reported here we obtained in the course of research supported by the U.S.
Office of Naval Research under Contract N00014-75-C-0148, Project NR 064-436 with the University of
California, Berkeley.
1 As in the paper of Naghdi [2], the director here is chosen to have the physical dimension of length. This differs
from an earlier choice in Naghdi [1], where the director was assumed to be dimensionless. For further discussion
on this point, see Naghdi [2, Sec. 3].
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representing the thickness of the shell-like body 38 and similarly the material surface Zfol
may be identified with the reference surface (e.g., the middle surface) in the shell-like

body. Related remarks pertaining to the identification of various constitutive results, the
assigned fields and the inertia coefficients in the theory of a Cosserat surface are made in
Naghdi [1] and [2, Sec. 5]. Also, following the procedure of Casey and Naghdi [3], in the
kinematical development of a Cosserat surface we remove the local rotation and the
relative displacement at one point of the surface ^resulting in a configuration k* so as to
render all kinematical and associated kinetical results invariant under arbitrary finite
superposed rigid body motion (for details, see Naghdi and Vongsarnpigoon [4, Sec. 4-5]
and [5, Sec. 2]).

By way of additional background and in the context of a 3-dimensional theory, consider
a relative displacement2 u* = r* - R* and the relative displacement gradient H* = F* -
I = Gradu*, where r* and R* are, respectively, the position vectors of a material point in
the deformed and undeformed configurations, F* is the deformation gradient tensor and I
is the identity tensor. Recall that through the polar decomposition theorem, we have
F* = R*U*, where R* is the (local) rotation tensor and U* is the right stretch tensor
which are related to the relative strain tensor E* through the expression 2E* = (U*)2 — I
= p*rF* - I. If H* is infinitesimal, then the strain E* and the rotation R* are also
infinitesimal. But if only E* is infinitesimal of order e the relative deformation u* is not
necessarily small and the rotation tensor R* may be large or moderately large of order e1/2
(see Naghdi and Vongsarnpigoon [4]). Keeping the above background in mind, consider
now a motion of a Cosserat surface # characterized by the two functions r and d
corresponding to the position vector of a material point on the material surface Sfand the
director at taht point. The deformation graident F and director gradient G can be defined
in terms of suitable components of Gradr and Gradd (see Eqs. (Al)12 of Appendix A)
and these, in turn, give rise to the strain tensor 2E = FrF — I and the curvature tensor
F7G defined on the material surface ^in the current configuration. Further, through the
polar decomposition theorem, we again have F = RU, where R is the (local) rotation
tensor and U the right stretch tensor. Given F, the position vector r and the director d in
the deformed configuration k can be determined (see (Al)t) and thus the deformation is
known. A deformation of a shell-like body is said to be infinitesimal if the deformation
gradient F differs only infinitesimally from the unit tensor I and, consequently, the strain
tensor E and rotation tensor R are both infinitesimal. However, if E is small, the
displacement vector u = r — rR, where rR is the position vector in the reference configura-
tion, is not necessarily infinitesimal; and the deformation gradient tensor F could differ
significantly from I and may be accompanied by large or moderately large R.

Our main results are summarized as three theorems in Sec. 2 and the proofs are
supplied in Sec. 3. Briefly, with reference to torsionless axisymmetrical deformation of a
shell of revolution, we first show in Theorem 1 that the knowledge of the relative strain
tensor at every point of the reference surface (e.g., the middle surface) is sufficient to

2 We attach an asterisk to the kinematical quantities associated with the 3-dimensional theory to differentiate
them from corresponding quantities employed in the direct (2-dimensional) theory of a Cosserat surface.
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determine the change in the second fundamental form and hence the deformed configura-
tion of the shell. Furthermore, if the strain and its first and higher order gradients are
assumed to be small, then by our Theorem 2 the only kind of deformation accompanied
by large rotation (or large deflection)—excluding, of course, the rigid body translation—of
a nonshallow shell is that which involves an inversion of the shell. Indeed, it is a
consequence of Theorem 2 that if the possibility of an inversion of the (nonshallow) shell
is not admitted, a deformation with small strain accompanied by large rotation can take
place only by allowing the strain gradient to be large. On the other hand, for a shallow
shell of revolution (which includes an initially flat circular plate as a special case), while a
deformation with large rotation (or large deflection) is not possible when the strain and
strain gradients are assumed to be small, according to Theorem 3 the case in which the
shell is subjected to a deformation with moderate rotation is admissible.

Throughout the paper, we use the usual summation convention over repeated indices
with Greek indices taking the values 1, 2 and Latin indices having the ranges 1, 2, 3. Also,
in the main text and the Appendix A, we employ both a coordinate-free notation and the
component form of various results and equations.

2. Some background information. A summary of the main results. Let e, (/ = 1,2, 3) be a
set of orthonormal base vectors associated with a system of rectangular Cartesian
coordinates (x, y, z) and let 8" (a = 1,2) designate a convected coordinate system on the
material surface yof a Cosserat surface e€. Further, with reference to a cyclindrical polar
coordinate system (r, 8, z), let e, = er(8) and e0 = eg(8) be the unit base vectors defined
by

er = cos^! + sin#e2, e9 = -sintfej + cos 0e2. (2.1)

Without loss in generality we may identify the convected coordinate 62 with the angle 8 of
the cyclindrical polar coordinate system and write

81 = 8. (2.2)
Let SfR, a two-dimensional region of space occupied by the material surface Sf of #in the
reference configuration k0, be a surface of revolution with its position vector specified by

tr = ro(01)*r + Zo(0l)*3- (2.3)

Then, from (2.3), the surface base vectors AQ associated with the convected coordinates 6"
and the outward unit normal A 3 to £fR are calculated to be

Ai = roer + zoe3> A2 = r0efl, A3 = (r0'e3 - z'0er)/a0, (2.4)

where prime denotes partial differentiation with respect to 81 and where a0 = ao(0') is
defined by

«o = (rof +(zo)2- (2.5)
The coefficients of the first and second fundamental forms of the material surface yin the
reference configuration are

^11 = «0> ^22 = r0 ' ^12 = ^2 ^

•®11 = (r0Z0 ~ z0r0')/a0< ^22 ~ r0Z0/a0> ^12 = 0-
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Let D denote the director at rR in the reference configuration k0 of the Cosserat surface
and, for covenience, introduce the notation

D„ = Aa, D3 = D (2.7)
In what follows, whenever desirable, the notations D, = (Dx, D2, D3) and the set (2.7), i.e.,
(Aa,D), will be used interchangeably depending on the particular context. Since D are
linearly independent, as in Naghdi [2, Sec. 3], we may also introduce a set of reciprocal
vectors D' such that

D,. ■ D' = 8{, (2.8)

where 8/ is the Kronecker symbol in 3-space. Without loss in generality, we choose the
director in the reference configuration to be along the normal to every point of so that

D = Z)A3, D = D{dl). (2.9)

It follows from the choice (2.9) and the definition of D' in (2.8) that

D° = A", D3 = -^A3, (2.10)

where AQ are the surface reciprocal base vectors to AQ.
Let the Cosserat surface be deformed axisymmetrically without torsion such that the

reference surface £fR becomes another surface of revolution with the position vector
r = t(6a, t) in the current configuration k specified by

r = r(0\ t)er + z(6\ t)e3. (2.11)

Since the deformation is assumed to be torsionless, the meridians 62 = const, and the
parallels 61 = const, of the undeformed surface become the meridians and the parallels,
respectively, of the deformed surface. From (2.11), the surface base vector aa and the
outward unit normal a 3 are calculated to be

a 1 = r'er + ze3, a 2 = ree, a3 = (-z'er + r'e3)/a. (2.12)

where the function a = a(6l, t) is defined by

a2 = (r'f +(z')2. (2.13)
The coefficients of the first and second fundamental forms in the deformed configuration
k are given by3

an = a\ a 22 = r2, al2 = 0,

bn = (r'z" - r"z')/a, b22 = rz'/a, bu = 0.

Consistent with the assumption of torsionless axisymmetrical motion, similarly to r
given by (2.11), the director d = d(8a, t) in the deformed configuration k must also lie in
the plane spanned by aj and a3 so that

d • a2 = 0 (2.15)

3 As noted in Sec. 1 (at the end of the second paragraph), the deformed configuration here is actually a
configuration k* but we have suppressed the asterisk.
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everywhere, and the components of d along sil and a3 are independent of 6. Again, for
convenience, we introduce the notation

da = aa, d3 = d, (2.16)

and denote by d' the reciprocal base vectors to d, such that d, • AJ = 8/.
As indicated in Appendix A, the relative strain tensor E = E(0a, t) and the relative

curvature tensor J = j(0a, t) defined by Eqs. (A2)! 2 can be expressed as

E = ytjD' ® D7, J = K,aD' ® Da, (2.17)

and their components ytj and Kia are given by

Vn = i(«2 - «S), V22 = ~ ^), Y12 = 0'

Yn = 5d ' »i. Y33 = Kd • d - D2), y23 = 0- (2.18)

and

K/Sa = a _(_^/3a = ^/9 ' ^ a, K}a = V33,a- (2-19)

We also recall the definition of the change in the second fundamental form j8a/3 = bal3 — Ba/j
and calculate from (2.6) and (2.14) the expressions

Aj-0. (2.20)a a0 a a0

In what follows, when the deformation is such that the strainis small, we write

E = O(e), (2.21)
where O denotes the usual order of magnitude symbol, i.e., a function / is said to be of
0(e") if there exists a constant C such that ||/|| < Ce" as e —> 0, where the notation ||/||
stands for the norm or magnitude of /. We note that (2.21) implies that the components ytJ
of E are also of 0(e) but this does not imply that the rotation R or the relative
displacement u are small.

Certain features of steep (nonshallow) and shallow shells have been noted previously in
[5], Here, with reference to shells of revolution, it is more convenient to stipu.ate a
measure of shallowness in terms of the rise z0 of the reference surface (e.g., the middle
surface) of the shell of revolution. Assuming that z0 does not vary rapdily (as in the case of
a corrugated shell), i.e., the slope z'0 is not of greater order of magnitude than z0, then it
can be easily seen that a steep shell of revolution can be defined by

z'0 = O(l) (2.22)

and a shallow shell of revolution may be defined by

zo = 0(el/2). (2.23)

The latter, along with the expressions (2.6456), imply that Ba/j = 0(e1/2) which is con-
sistent with that used in [5, Eq. (4.7)].

We now state three theorems applicable to torsionless, axisymmetrical deformations of
a shell of revolution. The first theorem concerns a general deformation with no restriction
on the strain or the rotation, but the next two concern a deformation with infinitesimal
strain.
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Theorem 1. The surface components ya/j of the strain yiJ in (2.18) determine the
coefficients of the second fundamental form in (2.14) of the deformed configuration, as
well as the change of the second fundamental form given by (2.20). Furthermore, the
deformation of the shell-like body (including the local rotation R) is then determined.

Theorem 2. For a deforming shell which is nonshallow in the reference state as specified
by (2.22), if the components of the strain y. and its first and higher order gradients are all
infinitesimal of O(e), then the deformation is either infinitesimal or one with small strain
accompanied by large rotation. The latter necessarily involves an inversion of the shell.

Theorem 3. For a shallow shell of revolution, if the components of the strain ytJ and the
first and higher order gradients of the strain are infinitesimal of O(e), then the deforma-
tion is at most one with small strain of 0(e) accompanied by moderate rotation ofO(el/1).

Suplementary to Theorem 2, the following remark may be noted:
Remark 1. If only a part of the nonshallow shell of revolution is inverted while the rest

is not, the two regions should be considered separately because z' is discontinuous at the
interface of the two regions.

The following corollary is an immediate consequence of Theorem 3 in the special case in
which the surface yR is a plane so that c& can be regarded as representing a circular plate
in its reference configuration:

Corollary 1. If the surface^ is a plane and ^is subjected to a torsionless axisymmetri-
cal deformation for which the components of the strain yt • and the first and higher
gradients of strain all being of O(e), then the deformation is at most one with small strain
of 0(e) accompanied by moderate rotation of 0(e1/2).

It is well known in differential geometry that given the coefficients of the first and
second fundamental forms, the surface is determined to within a rigid body motion (see,
for example, Eisenhart [6, p. 221] or Theorem 8.3 in Ch. 6 of O'Neill [7]). However, in the
context of axisymmetrical deformation of shells of revolution, it is evident from Theorem
1 that the knowledge of the coefficients of the first fundamental form is sufficient to
determine the surface (including the coefficients of the second fundamental form). It is
therefore of some interest to ask if an inverse to the Theorem 1 exists in the sense that
does the knowledge of the second fundamental form determine the deformation functions
and hence also the first fundamental form of the surface? In order to examine this
question, assume that the components bn = t) and b22 = /2(^1, t) are known, then
in principle the functions r(8l, t) and z(8\ t) can be determined from the differential
equations

r'Z"""Z' /,■ , ,,(2-24)

[(O2+(*')?" [('f+MT
subject to appropriate boundary conditions. Once r and z are known, the components yaP
of the strain can be easily calculated. Alternatively, given the Gaussian curvature K =
K(0l, t) and the mean curvature H = Hid1, t), we can write the following differential
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equations for r(6\ t) and z(8\ t), namely4

r'z'z" ~ r"(z')2

r[(r')2+(z'f2

rjr'z" - r"z') + z'[{rf + (z')2\

r[(r')2+(z')2\
3/2

= 2 H. (2.25)

It follows from elementary results in differential geometry that the shape (but not the
strain measures) of a surface of revolution is known once H and K are known (see Lemma
6.3 in Ch. 5 of O'Neill [7]). For example, if H = 0, then the surface of revolution is either
a plane or a catenoid (see, e.g., Theorem 6.2 in Ch. 5 of O'Neill [7]). Several examples of
surfaces with constant Gaussian curvature are also given in O'Neill ([7], Ch. 5, Sec. 6).
These known results may allow the specification of the functions r and z in some cases
without actually solving (2.24) or (2.25). However, in general, there may be more than one
set of deformation functions r(6l, t) and z(0\/) which satisfy (2.24) or (2.25). For
example, if f1 = f2 = 0, then the deformed surface is a circular plane, z = constant and
the equations (2.24)x 2 are now identically satisfied without any restriction on the function
r{01, t). In fact, r can be any arbitrary function of 01 and t which does not violate the
conditions imposed at the edge of the circular plane, or its center point.

The foregoing theorems for axisymmetrical deformation of shells of revolution after
appropriate specialization are applicable also to various special cases of the nonlinear
theory of shells obtained either by direct approach or a corresponding development for
the 3-dimensional equations. Among these, mention may be made of the constrained
theory discussed in [2, Sec. 6] or a restricted theory in [1, Sec. 10] which is constructed by
direct approach and which corresponds to the Kirchoff-Love theory of shells in the
presence of finite deformation [8] or a development such as that discussed by Reissner [9].

Before closing this section, we make some remarks pertaining to Reissner's [9] analysis
of axisymmetric deformation of shells of revolution in the light of the above three
theorems. In Reissner's [9] discussion of axisymmetrical deformation of shells of revolu-
tion, both finite and "small finite" deflections are allowed. Although the strain in
Reissner's paper is assumed to be small, no restriction is imposed on the strain gradient.
In the light of Theorem 2, if the strain gradient is small and if the inversion of the shell is
ruled out, it is not possible to have a finite deflection of a steep shell of revolution.

Thus, in allowing for finite deflection in Reissner's work [9], one must assume that the
strain gradients are finite unless an inversion of the shell is allowed. Similarly, if a " small
finite" deflection of a nonshallow shell in the sense of Reissner [9, Sec. 4] is allowed, then
again this is not possible unless one also assumes that the strain gradient is moderate of
0(e1/2) as characterized in Naghdi and Vongsarnipgoon [5]. Consequently, with the use of
linear constitutive relations (with constant coefficients), the gradients of the resultant
forces must be viewed as finite or moderate. In addition, since the strain gradient may be
large, care must be exercised when the equations of motion are simplified under the

' Recall that the principal curvatures b\ and b\ can be easily determined from the knowledge of H and K.
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assumption of small strain. Specifically, it appears that Reissner [9] intends for his
equations of equilibrium (1)' to be valid for both finite and "small finite" deformation. In
view of Theorem 2, it can be argued that equations (1)' and associated results are valid for
"small finite" deformation but these may not yield reliable results for the case of finite
deflection. To elaborate further, recall that Reissner [9] obtains his set of equations (1)' by
replacing the variables r and a by their values r0 and a0 in the reference configuration.
However, this procedure is incorrect if the strain gradient is large. Consider, for example,
the first term on the left-hand side of Reissner's Eq. (1)2 which upon expansion yields (in
Reissner's notation)

(rH)'= [(1 + eeu)r0H]'

= (1 + eeM)(r0H) + eeM(rQH)

= (r0H)' + e'eu(r0H).

Since e'6M must be finite for a finite deflection without inversion, the term s'eM(r0H) is not
negligible and should be retained in the modified equation. For a deformation with
moderate rotation (or a "small finite" deflection), if terms of 0(e1/2) are considered small
and negligible in comparison with5 unity, then e'eM(r0H) is negligible and the set of
equations (1)' can be used.

In the case of a shallow shell or plate, if the strain and strain gradients are infinitesimal,
then the possibility of a finite deflection is ruled out in the light of Theorem 3. Thus, in
order to consider finite deflection of an initially flat plate as in [9, Sec. 5], the strain
gradient must be regarded as finite although this has not been explicitly stated in [9]. It
should be noted that according to Theorem 3, it is possible for a shallow shell or a plate to
deform with moderate rotation while the strain and strain gradients remain infinitesimal;
and, for a deformation of this kind, the use of an expansion of the type (14) in [9, Sec. 4]
—intended for "small finite" deflection—is valid.

3. Proofs of the theorems. We provide here the details of the proofs of the theorems
stated in the previous section. In order to prove Theorem. 1, we first note from (2.18) 12
that

a2 = a2 + 2yn, r2 = r2 + 2y22. (3.1)

Since r is always positive, the square root of (3.1) 2 yields

r = r0( i + 2y22A02)1/2. (3.2)

Differentiaging (3.2) with respect to 6X, we have

r' = (Vo + YmH'o + 2Y22) 1/2- (3-3)

Next, with the help of (3.1)x and (3.3), we may solve for z' from (2.13) to obtain

z' = ± [a2 — (/"')2]1/2 = ± («o + 2Yii "(Vo + yiif/iro + 2y22)} 7 . (3.4)

5 Alternatively, the same conclusion can be obtained by neglecting terms of 0(c3/2) in comparison with terms of
0(e) as in the procedure of Naghdi and Vongsarnpigoon [5].
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It is clear from (3.4) that once the sign of z' has been chosen, the knowledge of y,, and y22
determine z'. Since a, r, r', z' and r", z" can be determined from the knowledge of ya/3, it
follows from (2.14)4_6 and (2.20)x_3 that the coefficients of the second fundamental form
bafl and the change in the second fundamental form /?a/3 can be determined from ya/j.
Furthermore, by (A4), (A5) and (A2)3 of Appendix A, Xafj (and hence F7G) are also
determined once bnf1 and ytJ are known. Since the deformation of the Cosserat surface #
can be determined to within a rigid motion, and since as noted in Sec. 1 we have identified
the deformation configuration with the configuration k* of i.e., the configuration in
which the local rotation and the displacement have been removed from one point of the
body, the deformation of ^is determined and the proof is complete.

The sign of z' provides information about the manner in which the shell has deformed.
If the sign of z' is opposite to that of z'0, the deformation involves an inversion of the shell.
Also, it should be noted that in the special case in whcih the surface of ^ is a plane,
i.e., when z'0 = 0, the sign of z' will be the same as the sign of the component b22 = fi12 of
the second fundamental form in the deformed configuration.

We now turn to theproof of Theorem 2. Keeping in mind that both the strain and its
first and second gradients are of 0(e), if terms of 0(e2) are neglected in (2.18)12, we may
write

a = a0 + ^ = a0 + O(e), r = r0 + = r0 + 0(e), (3.5)
"o ro

and differentiation of (3.5)2 yields

'o
Y22
r,

r,•0 + O(e). (3.6)

Squaring both sides of (3.6) and neglecting terms of 0(e2) we have

(r')2 ~ (ro)2 + 2ro(~T") = (>b')2 + O(e). (3.7)

Then, making use of (3.5)j and (3.7), (2.13) can be rewritten as

(z')2 = a2 ~(r')2 = («o + 2Yii) ~(rof ~ ^{y22/r0)'

(zf = U)2 + 2yu - 2r^y22/r0)' = (z'0f + O(e). (3.8)
Recalling from (2.22) that z'0 = 0(1) for a steep shell, the square root of (3,8) after the
neglect of terms of 0(e2) gives

T11 ro I Inz' = ± (z'0){ 1 +
I (-o)2 (z'o):2^r°

= ±z'0+O(e), (3.9)
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and hence also

= ± < z'o +
Vn T22 ±Zq + 0(e). (3.10)

To proceed further, consider first the case in which the plus sign is chosen in (3.9) and
(3.10), i.e., the case in which z' has the same sign as z'Q and there is no inversion of the
shell. With the use of (3.9), (3.10), (3.6) and (3.5)12 in (2.20)12 and after the neglect of
terms of 0(e2), the nonvanishing components of fiao can be written as

Pn = { zo( I + ro
T11 _ [0 I T22
zo zo

-0
'Y22

7u r0 I y22
Zr\

- ~^j(rozo - rozo)}/ao
"0 *

= 0(e), (3-11)

a -I Yl1 HilMYj. III/P22 ~ { r0 r0 I _ ) + Zo| „ ] r0Z0 2 }/ 0 ^Ke)-
rn A a

Since /3a/3 = 0(e), by Theorem A3 of Appendix A the rotation tensor is an infinitesimal
rotation with respect to e everywhere and the deformation is infinitesimal. On other hand,
if the minus sign is chosen in (3.9) and (3.10), i.e., the case in which the deformation
involves the inversion of the shell, then instead of (3.1 l)j 2 we obtain

, J (a, +,.

Yn ro / -I22

Y11 r0 y22 Y22

r. ^(rozo - ro'z'0)\/a0
«o j

= -2 Bn + 0(e), (3.12)

'ozo I T11 ro I T22 \ , , I Y22 \ , T11
Bl2~ 2«o r°zo r°zol '■o J +ZH r0 J r°Z°a2o}/«°

= —2B22 + 0(c).

Since z'0 = 0( 1), we have 5a/3 = 0(1) and it follows from (3.12)12 that pa/3 = 0(1) also.
The rotation tensor in this case is finite by Theorem A1 of Appendix A and hence the
deformation is also finite. This completes the proof of Theorem 2.

The conclusions in Theorem 2 involving the choice of sign in (3.19), i.e., the plus sign
leading to infinitesimal deformation and the minus sign leading to finite deformation, can
also be reached from direct integration of (3.9) subject to the condition that the
displacement vector given by (r — r0)er + (z — z0)e3 vanishes at one point of the material
surfaced.

We consider next the proof of Theorem 3. First we note that the results (3.5)—(3.8)
pertaining to Theorem 2 remain valid in this case also. However, since z'0 = 0(e1/2) for
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shallow shells by (2.23), (z'0)2 = 0(e) and hence by (3.8) we have

(zf=0(e) (3.13)
and its square root is

(z') = 0(e1/2). (3.14)

Differentiating (3.8) with respect to 0\ we have

722_/_//   _ / _// IZ Z ZqZq t Yn (3.15)

Since the right-hand side of (3.15) is of 0(e), its left-hand side must also be of 0(e) and
with the use of (3.14), we conclude that

Z" = 0(el/2). (3.16)

With the use of (3.6) and its derivative, as well as (3.14) and (3.16), it follows from (2.20)
that

Pafi = 0(*1/2) (3-17)

and by Theorem A2 of Appendix A, the rotation tensor is a moderate rotation with
respect to e. (See also Theorem 3.2 of Naghdi and Vongsarnpigoon [5].) for the special
case in which the right-hand side of (3.13) is of 0(e2), z' and z" are of 0(e), ySa/3 = O(e)
and the deformation is infinitesimal. This completes the proof of Theorem 3.

Consider now the proof of the statement in Remark 1 to the effect that z' is
discontinuous at the interface between the inverted and noninverted regions of an initially
steep shell. Suppose z' is continuous and varies smoothly from a value which has the same
sign as z'0 to that of an opposite sign. Then, at some point in the region z' must vanish and
(3.8) must hold with the left-hand side set equal to zero. Since z'0 is known and finite, the
quantity [2yn — 2r0'(y22/r0)'] must also be finite to cancel (z'0)2. However, by assumption,
the strain and strain gradients are infinitesimal everywhere. Hence, [2yn - 2r('l(y22/r0)'] is
of 0(e) and we have a contradiction. This completes the proof of Remark 1.

Finally, since an initially flat plate can be regarded as a special case of a shallow shell
with Ba)3 = 0 and z'0 = z'0' = 0, the Corollary 1 follows as a special case of Theorem 3. It
should be noted that for an initially circular plate, (3.8) reduces to

(zf = 2yu-2^^j'=0(e). (3.18)

Appendix A. In this appendix, we consider some additional kinematical results for a
shell of revolution. Recalling the definitions of the base vectors d, and D,, the deformation
gradient F = F(0a,t) and the director gradient G = G(9a, t) are defined by (see [2, Sec.
8]):

F = d, ® D' = aa ® Aa + -^D ® A3,

G = d3 a ® Da = d a ® Aa, (Al)
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where a comma denotes partial differentiation with respect to 9a. The relative strain
tensor E = E(0a, t) and the relative curvature tensor J = J(6", t) are given by

E = ±(FrF-I), J = FrG — 0G, FrG = A,aD' ® Da, (A2)

where 0G is the reference value of G (or F7G), i.e.,

0G = D a ® A" = -DBpa® Aa + D aA3 ® Aa. (A3)

The components of E and J in (2.17)-(2.19) can be obtained after substituting the
expressions for F and G from (Al) into (A2) and making use of (2.4), (2.9), (2.12), (2.14)
and (2.15). We also note that

d aa = d3 da = 2y3a,

d d = D2 + 2y33 = (d • a3)2 + a"Py3ay3p, (A4)

where a"13 is the conjugate surface metric of the deformed surface. By straightforward
calculation, it can be seen that X/3a are related to bap by

a = Y3^|« ~ bfia{A ■ a3), (A5)

where a bar denotes covariant differentiation with respect to the metric a afi. The
relationship between K/3a and (iafi is clear from (A5).

Since F is nonsingular, recall the polar decomposition theorem

F = RU, (A6)

where R is a proper orthogonal tensor and U is a positive definite symmetric tensor which
can be calculated from U2 = FT F. In Naghdi and Vongsarnpigoon [5], the differential
equation for the rotation tensor R is given for a constrained theory. In the context of the
present development, it can be shown by a similar procedure that the differential equation
for R is given by

RrR.a = ^a, (A7)

where

JU - UUa +(UU),Y(Aa ® A*) - (A* ® AJ(UU),V

+ (FrG + GrF - UU0G -0GrUU)(Aa ® D3)

-(D3 ® Aa)(FrG + GrF - UU0G -0GrUU)}U"1. (A8)

The integrability conditions can be obtained from the requirement that R a/3 = R ^a.
For a deformation with E = O(e) and E a = O(e), if terms of 0(e2) are neglected, (A8)

can be written in the form
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= {|(K/3a + Kafi) ~ Ysall/s +

+ ^BPa ~ \(KP« + + + Kay)^/3^Ay

(D* ® D3 - D3 ® D") (A9)
,/ _ , 2^n _l3yR

(Yya| 1/3 *^al |y D ya £) P<*

+ _ I(lC^ + Ka^^}°y ^ ^

Making use of the relationship between Kn/S and (A9) can be shown to be equivalent
to

^a = {""A* - |(T3a||/3 - Y3>3||«) + Y/u^V -

■(A* ® A3 - A3 ® Afi) (A10)

( ^ya a ) . , a

+ (TW - yM\y + 1^-5- - ^y~5~fA ® A •

With respect to (A7), we can state and prove a theorem and a corollary parallel to
Theorem 3.1 and Corollary 3.1 of Naghdi and Vongsarnpigoon [5]. Consequently,
corresponding to given UU and F7G, the deformation of the Cosserat surface can be
determined to within a rigid body motion. In addition, we can state the following
theorems:

Theorem Al. Given E = O(e), E a = O(e) and Pafj = 0(1), the rotation tensor R
associated with the deformation is a finite rotation.

Theorem A2. Given E = O(e), E a = O(e) and /?a/3 = 0(e1/2), the rotation tensor R
associated with the deformation is a moderate rotation with respect to e.

Theorem A3. Given E = O(e), E Q = O(e) and /ia/3 = 0(e), the rotation tensor R
associated with the deformation is an infinitesimal rotation with respect to e.

Theorem A2 corresponds to Theorem 3.2 of Naghdi and Vongsarnpigoon [5]; and the
proofs of all three theorems are parallel to that of Theorem 3.2 of Naghdi and Vongsarn-
pigoon [5].
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