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SOME GENERAL RESULTS IN THE THEORY OF NOISE
THROUGH NON-LINEAR DEVICES*

BY

DAVID MIDDLETON
Harvard University

1. Introduction. Because of the great prevalence of noise in almost all electronic
processes, a study of the nature and properties of such noise seems desirable. The
term "properties of noise" is used here to indicate such measurable quantities as the
average and the mean-square voltages and currents, the mean power spectrum, the
power or energy associated with the wave, and the power and the correlation function
of the disturbance, or of part of it, when noise or a signal and noise is modified by
passage through non-linear apparatus. From an analytical point of view, the theory of
noise is intrinsically related to that of the Brownian motion so that the results in the
discussion of the one may bear rather closely upon the other. There are two different
but equivalent lines of attack on the over-all problem: in noise theory we are primarily
interested in what happens to random noise waves (with or without an accompany-
ing signal) when they are passed through non linear devices, such as second detectors
or mixers in radio receivers, for example, or amplifiers in which cutoff and/or over-
loading is present. Here the Fourier series method of Rice,1,2 is the more natural ap-
proach and is the one followed in the present paper. In the study of Brownian motion
and fluctuation phenomena in general, where the variations in the system are de-
scribed by a diffusion process, the second method of Fokker-Planck, or the diffusion
equation method, is used. We shall not consider this approach here; an excellent dis-
cussion has recently been given by Wang and Uhlenbeck,3 and less recently, an inter-
esting treatment of somewhat similar subjects by Chandrasekhar.4 We mention
only in passing that the two methods can be shown to yield identical results.3

Ricef and others5-9 have used the Fourier series method in the solution of special
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problems involving the rectification of noise, or of a signal and noise. It is the pur-
pose of this paper to generalize some of the results of previous work on this topic
and to obtain original results for a number of unsolved problems in the analysis of
noise through non-linear devices. Specifically, it is believed that the treatment of the
following topics is new and of interest.

(a) Passage of a modulated signal in the presence of noise through a general non-
linear apparatus. The case of a sinusoidally modulated carrier (Sec. 2), is
examined and attention is also given to the case of narrow-band noise, sym-
metrically distributed in frequency about the carrier (Sec. 3).

(b) The biased rth-law rectifier, for modulated and unmodulated carriers (Sec. 4).
Limiting cases of large noise or signal voltages are also discussed. Reference 9
gives a detailed discussion of this problem for linear and quadratic rectifiers
where noise alone is rectified.

(c) The problem of a modulated signal and narrow-band noise, with a determina-
tion of the various probability densities associated with the envelope of the
wave (Sec. 5). Section (c) and (d) offer alternative solutions to some of the
problems discussed in (a) and (b).

(d) The correlation function and mean power associated with the envelope of
signal and noise. Attention is given to the low frequency output of the half-
wave pth-law device (Sec. 6).

(e) The ^th-law, half-wave rectification of noise alone, the results of which are of
interest in the measurement of noise by meters, spectrum analyzers, etc., and
in the detection of pulse signals in the presence of noise8,9 (Sec. 7). This work
is a generalization of reference 9 in that v can take on any positive value, but
is less general in that only half-wave detection is treated.

(f) A general "small-signal" theory, in which the speak values of the incoming
wave, whether noise or a signal and noise, are sufficiently small that overload-
ing and cut-off do not occur. Rectification takes place because of the curva-
ture of the dynamic characteristic of the device in question.

Not all the material in the present paper is original, it is realized, but in the dis-
cussion of (a)-(f) it has been necessary for clarity of treatment to bring together and
extend, when necessary, a number of results previously derived in probability theory
which are fundamental and hence unavoidable in the analysis of problems of this
type. These results include the generalized, s-dimensional random-walk problem,4
from which in turn one may obtain the characteristic function, with the distinctive
property of being the Fourier transform of the probability density, and finally the
central-limit theorem,10 which in the limit of a very large number of events can
be shown to yield the s-dimensional Gaussian distribution characteristic of all
random processes fulfilling certain rather elastic conditions with regard to the sepa-
rate distributions of the various events. Some of the details are available in Appendix
I. Furthermore, although the concept of the correlation function and its relation to
the mean power spectrum has been examined in varying detail elsewhere, we include
a brief treatment in Appendix II, along with some of the more significant properties
of the correlation function which are necessary in our work. Rigor has not been pre-
served at all costs, vide the use of the Dirac delta-function; the physical significance

10 H. Cramer, Random variables and probability distributions, Cambridge Tract No. 36 (1937),
Chapters VI and X. References 1 and 2 also contain references to this problem; see Sees. 2.9 and 2.10.



1948] NOISE THROUGH NON-LINEAR DEVICES 447

of the results is used to check any possible weakness in the rigor. Finally, in Appen-
dix III some of the more unfamiliar special functions that appear in our results
are briefly considered. It should be kept in mind that the present discussion applies
only when the dynamic path of the non linear device is a one-valued function of the
input disturbance. When the path is multi-valued, the theory breaks down. For
example, when the plate-load of a rectifying tube is a pure resistance, or at worst, is
primarily resistive, the dynamic path is one-valued, or nearly so. Figure 1 illustrates
a typical tube characteristic under these conditions. However, when there is apprecia-
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V(t)
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Fig. 1. Typical dynamic characteristic for resistive loads.

ble reactance Xv in comparison with the resistance Rp, the problem is not tractable
with the present methods.

At this point it is well to mention what we mean by a random process, and with
what class of such processes problems of the present kind deal. We consider X{t) to be a
random process when X{t) does not depend in a definite way on the independent vari-
able t, but instead may be specified by an aggregate of different functions X(J), of
which experimentally only probability distributions are observable. Here X{t) may
be the displacement of the electron beam on the screen of a cathode ray oscilloscope,
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or, say, the velocity of a particle in Brownian motion. The quantity X(t) may also
represent a combination of two or more such stochastic variables, in which case we
may speak of a two- or more-dimensional random process. In what follows, we shall
consider formally that X and t are continuous variables; for our work, based as it is
on the problem of the random walk (see Appendix I), this a plausible assumption.
Now, as Wang and Uhlenbeck3 have shown, it is possible to describe a random process
completely by means of a set of distributions determining the probability that X lie
in the range X, X-\-dX, at time, /, thatXi and.X2 fall in the intervals X\, Xi+dXi
and X2, X2+dX2l at times h and t2, respectively, and so on. The classification is
considerably simplified when the initial times of the observations do not enter;
processes of this kind are stationary. Their statistical properties are independent of
when the measurements are made, and depend only on the duration of the observa-
tions. There is an important class in this group known as Markoff processes, which are
completely described by the second order density W2{Xi, X2\t):

W»{X\, X2- t) =joint probability of obtaining Xi in the range Xx, Xi+dXi and
X2 in the range X2, X2+dX2 at a time t later. (1.1)

Since the present paper deals exclusively with distributions that are stationary and
Markoffian, or if not originally the latter, can be extended to a more complex Markoff
process by the introduction of suitable additional random variables,11 we find it help-
ful to mention the properties of W<>. We have

W2(X!, X2; /) = W1(X1)P2(X11 X2; t), (1.2)

where following Wang and Uhlenbeck,3 P2(X | .XV, t) denotes the conditional prob-
ability that, given X\, we find X2 in the interval X2, X2-\-dX2 a time t later. Here
PFi(Xi) is simply the first order distribution, giving the probability of locating X\
in the interval X\, X\-\-dX\\ the time does not enter because the process is assumed
to be stationary. We have also the relations

P2{X1 | X2; /) = 0; f dX2P2{X, \ X2; t) = 1;
(1.3)

W^X,) = J ^1(X1)P2(X11 X2; t)dXh

where the region of integration includes all possible values of the variables. The
further condition

Pn(X 1, ti; X2, t2\ • • • ; XB_i, 1 j X„; t„)

= P2(Xn-\, /n-l | Xn\ tn), t„ > 1 >■••>/! (1-4)

shows that (1.1), or P2, completely determines the Markoff process, for once W2 is
known, we may obtain all distributions Wn, n^2, from the above. It should be ob-
served that P2^>Wi{X2) as /—> =0, provided X2 is purely random and does not contain
periodic components. As has been previously pointed out,3 W2 or P2 cannot be
selected arbitrarily, for it must satisfy the fundamental equation

11 See, for example, sec. 3 (c), of ref. 3.
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Pi{X i X2; 0 = J dXPi(X11 X; ^(X | X2; t - to), 0 g h £ t. (1.5)

which is due to Smoluchowski. Equations (1.1)—(1.5) have been written for one- and
two-dimensional systems; the extension to a greater number follows at once without
modification of the concepts.

The successful solution of non-linear problems involving noise by the Fourier
series method of Rice depends, then, on the following definitions, devices, and as-
sumptions.

(1) It is assumed that the random process is stationary and Gaussian, i.e., Xi, X2,
etc., all obey a Gaussian distribution law. In the completely Gaussian case, all com-
ponents of X\, X2, • • • , as well, are postulated to have a normal distribution of
amplitudes. For our purposes, however, this is not necessary, for by the central limit
theorem Xi, X2, etc., will be Gaussian, irrespective of the distribution law of their
components as long as the latter are sufficiently numerous, under conditions easily
fulfilled physically in most instances. For convenience, we shall assume that our
random processes are initially entirely random in the normal sense. In either case
W<t{Xi, X2; t) is given by (Al.3).

(2) Our choice of input spectra will determine whether or not the system is
Markoffian.12,18 If it is, then Wi completely describes it; however in the present paper
it is not usually critical that we be able to classify the process thoroughly; the chief
concern is with the amplitude distribution and with the mean power spectrum,
which may always be found when W\ and Wi are known, and here it is sufficient that
the system be stationary.

(3) The mean power spectrum W(f) may be obtained directly from the correlation
function R(t), defined by Eq. (A2.3), since by a well-known result14-16 they are each
other's cosine Fourier transforms:

/► 00 f soR(t) cos wtdt; co = 2tt/; R(t) = W(f) cos utdf. (1.6)
0 ** 0

The correlation function, in turn, follows from the definition (A2.3) and with the
help of Wi is seen to be

*«=//:
XiXtWiiXi, X2; QdXidX,. (1. 7a)

If the correlation function for the random wave X(t) after passage through a non
linear device is desired (1.7a) becomes

R(t) = J J g(XOg(.X^Wt(Xi, X2- t)dX,dX2, (1.7b)

12 J. L. Dobb, Ann. Amer. Stat. 15, 229 (1944).
13 Reference 3, Sec. 7, and note II of the appendix for details.
14 N. Wiener, Acta Math. 55, 117 (1930).
16 A. Khintchine, Math. Ann. 109, 604 (1934).
16 G. I. Taylor, Proc. Lond. Math. Soc. Sec. 2, 20, 196 (1920), and Proc. Royal Soc. 164, 476 (1938)

gives applications to the theory of turbulence. Rice's interesting papers 1,2 treat a large number of
noise problems with the help of (1-6), while ref. 3 puts more emphasis on the Brownian motion.
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where g(X) is the dynamic characteristic of the apparatus in question, and Xi is
the incoming disturbance at some initial time and Xi at time t later.

(4) The explicit evaluation of the integral (1.7b) is often very difficult in this form
because discontinuities in the characteristic g appear as finite limits in the integration.
Then it is convenient, almost mandatory, to introduce the Fourier transform f{iz) of
the dynamic path, so that the output wave is given in terms of the input by17

g(X) = - f }{iz)eiXzdz. (1.8)
ZirJ C

The contour C extends from — oo to + » along the real axis and is indented down-
ward about a pole or branch point at the origin. The evaluation of (1.8) is effected
when the contour is extended in an infinitely large semi-circle in a counterclockwise
(positive) or clockwise (negative) sense, depending on whether the coefficient of iz
in the exponent is positive or negative, respectively. When C is traversed in a positive
direction, the residue at z = 0 yields the output as the desired function of the input,
while for a negative circuit of the contour, g(X) vanishes. Other contours are also pos-
sible, and combinations of such paths may be used for complicated characteristics.
In this way, we are able to distinguish between the transmission and the cutcff states
of the apparatus. It should be mentioned that when the contour representation (1.8)
is employed, the results for the correlation function (1.7b) will be expressed in terms
of the characteristic function associated with Wi, namely Eq. (Al.l), in the general s-
dimensional case, rather than by Wi itself. This is not surprising, for it is easily shown
that the characteristic function is the Fourier transform of the corresponding proba-
bility density. See Eqs. (2.13) to (2.16), in the next section.

(5) When a signal, modulated or unmodulated, is introduced along with the noise,
the above concepts and artifices hold, with slight modification. For instance, (1.7a,
7b) now represent only the correlation function due to the noise components in the
wave; a further average or averages are necessary to account for the signal and
modulation components. Here the average over the phases of these components must
be performed. In the next section this extension of the method is outlined and illus-
trated (see also references 2, 6, and 8).

2. Rectification of modulated signals in the presence of noise. Before determining
what happens when a modulated wave is detected in the presence of noise, we must
represent the incoming disturbance analytically. Let us consider first the signal com-
ponent, which we shall denote by Vs(t, t'). Here the variable t refers to the time-
variations of the carrier and t' to those of the modulation. Physically, t and t' both
represent the same instant in time, our choice of symbols being merely one of mathe-
matical convenience. For the type of signal of greatest interest here we may therefore
write

Vs(t, t') = Ao(t') cos oi^t, coo = 2x/o, Ao(/') ^ 0, (2.1)

where fo is the carrier frequency and Ao(t') is some function of the time, which is
only properly called the modulation when it varies slowly compared with cos oiot. In
general the carrier and modulation are not commensurable and hence are uncorre-

17 W. R. Bennett and S. O. Rice, Phil. Mag. 18, 422 (1934). For an extensive application of the
contour representation, see reference 9.
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lated; t and t' are consequently independent variables. On the other hand, there are
cases when Ao{t') and cos co0/ bear a commensurable relation to each other, correla-
tion exists, and t and t' are then functionally related. Such instances may occur, for
example, when the carrier is over-modulated.

Now let us consider briefly the noise portion of the disturbance entering the non
linear device. Several satisfactory representations are possible,18 of which we choose
the Fourier series form

N
VN{t) = 23 .{a" cos + bn sin u„t), a>„ = 2x/„ = 2irn/T, (2.2)

71=1

where the interval of expansion lies between 0 and T, and N is very much greater
than unity. The quantities an and bn are independent random variables, having the fol-
lowing properties:

an = b„ = 0; anbm = 0; anam = bnbm = w(fn)AfSn = {| S(f)\t/T}5n , (2.3)

this last from (A2.4). The bar indicates the statistical average over the various ran-
dom quantities (see Appendix II); here 5™ is the familiar Kronecker delta, which has
the values 5™ = 0, m^n; 5"=1. We assume the random process describing the noise
to be stationary; this assumption can be verified experimentally. The time average
for T-^cc and the ensemble average, in which the average of an (indefinitely) large
number of finite intervals or "strips" corresponding to separate observatirns is taken,
then yield the same results. Under these circumstances the distribution of the random
variables an and bn is unaltered. It is convenient to assume also that this distribution
is Gaussian, with the standard deviation [w(fn)A/]1'2, but as the central limit theorem
shows, [see Appendix I (Al.l, A1.2, A1.3)], any other distribution with the same
average and second moments [Eq. (2.3)] leads to identical expressions for the noise
wave. Equations (2.3) may then be interpreted as follows: the first relation shows that
VN(t)=0, the second shows that an and bn are independent, and the third apportions
the mean power in the frequency range/„,/„+A/n dissipated by a current flowing in a
unit resistance when a potential difference Fw(/) is maintained between the terminals.
In the limit of a very long time, or what is the same thing, of a very large number of
"strips" in the ensemble, A/( = l/T) becomes infinitesimal, and the summation may
be replaced by an integral from/ = 0 to /= °o.

With the aid of Appendix I, we proceed to determine Wi(X) and Wt(Xi, X2~, t),
cf. (1.1), where we identify Vn at some time to with X\ and some time t later with Xi.
Referring to Eq. (A1.2), we find from (2.2) and (2.3) that on letting Xy=a„ cos unt
+bn sin 0}nt,

X = V = 23 (®» cos + bn sin CO J) = 0;

B;1 w m (2.4)
Mil = X2 = 23 («2 c°s2 unt + b2 sin2 wnt) = 23 (fl2 + £2)/2 ~> f w(f)df = ^(0),

n=l " " n=l n H Jo

with i//(0) = X2 the mean power in the wave. Clearly here the matrix y associated with
W2, (see Al.3), has the single element \f/(0) and \n\ =^I/2, m11 = F so that the first
order distribution for Vn=X is, from (Al.3),

18 See reference 1, Sec. 2.8, and reference 6.
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W1(X) = [2W(0)]-l'2exp [- *2/2*(0)]. (2.5)

In a similar fashion the joint probability density W2(Xi, X2~, t) follows; we have

= X2 = vi = v2 = 0, and
N

Mil = XI (fl2 cos2 u"to + b2 sin2 co„<0) — X2 = \p(0)
N

(a2 cos2 coJn + b2 sin2 uM) =

1v
»=i - - - (2.6)

M 22 22 (a2 cos2 co„(/0 + 0 + b2 sin2 co„(/0 + 0) = X2 = ^(0),
n=l " n

from (A1.2) and (Al.4), as a consequence of the conditions (2.3). For the off-diagonal
moments one may write

  N
M12 = M21 = XiX2 = ^2 [a2 cos wJo cos ccn(t0 + /) + b2 sin cont0 sin co„(/<, + /)]

n nn=l

A — — (2.7)
= Z-i (fl2 cos2 unto + b2 sin2 wJo) cos oi„t

/> 00
w{f)

0
cos utclf = 4>(t).

The quantity \p(t) is the correlation function of the input noise, and by (1.6),19 the
Fourier transform of the input spectrum w(f). For the two-dimensional distribution y
becomes

= [>n M12I = mo) mi
LM21 M22J Uw ^(0)J '

; \fi\= ^2(1 - r2(/)), and

(2.8)
^1 = ^ = ^(0), M1I = m21 = _

r{t) is the normalized correlation function of the incoming disturbance, Eq. (A2.7).
With the aid of (A1.3) the joint distribution is easily observed to take the familiar
form20

W2(XhX2; t) =     e~ (X2+X2-2rX1X2)/2^(l-r!)_ (2.9)
2*^(1 - r2)1'2

The incoming wave is simply the sum of (2.1) and (2.2), with the various proper-
ties of the two components outlined above:

Vin = X + V.(f, t). (2.10)
Accordingly, if g(F<„) is the output of the device [see (1.7b)] the correlation function
for the noise components is

S»(k, = J J g(X1+V.[to,lo])g(X2+V,[to+t,lo'+t])W2(X1,X2;OdX1dX2.(2.11)

19 See Appendix II for details.
20 Henceforth we abbreviate if-(O') by tp.
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The complete correlation function, which includes the average over the phases of the
signal as well as over the noise, is

/•To' p To _jdt{ I T„ R„(t0, t{ ■ t)dt0, (2.12)
0 0

where To and To are the respective periods of the carrier and the modulation. The
double integration in (2.12) reduces to a single operation in case t0 and to are func-
tionally related, i.e., when carrier and modulation have a constant phase difference.
Since W2 is given explicitly [Eq. (2.9) ] from our assumptions regarding the character
of the noise, (2.11) and (2.12) represent the formal solution to our problem, in as
much as the mean power spectrum follows immediately from (1.6). However, as
these equations in their present form can be handled only for a few special cases,
chiefly in the instance of "small-signal" rectification, where the distortion of the
dynamic path arising from cut-off and saturation is gradual, we make use of the de-
vice of contour integration, (1.8), for the large and important class of problems in
which cut-off and saturation take place abruptly. Then the outputs at times to and
h-\-t are respectively

g(Fi) = g{Vs(to, t{) + Xt)=~ f f(iz)e»«wt^dz, (2.13a)
2irJ c

S<T2) = g(Y.[h + t, + /] + X2) = — f (/(if)^(^.t'«+'.'.+'l)^, (2.13b)
2tJ c

where C' is a contour similar to C but in the £-plane. Equations (2.11) and (2.12) be-
come finally

R(t) = j-fcf(iz)dz f(it-)di-1J J W2(XU X2; De^+^dX.dX^
( i cTo r T° )

X -j   I I dto dt0eUVt (• 'o)+»£F« ((o+'. <o+ '1V
v ToTo J o J o j

= f f(iz)dz f ,M)FN(z, I t)Fs(z, £; /)</£, (2.14)
47r2Jc J c

in which Fs(z, £; t) is by definition the characteristic function of the signal, given
here by

i c r°' r r°
Fa(z,t;t)= 7 dt0' ^oe»v.((o.<«')+i£F.«o+(,4+Oi (2.15)

ToTo Jo " o

and Fn(z, £; t) is similarly seen to be the characteristic function for the noise, and
may be written

Fn(z, S; t) = J J Wa(Xlt X2; t)e"xi+i^dX1dX2

= exp [- ^(z2 + £2) - 4>(t)z£]. (2.16)

This last result is obtained from (Al.l) with the help of (2.6)-(2.9). From (2.14), it
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appears that the characteristic function for a modulated signal and noise is merely
the product of the separate characteristic functions, for physically the signal and noise
components are uncorrelated, and hence their distributions must be independent.

For the modulated carrier Eq. (2.1) may be substituted directly in (2.15). The
more usual case of no carrier-modulation correlation gives us

> T'o /I /» To1 r T« (1 r T« , , )
Fs(z, £; t) =   I dto \— I 0t*4oOo)coswo«o+t£Ao(«o+Oco8woOo+OJ/o \

T{ J, \T$ J o /
1 /•T'o / 00 00

= — dti ^ E Z )z)Jp{A*[tl + *]?)
To J o V m=0 p=0

1 rTo )
X — I dt0 cos uomto cos po3o(ta + Of > (2-17)

To J a /

where we have used the familiar expansion of exp (ia cos fit) in a Fourier series,21 and
where e0 = l, em = 2, 1. The trigonometric integral has the value (cos mcooOS^/e^,
so that (2.17) may be written finally

to /• 1 r- To -V

F,(z, £; t) = X (— i)™6™ coswco0/<— I dt0'Jm(A0[(0 ]z)Jm{A0[ti + /]£)> . (2.18)
m= 0 Uo i/o /

When (2.16) and (2.18) are substituted in the expression for the complete correlation
function R(t), we may expand exp [—\p(t)z^\, obtaining

" " 1 )m+nem${t)n cos mcc0t r
R(t) = E E       [Hmn(to )Hmn(to + *)]„., (2.19)

m=0 n=0 n !

where

2,Hmn(to ) = — f znf(iz)Jm(zAo[td ])e~
2ttJc

HmM + o = — f , f"/(*£)/-(M.[*o' + i])e-^J/2^.
IttJc

(2.20)

The average indicated above in (2.19) is the time average over the phases of the
modulation. The mean power spectrum of the output wave follows from (1.6) and
(2.19), and is

n/) = EI(- l)-+"^Cmn(/), (2.21)
m=0 n=C M •

where Cmn(f) is given by

/> 00

\p(t)n cos mu0t cos ut[Hmn(to)Hmn(t<! + t)]av.dt, u = 2irf. (2.22)
0

The quantity [Hmn(to +/)]av. is, in fact, a kind of correlation function, by
formal comparison with (A2.1), except that here no statistical averages appear be-
cause A0(t) is periodic. We can also write formally

21 Watson, Theory of Bessel Functions, Cambridge Univ. Press, 1944, sec. 2.22.
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[Hmn(to )Hmn(to + /)]av.

= — f 3f , inm)e- «J/2[J,„(2^o[/o' ])JMA«[tl + *])]„.#
4t2Jc Jc

oo
^ 2
/ / t/chkmn COS kix(2 . 23)
k~ 0

where /.4( = wa/27t) is the fundamental frequency of Aa(t) and hlmn is a mean-square
amplitude, which depends on ip, the amplitude of Ao(t), and on the dynamic char-
acteristic of the apparatus in question.22 Equation (2.23) is the result of developing
the Bessel functions in series, or the expressions integrated first over z and £, and
arranging the result as a series in cos k<x>At. The explicit evaluation of hi-mn is in general
a difficult task. In some cases the work is simplified by taking the time average first,
in others, by integrating over z and £ initially. There seems to be no simple way of
handling the integration problem presented by (2.23), but usually the average over
the phases of the modulation must be performed last. Some illustrative examples
are given later in this section.

From (2.23) we observe that (2.22) becomes
00

Cmn(/) = 2tkh\mnctmn(f), (2.24a)
k=0

where

/» 00

ip(l)n cos mooot cos kuAt cos utdt; (2.24b)
o

the mean output spectrum (2.21) finally takes the form
oo oo oo €

^(/) = E E £ l)"+n— h\mnCkmn{f). . (2.25)
m—0 »= 0 k—0 M •

The effect of the rectifier or similar non-linear device is to "mix" or cross-modulate
the noise and signal components with one another so that the (unfiltered) output
contains the following three classes of modulation product: (a) noiseX.noise, which
gives rise to noise, no longer random with Gaussian properties, (b) noiseXsignal,
which results from the beating of the signal components with the noise wave and
which in turn also yields non-Gaussian noise, and finally, (c) signalXsignal, pro-
duced by the cross-modulation of the various signal components: this last is entirely
periodic and free from noise. A d-c component is often present, but not when the dy-
namic characteristic is symmetrical, for then the average of the cutput, as well as the
input, vanishes. Further subdivision is possible when there is modulation, as we may
then distinguish between modulation products generated by the separate (incommen-
surable) components of the carrier and modulation, but essentially the three main
classifications (a)-(c) still hold.

The different contributions to (a)-(c) may be distinguished in (2.25), since for
(a), exclusive of the d-c, we may write, with m = k — 0, re^l,

22 It is also possible to express the average in terms of the moments on expanding the Bessel
functions with the help of the relation on page 148 of reference 21.
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" (— 1)" 2
Wif) noiso X noise ~ ^ 1 " " ^OOn^QOnif) t (2. 2 63.)

n=l n\

and for (b) we have n^ 1, k^l, giving
oo oo oc /  J \ m+ n ^

W^^noiaeX signal = 4^ ^ ^ — h l;mnC kmn(f) • (2.26b)
»=ln=lt=] W!

Type (c) occurs only for tn^l, k^O, n = 0 or m^O, k^i, n — 0:

W(/)signal X signal

= Z Z «*( - 1) {«(/-«/„- kh) + «(/-*/„ + */a) }, (2.26c)
crs) ra

where we have used the delta function to indicate the "discrete" nature of these
components, located in frequency at mfo + kfA■ The spectral distributions (a) and (b),
on the other hand, representing noise, are continuous. There remains only the d-c,
which is specified bym = «=i = 0:

I'Fd-o = ^ooo 4 J df(^ J cos wtdt^J = hl00 2 j" 8(f — 0)df = hloo- (2.26d)

The parts of the correlation function which contribute to (a)-(c) are easily found
from (2.19), (2.21), and (1.6).

We turn now to a number of interesting special cases:
I. Unmodulated carrier. This is the first and simplest case involving a signal; A0

is a constant quantity representing the amplitude of the carrier wave. It is immedi-
ately clear that the only non-vanishing terms require k = 0 (m, w^O), so that the cor-
relation function reduces to the form given by Eqs. (4.9-7) of reference 2, while
hmn( = hmno) is expressed by Eq. (4.9-6). For noise alone entering the non linear de-
vice, the expressions (2.19)-(2.26d) are still simpler, reducing to the forms given by
Eqs. (3.1)-(3.6) of reference 9.

II. Carrier modulated by sine wave.23 For this important case we have for the
signal (2.1)
Vs = ^40(1 + X cos (x3At) cos co01, Ao(to) = ^4o(l + X cos o)Ato), 0 gX g 1, (2.27)

where X is the modulation index and A0 is the (peak) amplitude of the carrier com-
ponent. For the moment no restriction is set on Ja and /0, save that they be incom-
mensurable, which is another way of stating that Ao(t) and cos u0t are uncorrelated.
Of course, for Ao(t) to be spoken of as a modulation in the usual sense, the frequency
fA must be much less than/0.

We require the value of [Hmn(to)Hmn(td -W)]av.. Expansion of the Bessel func-
tions in (2.20) yields various moments of the modulation, viz. [A^iti )Aa0'(to +0]av..
The average over to follows in the present instance, cf. (2.27), with the aid of the rela-
tion

23 For some earlier work on this problem, see J. R. Ragazzini, Proc. I.R.E. 30, 227, 1942. See also
sections 4.1, 4.2, 4.10 of ref. 2. A theoretical discussion of this problem in the case of half-wave rectifica-
tion has been given by the author in a paper submitted to the I.R.E. A companion paper by Fubini and
Johnson verifies the results experimentally.
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1 r u
—   I (1 + X COS 0)Ol(l + X COS [0 + 4>])<l2dS, <f) = CCAt,

2irJn

<H 3/2, (J—1) 4 (2/X)2i
= Z 21-2fX2' 02C,( — 1)'- £ A A'[- ax],--,,- . ; (2.28)

,=1 i=o (j-2j)!

X cos (j-2i)<t>2F1[Uj ~ 2i - ai), |(j — 2* — + 1); 1 + j — 2i; X2], (2.29)

where a\ and a-i are integers, the C's are the usual binomial coefficients, and Ai = $
when j = 2i, and jAi = l,j^2i. The limits on the second summation apply accordingly
as j is even or odd, and [a]^ = a(a+l) • • • [a+/3 —l], [a]0 = l. The expression
(2.29) follows from the development of (1+X cos [0+0])a2 in a series in cos 9 and the
result24

1 (•
2 tJ0 (1+ X cos d)1 cos

(- 0*(- X)4,Fi[i(A - I), i(k - I + 1); k + 1; X2]. (2.30)
2kk\

From this it is also easily seen that when 4> = 0

/oi.d(0) = iF\\— + a2), K- ai ~ a2 + 1); 1; X2]. (2.31)

Equation (2.31) is helpful if one desires to determine the mean power in the wave.
A short table of /<n,O2(0) is given below.

Table I

a t—0

ai=0 1+XV2 1+3XV2 l+3X»/2+3XV8 1+5X2
+15XV8

l+(X2/2) cos 0 l+X2($+cos 0) l+(3XJ/2)(l+cos q
+(3X*/8) cos 0

l+X2(3+2 cos 0)
+(3X4/8)(l+4 cos 4

1+X2/2 1 +X2(§+cos 0) l+X2(l+2 cos 0)
+(X4/8)(2+cos 20)

1 +X2(2 +3 cos 0)
+(3X4/8)(2+2 cos0+cos 20)

1+3X2/2 l+(3X2/2)(l+cos 0)
+(3X4/8) cos 0

l+X2(2+3 cos 0)
+(3X4/8)(2+2 cos0+cos 20)

l+3X2/2
+3X4/8

1 +X2(3 +2 cos 0)
+(3X4/8)(l+4 cos 0)

1+5X2
+ 15X4/8

Once the correlation function has been found it is comparatively easy to de-
termine the mean power in the output by setting t = 0 in the appropriate expressions
for R(t). As shown by (A2.6) and as discussed more fully in Appendix II, this is
equivalent to integrating over all spectral components, "discrete" or continuous. It
is also evident that the mean total power WT in the output wave is independent of
spectral shape of the input distribution provided all significant components are in-
cluded in our calculation. Thus from (2.19) and (2.23) we may write, setting f = 0,

24 Reference 2, Eq. (4.2.17).
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oo oo /  1 \ m+n

Wr = H(0) = EE    €^(0)«[ffmn(/o')2]av.
m-0 n=0 » !

- f j j A,. (2.32)
m=0 n=0 fc=0 n !

for a general, modulated carrier rectified in the presence of random noise. The power
in the continuum WT is readily obtained from (2.32) and (2.26d), viz., WT = WT—Wd-e
= W — &oooi or by omitting from the sum the term in k — m = n— 0 in (2.32). In a
similar fashion, to determine the portion of the total power output attributable to
modulation products formed by (a), noiseXnoise, (b), noiseXsignal, and (c), signal
Xsignal, we have only to consider in (2.32) those terms for which m = k = 0, ra^l,

: 1, w §: 1, k^l, and 1, & n= 0 or 0, k^l, n= 0, respectively.
One may also calculate the mean power in the output without knowledge of the

correlation function, for if Wi(Vin) is the first order probability density for the input
wave (2.10), then by definition the mean total power dissipated by the rectified
disturbance in a unit resistance is

Wr = w~y=[ g{vinywi(yin)dvin, (2.33a)

with a corresponding expression for the d-c component:

Wd.0 = [g(F^)]2= jj g{Vin)Wx{Vin)dVi^ . (2.33b)

The quantity IFi(Ft-n) has been derived independently by Rice25 and Bennett26
for the case of the simple sine wave and noise. For noise alone it is given by (2.5);
the distribution is more complicated when a signal is present. The drawback to (2.33a)
as a method of determining the power output, however, lies in the difficulty of per-
forming the integrations when g is discontinuous, for instance in the half-wave linear
rectifier, where g>0, F,„>0; g = 0, F<0. Equation (2.33a) is useful only when the
characteristic g exhibits no abrupt variations, cf., "small-signal" detection, in which
the incoming disturbance has a mean square amplitude small compared with the
curvature of the dynamic path (see Sec. 8), or when noise alone is subject to recti-
fication, see Ref. 9. In such cases (2.33a) is to be preferred because it yields results
in terms of a finite number of (tabulated) functions, whereas the corresponding
expression for IF, obtained from R(0) is given as an infinite series which does not
converge too rapidly. On the other hand, use of the correlation function has the ad-
vantage that from it can be predicted the order and nature of particular modulation
products or groups of products, i.e., whether the contribution arises from noiseXnoise
or noiseXsignal, etc. This, as we shall see in the next section, is an important prop-
erty of the correlation function, especially useful when the incoming wave is spectrally
narrow compared with its central frequency, for then the output is composed of
separate harmonic "zones," any one of which may in principle be isolated with a
suitable filter and examined.

3. Narrow band waves. So far, in discussing spectra and correlation functions no
restrictions have been placed on the spectral nature of the input wave, which is com-

26 Reference 2, Eq. (3.10.6).
26 Reference 6, Eq. (3.6).
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posed, in its general form, of periodic or of a set of periodic components and of a noise
term. Moreover, in determining the mean power spectrum of the output disturbance,
no additional modification of the wave has been assumed other than that attributable
to the non linear ip — e„ (output current vs. applied voltage) path of the rectifying
device. In somewhat different language this means that the circuits of our apparatus
contain only filters whose amplitude response is uniform (for all frequencies) and
whose phase shifts vary in linear fashion with the frequency. This means that we re-
strict ourselves to non linear elements whose instantaneous output does not affect
the time dependence of the incoming wave, i.e., to resistive loads, no feedback, or at
worst to plate (and grid) circuits whose reactive components are small compared with
their resistive ones—all of which is required for essentially one-valued dynamic
paths (Fig. 1)—then we may introduce the effect of filters into the analysis, observing
that now they simply modify the frequency spectrum. In the case of filtering the input
the spectral shape is altered, but the quality of the wave is not altered; it is still a
Gaussian random process. On the other hand, if the output is filtered, not only may
the original, i.e., the unfiltered output, be changed spectrally, but also the quality of

T
W0

0 fe f —

Fig. 2. Narrow-band input noise (power) spectrum, centered about fc.

the wave is affected, in as much as the output is no longer Gaussian, because of the
intervening non linear operation. The distributions of the output amplitude, how-
ever, remain unchanged by a filter, provided that the pass-band of this filter is sufficiently
wide compared with the spectrum of the transmitted wave. If it is not, then there is a
tendency of the filter to restore randomness to the distribution by filtering out the
higher frequencies characteristic of the distortions due to curvature of the dynamic
path and to the "ceiling" produced by cut-off, saturation, or both.* But we can still
determine the mean power and mean power spectrum, although the distributions
Wi, Wz, • • • , Wn are at present beyond our powers, by observing that

(f) filter in output ~ W(f) inf. filter in output* I G(f) |2>

where | G(f) | is the modulus of the output filter response.

* Note added in proof: The difficult problem of determining the distribution of the amplitudes after
rectification and arbitrary filtering has been solved by M. Kac and A. J. F. Siegert, J. Appl. Phys., 18,
383 (1947) for a quadratic detector.
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When the spectral width, measured between points at which the mean power
spectrum is but a few percent of its maximum value, is small compared to the central
or "resonant" frequency, we term the wave narrow-band. A precise definition, of
course, requires a knowledge of the spectral shape, whether it has one or more maxima,
where we measure width, etc., but here we shall assume that the spectrum is a simple,
symmetrical distribution about a single maximum, as shown in Fig. 2. Now an im-
portant property of narrow band noise waves is that their correlation functions may
be expressed as the product of the correlation functions of a slowly and of a rapidly
varying term, corresponding to an envelope or "modulation," and to a "carrier,"
having the central or resonant frequency fc of the disturbance. (This is shown to hold
for symmetrical noise spectra in Appendix II (A2.8); for a signal the same demon-
stration may be made, except now, of course, we have a series of discrete components
distributed about a true carrier, rather than a continuum about a central frequency.)
The correlation function and the spectrum of the output follow directly from (2.14)
and (1.6) as before, but instead of expanding exp at once to obtain the
form (2.19), we may use this property of the input correlation, viz:

\p(j) = i/'(0)r,-(l) ccs a\t (A2.8)

to show that the outgoing wave is composed of an infinite number of spectral bands
centered about harmonics of the central or of the carrier frequency, or of their modu-
lation products. Generally speaking, these bands will overlap to varying degrees, if
fo and fc are different; if/o=/c, which is the important case in practice, the modula-
tion products involving /0 and fc will coincide exactly. The different behaviors are
apparent when we attempt to examine a given spectral region, say one centered about
the carrier /0. In the former instance (/o^/t) our filter* will exclude part of the
spectral zone due to the one and include some of the zone associated with the other,
while for the latter (/c=/o), our filter passes contributions symmetrically disposed
about/o. For the harmonic regions of higher spectral order, i.e., Ifo, lfc, 2, the
former effect becomes more pronounced, since now the maxima of the distributions
due to the noise and signal are separated by approximately l\fo— fc\ cycles. Further
there is a "smearing-out" of the spectra, because all orders of noiseXnoise, noise
Xsignal, etc., components are generated. This accounts for the broadening and filling-
in of the various output spectra; smearing of the carrier and modulation is also ob-
served. When 1 = 0, we obtain the low-frequency output, or envelope, distorted or
not depending on the nature of the tube's dynamic path. This spectral region is
usually of principal interest in reception, while in transmission the zone 1 = 1 is of
chief concern, where now our rectifier assumes the role of mixer (though with a dif-
ferent characteristic, of course). Figure 3 illustrates this discussion.

Now with the help of (A2.8) and the expansion
oo

e-*ro(OcoS*o< = £ £jj(_ 1 )P/p(z£M,(<)) COS pWct (3.1)
p-0

we may express the correlation function (2.14) as

* For this purpose all our filters are assumed, to be ideal, i.e., to have a uniform response over a fre-
quency range wide enough to include (almost) all the components in a given zone. We say almost, because
the non linear device produces some frequencies which will lie outside the finite pass-band (see the end of
Appendix II).
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00 00 / 1 /%

R(t) = Ewp(~ 1)m+p cos pwct cos mu0t <  I f(iz)Jm(zAo[lo' j)e~*z2,2dz
m=0 p-0 Wt2 J C

xf,/(if)a4o[(,'+/]rt'W)l . (3.2)
C / av.

Equation (3.2) is general for all /0 and fc. However, in the case of principal interest
carrier and central frequency coincide, so that fo=fc and (3.2) reduces to a series of

 BEFORE RECTIFICATION

W(fj   AFTER RECTIFICATION

, MOD. SIGNAL,. , |
! BEFORE AND

AFTER I

!NOISE

mil 

iiiiii
0 fr=fa 2fc 3fc 4fc f —

Fig. 3. Narrow-band noise and modulated signal spectra, before and after rectification. The upper
of the two applies when/c 5^/0, where the spectral width is much less than either fc or/0. The lower illus-
trates the spectra when fc =/0. The normalization is arbitrary.

distinct harmonic regions distributed about lf0,1 = 0, 1, 2, 3 • • • , the harmonics of the
carrier. Thus, from the fact that replacing XX 0Hp-o «»»«?»( ) by XX-» XX-»( ).
since and Ip(y) = I~p(y), and collecting all terms of
cos poiot cos muot which yield cos luot, we observe that the correlation function for
the /th band is

(— 1)' cos lwBt " ( r 12
*«(0=-  ~ Z«l—111 I ]z)er*^*dz ■

4?r2 m=0 W C

X fc'f
= (—1)' cos Zco0/2L

2|m~'1 g„o 22<1q\(q + | m — I \ )!

X [/?m.|m-J|+2?W) Hn,\m-l\+iq{to +0]av., (3.3)
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on expanding the Bessel function The complete correlation function is, of
course, ^" 0i?j(i)- By (A2.6) and (2.23) the power in any zone is

lA1 *2, V2-Ri(0) = (- 1)'E r' , ''r"Z „ V 7T-rrE«*Ui-i+.«. (3-4)
m=0 2|m-'l 9=o ?!(? + | rn — 11 )! k=o

since r0(0) =1. Here also we see an illustration of the theorem stated previously, cf.
(2.32) and Appendix II, namely, that the power in a spectral region, here an harmonic
zone rather than the entire output spectrum, is independent of the spectral shape of
the input noise and also of the signal spectrum. This naturally simplifies the calcula-
tion of the power, once Ri{t) has been found.

4. The biased pth-law rectifier. In the preceding section certain general aspects
of the theory of modulated signals and noise passed through non linear devices have
been outlined. Specific results in each instance depend on the evaluation of integrals
of the form (2.20). Here attention is directed to the important case of the biased
pth-law detector, whose dynamic characteristic g( V) is given by

I = g(V) = 0(V - boy, V > bo, x > 0
(4.1)= 0, V < b0,

and /3 has suitable dimensions for the output to be a current when the incoming wave
is a voltage; b0 represents the cut-off voltage, measured from the operating point in
the manner of Fig. 1. The Fourier transform of g is readily shown to be

er(Mrg(V)dV = —£  (4.2)
o (jz)"+1

With the help of (4.2) the integrals (2.20) may now be determined, in a variety of
ways leading to different, but equivalent results, the form of either depending on
whether exp (—ibQz) or Jm(A 0z) is expanded in a series, followed in each instance by
termwise integration. The former approach yields a series in b^b0/ip112, where the
coefficients of the various powers of b are themselves series in the parameter
p{t) = [y4o(0]2/2^', while the latter is expressible as a series in p(t), the coefficient of
whose general term likewise is an expansion in b. The two developments, while valid
for all values of the parameters b, p(t), and ip, vary in their usefulness for different
ranges of b, pit), and \p.

Let us consider first the case where exp (—izbo) is given as a series. The general
integral (2.20) becomes accordingly, with the aid of (4.2),

0T(v + 1) r
Hmn(t) = —   z-e^»«Jm(zA0(t))e-^li*dz/(iz)'+1 (4.3)

2 7T J c
» , k

oo ( i) bc\ r
   — I zk+n+v~lJm(zAQ(t))e-+*%i2dz

k*=0 k\ J C

BTiv + l)e-(m+n),ri/2 /' x £(0m/2

0r(» + i). - (-;)*£„—   .
2ir £=o k\ J c

:(l)'2 ml
(— l)k2kl2bki Fi [(& + tn + n — v)/2; m + 1; — pit) J

(4.4)
/,-=o k\T[i2 + v - k — m — n)/2\

this last from Appendix III, Eq. (A3.15), where also are mentioned some of the prop-
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erties of the confluent hypergeometric function 1F1. For an unmodulated carrier p(t)
is merely a constant p=A\/2\p. Observe also that when (2 +i> — k — m — n) is zero or
an even negative integer the modulation products contributed by such terms vanish,
in virtue of the poles of T\(2-\-v — k — m — n)/2]. Further, when v is integral, only odd
values of k appear, m+n even, and only even values of k when m-\-n is odd (except
for 2-\-v>k-\-m-\-n>0). Equation (4.4) is best suited for computation when fr = &0/'/'1/2
is of the order of unity or less, even for a wide range of values of p(t). Values of b>l
yield too slow a convergence, and the alternative development is then needed.

The expansion of the Bessel function in (4.3) gives us

PT(v + 1) " (- l)kA0(tyk+m r
= i—»£   — I 22*+»'+b—-*> Hdz,

2tr k\(k + m)!2"+»Jc

and from Eq. (A3.17) we obtain finally
PT(v + I) /^\<»-»>/2 »

=   e-T<(m+»)/!f j Ctmnkp(t)\ (4.5)
2 \ 2 / *=o

where

Ot-mnk
1 (iF1[(2k + m+ n - v)/2\ 1/2; - i2/2j

k\{k + m)\ I T[(2 + v — 2k — m — «)/2]
jFxK 2k + m+n-V- l)/2; 3/2; - ¥/2]\

— V2 b   v . > . (4.6)
r[(l Ar v — 2k — m — «)/2] )

Here large values of b are clearly more easily handled, especially when the asymptotic
series for iFi, cf. (A3.3), can be used. Also equations (4.5) and (4.6) in general offer a
more satisfactory form from which to determine the time average over the phases of
the modulation, viz:

[flmnW )Hmn(to + 0 W
B2T(v + 1)2(— 1 ) ">+n / ,lj \v-n co oo

=    (-) E E«»nA.W-2[/>W)"*/2+W +/)""2+^]av„ (4.7)
4 \ 2 / j-2-o

when the spectrum of the output is desired, cf. Eqs. (2.21), (2.22), since a double
series is sufficient, whereas if (4.4) were used, a fourfold infinite series would result
for the average. A similar superiority of (4.7) over (4.4) is noted in the limiting case
of p{t)<£ 1. Observe also from (A3.9) that for integral values of K>0) the various
amnk reduce to the functions defined in Appendix III (A3.4), and are thus expressible
as Hermitian polynomials.

A detailed discussion of the above in the case of the biased linear rectifier or mixer
is reserved for a later paper.

Limiting cases are of interest: We consider first:
Case J:&o—>0, A0(t),\p^O and finite. Equations (4.4) and (4.7) reduce, equivalently,

to

/Sr(7 + 1) UFl[(n+m — v)/2\m-\-\-,—p(t)]PT(y + 1) fiV (i.
o^   <r (■*»>"/« ( ~ ) #(<)"" {-

2ml \ I / I

z- i^i[(l + m + n — v)/2\m + 1; - />(0] .
bV2- 7 h • • •> . (4.8)

T[(l + v — m — n)/2]

r[(2 + v — m — «)/2]

}•
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From (4.8) the expressions for half-wave rectification, b = 0, follow immediately.
Case II: &o—» + w , Ao(t), \p finite. Here it is convenient to use the second form (4.5)

of Hmn(t) and apply the asymptotic series (A3.3) for \F\. It then may be shown that

Hmn(t)b,„^0. (4.9)

since amnt,—+0 for all terms in the asymptotic development. This is to be expected
physically, since with an indefinitely large cut-off voltage the finite signal amplitudes
and even the possibly infinite noise peaks are not transmitted, the latter because they
arise a vanishingly small fraction of the time, since the mean power in the input
signal and noise waves is finite. On the other hand, when bo—*— «=, we find from (A3.3)
and (4.5) that

&T(v + l)e-(m+")Ti/2v/7r 2""' | b0 \~m-n+'A0(.t)m
H mn (0 bo oo

ml r[(l + v — m — »)/2]r[(2 + v — m — n)/2]

x {'+ ^['~ 2*^+7)] <ro+"~*+1)<™+"~,)+ '),(4,10)

which shows that for v> m-\-n the output contains increasingly large terms, while for
v<m-\-n all such contributions become negligibly small. As an example, consider the
linear rectifier, v=l. Here only the terms (m, n) = (0, 0), (0, 1), (1, 0) are significant:

#oo = |3 | io|; #oi = — i/S; #io (<) = — iPA<>(t)/2; 0, m + n > 1. (4.10a)

The first relation becomes infinite, since infinite (negative) cut-off voltage must be
supplied when bo—*— °° ; the second result, when substituted in (2.21) and (2.22),
gives the mean power spectrum of the output noise, which is easily seen to be the
same as the input spectrum except for the constant factor /?, and finally, the third
expression is observed to be the mean power spectrum of the input signal, undistorted
because now the linear rectifier is essentially a linear amplifier. In general (4.10) may
be said to hold for a small-signal eth-law detector (see Sec. 7).

Case III: Ao(t)—*0, bo, 4* finite. Here the modulation or carrier contribution is al-
lowed to become small. Then the principal term in IImn(t) obtains when m= 0, and
correction terms when m — 0,& = 1, m = l, k=0, and m = 2, k = 0. Either (4.4) or (4.5)
reduces to the following

pr(7 + i)c-'"i/2 / ^ x (—n)/2
■#0n(0p(«-0 =      ( — ) I^OnO + O.0nlp(t) + • ■ • },

ipT(v + l)e-™'! /
#m(0 = y \l) ^P{t)1'2a lB° +

/3r(7+i
#2nW —     ~\7/ f^(0a2i0 + " "

)I ' (4.11)

For noise alone we have

#0„W = hn =    iJ J <-
0T(v+ l)e~Tni/2/ Y"-»>/2 (iFi[(» - v)/2\ 1/2; - P/2]

r[(2 + x - n)/2]
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(4.12)
_ b ,^1 F.[(n - r + l)/2; 3/2; - b*/2]|

r[(l +*-»)/2] J '
and in the special cases v — 1 and v = 2 we obtain with the aid of (A3.9) the equations
of Reference 9 when there is no saturation.

Case IV: A0(t)—***>, bo, \p finite. The signal is taken to be very large, and again the
asymptotic relation (A3.3) is in order, this time applied to (4.4) as p(t)—*oc. The
result is

/3r(v + 1)(- l)("+»)/s2»-^MoW"n j 1

2r[(2 + V - n + m)/2] \r[(2 + v - n - m)/2\
260r[(2 + P - n + m)/2\ )

+ •••>, (4.13)
i4o(0r[(l + v — n + »»)/2](l + v — n — m)/2

and including terms in A0(t)~x we may write

1
Hm0(t) ^/3r(v+ l)2-->(- i)^o(()'

lr[(2 + f + «)/2]r[(2 + r - m)/2]
2boT(2 v -f- tn)

4o(Or[(l + " + »)/2]r[(l + K + m/2)]
Hml(t) S ffiXv + 1)2~'(— i)mAo(ty

+ 1'
X \—f     f • • -V , etc. (4.14)

\r[(l + v + m)/2]T[(l + v - m)/2]A0(t) C'}■

This shows the complete suppression of the noise when A0(t)^i>\^112. Further, since the
cut-off and r-m-s noise voltages are comparable in that they are far smaller than the
signal, they, too, are negligible in their effect, and we have essentially half-wave recti-
fication of a modulated signal alone. In the special instance of the low-frequency
output of the half-wave linear detector, we have from (4.14), m = 0, H0o(t) =(3A0(t)/ir,
in agreement with Eq. (40) of reference 8.

Case V: b0, A0(t) finite. This corresponds to the case in which the noise
overwhelms the signal and much exceeds the cut-off voltage. Equations (4.4) or (4.5)
reduce to

/3r(v + 1)
2 m\

(iFi[(n + m — v)/2 \ m + 1; — p{t)]

\ r[(2 + v - m - n)/2]
baV2 1F1 [(« + m + 1 — v)/2; m + 1; — p(t) ]

\p112 r[(l + 7 — m — k)/2]

bl iFi [(w + n + 2 — v)/2; m + 1; — p{t) ] )
+ 7 r[(, - » - »)/2] 1 ' V <415)

and the significant terms are
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rr / n M" + 1W'22-"2 (i i boV2 r[(2 + 0/2]
oo(°- 2r[(2 + v)/2\ \ ^"2r[(l + v)/2\

1,

Boi (0 = -

ffloW = -

l r*4o(0 . 6„r[(2 + ")/2Jl , \
+ 7L~+ rfr/2) J I '

ipr(v + i)^('-i>/22-<"+i>/2 boV2 r[(i + v)/2] )

r[(f + i)/2] I1 ~~ r(v/2) + " '
l/3r(v + l;^/22-(v+3)/2 / joX/2 r[(l + f)/2] }

r[(i +v)/2] V ' 7 r(i//2) +"7'

Hoi(0 = - /3r(* + i)^w«)-i2-/vr(»/2);
//2O(0 s - pviy + 1)^/2.2-(W2)-3^o(<),/^r(f/2)l etc. (4.16)

Observe that the terms containing pure-signal or cross-term contributions, n= 0, or
m, n9*0, vanish at least as ^~1/2, and only noise is left. Thus when the input noise
voltage becomes sufficiently great in comparison with the signal, the latter is sur-
pressed. In particular, for the half-wave linear and quadratic rectifier, the low-fre-
quency amplitude of the output (m = n = 0) becomes from (4.16)

H0o(t) - (d-c)

j8r(v + l)f<2 (vA "0\ /W2
r -

io\ W1/2 2
-)= —= [A0(t)/2iUllbo=0l p(t) « 1
/ / 2\Z2tt2("/2)+3r[(v + 2)/2] \ +

= ft \_A o (^)/2 ]»<=2,&o=o»

(4.17)

the first of which is Eq. (39) of reference 8, and the second, Eq. (29).
Case VI: \p—>0, &0, A0(t) finite. Here it is convenient to distinguish two cases in

the limit, one where | &0| >A0(t) ^0 and the other when Ao(t) > | b0^0 For the first
we use (4.5) and (4.6) as b—>=o, along with (A3.3) to obtain the not unexpected result
that

flT„,(0*-o =0, b0 > Ao(t) ^ 0, (4.18)

since the cut-off voltage exceeds the input signal (envelope), so that the wave is not
passed. However, when | &0| >A0(t), &0<0, we have a different situation, where now
the incoming disturbance, which is essentially pure signal (hence n = 0 in the limit
1^ = 0), is transmitted without distortion due to cut-off or saturation effects, albeit
with distortion due to the non linear nature of the dynamic path, The expres-
sion for the amplitude is accordingly

jsr(f + l)*-*-1 r
Hm0(t) =    e~ iAoJm{A 0(t)z)dz/ dz'+1. (4.19)

2t J c

When bo<0, |&0| >Aa(t) we may use (A3.8) in conjunction with (A3.19) to get
finally
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Hmo(t) =  = ;—; ;— 1—~r iF\{m — v, m — V + 1;
2T[(2 + y — w)/2]r[(l + v — w)/2]w!l_| b0 | J

w + 1; -<4o(0/^o)i £>o < 0, | bo | > ^4o(0» ^ = 0. (4.20)

On the other hand, when |i>0| <A0(t) we obtain from (4.4), including a correction
term,

ff„( f)*-o = i8r(f + l)e-(m+")'ri/22n~''~1.4oW_"

" (— 1) *=2 {1 + + n + £ — ?)(« — m + k — v)/2A0(t)2 |

' to JfeL4o(0*r[(2 + »-*-»- »)/2]r[(2 + >» - k + m - n)/2] ) '

and when \j/ = 0 we may sum (4.21), n = 0, or use (A3.19) to get

(4.21)

PT(y +1) .,,A ,s ~ ")/2' (~ m ~ v)/2'> b0/A0(ty\
  e- m*il2Ao(t)v < r   

2'+! w\ T[(2 + v + m)/2]T[(2 + y-m)/2\

2b0 zFi[{m — v + l)/2, (— m — v + l)/2;f; b0/Aa(t)
}■ (4.22)

A0(t) r[(l + v + w)/2]r[(l + v - m)/2]

0 ^3 | bo | < /lo(0-

For half-wave detection we have the simple result

PT(v+l)
ff-«(0^-o.*-o = —— r[(2 + „ + w)/2]r[(2 + ,_w)/2] * (4-23)

Power and spectra may be obtained in the usual manner (see Sec. 2).
S. Probability density of the envelope and phase of a modulated signal and noise.

In handling the problem of passage of noise or a signal and noise through a non linear
device, it is sometimes convenient first to determine the various first and second
order probability densities associated with the incoming wave, and then with their
help derive the expressions for the mean power output and the correlation function
associated with the transmitted disturbance, after it has been modified by a rectifier
or similar non linear apparatus, cf. Eq. (1.7b), for example. Now in particular when
the noise and signal are narrow-band, vide Sec. 3, this method, alternative to the use
of the characteristic function [Eqs. (2.10)-(2.16) ] suggests itself. The purpose of this
section and of section 6 following is to obtain explicit expressions for the probability
density of the envelope and phase of the general type of modulated carrier in the
presence of narrow-band noise. Only in such circumstances may one properly speak
of an envelope or of phase—i.e., when the part of the incoming wave due to noise and
modulation is essentially slowly varying in comparison with the carrier frequency f0
and the central frequency fe of the noise band. After rectification it is usually this
envelope, the low-frequency part of the disturbance, that is observed.

The input is

V(t) = Ao(t) COS "I" F(/)at

= (^4 cos u>dt + Vc) cos hict + (Fs ~~ A sin Wit) sin uct, (5.1)
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where fd is the difference frequency j<i=jc—fo and A =A0(t), from (2.1) and (2.2).
Here Vc is the component of the noise "in phase" with cos u>ct and V, is the com-
ponent "in phase" with sin uct, e.g.:

oo

Vc = 22 (an cos co„'t + bn sin con't),"7 (5-2)
Vs = 22 (— «n sin wIt + bn cos w„' /); = «n — aic,

n=l

respectively. By the envelope is meant

E(t) = [(A cos Udt + Vc)2 + {V. — A sin co^Y'2. (5.3)

which is a slowly varying function of the time provided/<j<^/o./c i.e., the centers of the
noise and signal spectra are not too far apart in frequency. The quantities A, Vc, Vs
are, of course, relatively low-frequency disturbances.

Our first task is to obtain the joint probability density of E\ and E2, where E\ is
the envelope at time to and En its value at some later time to-\-t. We derive the dis-
tribution of Vd, Vc2, Vsi, VS2, and VS2 initially in rectangular coordinates. Letting

00

X1 Vci ^ y cos con to -j- bn sin C0n to) ,
71=1

oc

X3 = VC2 = \an C0S wn (^0 + 0 + bn SlTl C0n' (^0 + 0]
n= 1

(5-4)
X2 = Vsl = ^2 (~ sin COn /0 + COS C0n' /0) I

n=l

oc

X4 = F„2 = X/ [ — sin u» ('0 + 0 + bn cos co„' (<o -+■ 0 ],
n— 1

with the help of (2.3), (2.4), and the generalized Gaussian distribution (A.3), we ob-
serve that

-^1 = = -^3 = - f W(f)df = ^(O) = Mil = M22 = M33 = M44, (5.5)
" 0

w(J) as before being the mean power spectrum of the noise; for X1X3 and X2Xi we
have

X1X3 = X2X4 = I w(f) cos (co — coc)tdf = to(t) = = M13 = m24; (5.6)
J ft

(see Appendix II). It is also evident that XxX-i= X3Xi = 0, as there is no correlation
between the "in-" and "out-of-phase" components of the noise. There remains finally

X2X3 = X1X4 = f w{f) sin (w u)e)tdf = Xo(t)t — ̂ 23 = — mh- (5.7)
J 0

Accordingly, if we let Y\=A coscod<+ Vc, F2= —A sin V„ etc., the various Fx, F2,
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F3, F4 represent random variables distributed about the averages A 0(jd) cos cdto,
—Ao(to) sin udto, AoW+t) cos Ud(t0+t), and — Ao(to +/) sin Udito + t), where no
correlation between the modulation and the carrier, as well as the noise, is assumed.
Thus Ai=A0(to) represents the envelope modulation at a time to, not analytically
related to to, and A2=Ao(to +0 is the same modulation a time t later. Equations (5.4)
become

X\ = F i — A i cos co dto; .Ar2==Ir2~|-.<4isinco dt o J
(5.8)

X3 = Y3 — A2 cos o>d(to ~l~ t) I Xi — F4 ~f~ A2 sin wd{to t).

Equation (A1.3), where 5 = 4, gives us the joint distribution W2(XiX2; X3X4; AiA*; t),
for which the fundamental matrix is

tf = IIMI =

^ 0 r0\p — X0^

0 \p \oi To^

r0\p X0^ 0

raip 0 \p

(5.9)

From (5.5)—(5.7) and from (5.9) the determinant | yu.| and the cofactors follow at
once. Since (5.1) may be written V(t) = F] cos coct-\- F2 sin wct, the envelopes of the
wave at the two times to and to +/ are respectively

Ei = (Fj + F2)1'2 and £2 = (F* + F^)1'2, (5.10)

and following the example of Rice2 and others, we transform to polar coordinates
with the help of

F1 = £icos0i; F2 = Ei sin F3 = £2 cos 02; F4 = £2 sin 02, (5.11)

for which the Jacobian is easily shown to be EiE2.
The probability density Wi becomes finally

W2(£i£2; 0102", A1A2', i)

EiE2 f 1 2.2 ,2 2
exp —  — — J_Ei + -E2 + ^4i + ^42

4irV(l — X§ — r§) L 2*(1 - Xo2 - r02)
— It0E1E2 cos (O2 — 0i) — 2Xo£i£2 sin (62 — 0i)

— 2r0A!A2 cos wdt + 2X0^1^2 sin 01 dt

+ 2£2 sin 02[A2 sin a>dt2 — ?oAi sin Wdh]

+ 2Ei sin 0i [A 1 sin udt\ — r0A2 sin cod/2]

+ 2X0 [£2^41 sin 02 cos 03dh — EXA2 sin 0X cos a>^2]

+ 2X0 [£2^1 cos 82 sin Wdh — E\A 2 cos 0i sin

— 2£1 cos 0i [/41 COS (A dt\ — ^0-^2 COS CO dti\

2£2 cos 02[.'12 COS ajrf/2 — Mi COS corf/i] ]], (5.12)

where h=to, t2 — to+t. It should be pointed out that W2 as given by (5.12) is not
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purely a probability density, in as much as averages over the phases of the modula-
tion and over the phases of the difference frequency terms involving uj/i, Wdk remain
to be taken. Since the modulation and difference terms are not correlated, these aver-
ages are independent and, for example, may be determined in the manner of (2.12).
Although periodic disturbances are not, strictly speaking, random, they may be
treated as such on assuming a random distribution of the time origin with respect to
an hypothetical observer. In this way the phase may be considered a random variable
uniformly distributed between 0 and 27t, and a statistical average accordingly may
be performed for the function containing this random variable. See section 3.10 of
reference 2 for a more detailed discussion.

It is evident at once from (5.12) that the presence of a modulated signal introduces
considerable mathematical complexity, and comparison with the results of Sees. 2
and 4 would indicate that this form of treatment is perhaps in most cases not so
expeditious. Further, it is restricted to narrow-band disturbances, while the ap-
proach of Sections 2 to 4 is more general. However, a considerable simplification in
(5.12) is possible if we observe that for w'=« —wo, Eq. (5.7) becomes essentially zero,
i.e., X0(0 =0, since the input spectrum is narrow-band and symmetrically distributed
about f=fc and /„ heavily exceeds the effective bandwidth of the noise, as now the
contribution from 0 to —coc nearly cancels the integral from 0 to °o. It follows that
all terms in (5.12) containing X0(£) may then be safely discarded.

The case of greatest practical interest occurs when the carrier and central noise
frequencies coincide; then co<j = 0, and with the usual condition Xo(0 =0 we have for
W2

= —, —— exp — (a\ + A\ — 2r0AiAi)/2\f/(l — r\)
4ttV (1 ~ t )

■ exp — [£i + El — 2r0EiE2 cos (02 — 0i)

— 2Ei(Ai — r0A2) cos — 2£2cos02O42 — r0-4x)]/2^(l — rl). (5.13)

Notice that when t—><» we obtain the square of the first-order density W\. Then
since r0(°o)=0, Xo(°°)=0, Eq. (5.12) transforms in the more general case where

to

lim (W2) = w\ = exp - [A^ty + E2 - 2EA0(t) cos *]/2*| , (5.14)

in which <f)=d-\-Udt is a new phase angle. The probability density of the envelope E
is found by integrating over all phases d, or <f>, between 0 and 27t. The result is

Wi(E, At(0) = (E/i) exp - I0(EA0(t)/t) U„«2 + £2]/2*, (5.15)

a generalization of a result derived independently by Goudsmit,27 North,7 Rice,2
and others, when the carrier is not modulated, i.e., when Ao(t)=Ao■ The complete
first-order probability density requires the average over the phases of the modulation,
in the manner explained following (5.12). When there is no signal we have the well-
known expression Wi (E) = Exp"1 exp ( — E2/2\p). Figure 4b illustrates some typical
distributions of W\ for various values of the ratio Ao/^n, or \/2p'12. As we would

27 S. A. Goudsmit, Comparison between signal and noise, M.I.T. Rad. Lab. Report 43-21, Jan. 29, 1943.
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expect, the presence of the signal shifts the average and the most probable values of
the distribution to larger values of the envelope voltage, such that for sufficiently
strong signals the most probable value of E coincides with the peak amplitude A0.

W,(1>;A.) W, (EjA0)
2.O1——      1.001-

l/y'*
<W

Fig. 4. Curves (a): the probability density of the phase <f> when the carrier is unmodulated. Curves
(b): the probability density of the envelope E of an unmodulated carrier and narrow-band noise, for
various ratios of peak signal to r-m-s noise amplitudes, as in the case of (a).

The probability density Wi(d, A0(t)) for the phases follows in a similar manner.
From (5.14) we have after integration over E with the help of (A3.2) and (A3.7)

Wi(9, A0(t)) = ™ e-uo(0.inAa(j) cos ^
2ir

+ iFi[- J;i; - (A0(t) cos </>)2/2*]j , (5-16)

and again to determine the pure distribution Wi(9) we must average over the phases
of the modulation A0(t) as described above. The expression </>=0+co<j/ introduced
first in (5.14) is a new phase variable, shifted from the origin of 6 by an amount
that increases linearly with the time; Eq. (5.16) might be considered a periodically
fluctuating probability density. However, the statistics of the phase 6 or 4> are not
radically affected; the density functions are the same in either case, only the average
values of 6 and cj) are different in the interval 0 — 2ir. Note that when there is no signal
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Wi(9) = l/2ir, as we would expect. Figure 4a illustrates the variation of the phase
density for an unmodulated carrier where the ratio A o/^1/2 takes the same values as in
the example of Fig. 4b for the envelope. For no signal the distribution is uniform; as
the signal strength is increased relative to the r-m-s noise voltage the phases are
grouped progressively closer about the 0°-phase of the carrier, until for no noise, or
what is the same thing here, for an overwhelming signal, the density becomes a delta-
function at 0 = 0. Strong signals thus dominate the distribution of the phases for the
noise, and strong signals tend to obliterate the random phasing. The curves of Fig.
4a are symmetrical about <£ = 0, the complete interval being — ir <(t>^ir or 0 <<j) ̂  2ir.

The second-order probability density W2 for the envelopes E\ and £2, or the phases
0i and 02 may be determined in the same way that Wi was. We have finally28

Wz(EiEi] AtA2; t)
£i£2 2 2,2 2 i , , 2

exp — [Ei + Ei A\ -f- Ai — 2^41^42^0]/2^(1 — r<,)
*2(1 ~ rl)

A / roEiEi \ /Ai — ToA? \ /A% — r^Ai \
x z tn.lj— — ) 7« I —  -£i)/m( —   £2). (5.17)

m=0 \^(1 — r§)/ \ 1^(1 — rg) / \ >A(1 — rl) )

A similar but more complex result obtains from (5.12) if co^O. Whqn there is no
modulation (5.17) may be more simply written

E\E<l
Wi{ExEi\ t) = — -exp

<r(i - n)

~A 0 22 2 "1
(E, + £0/2^(1 - r0)\U(1 + r„)

" / r„£i£2 \ / A0Ei \ / A0E2 \
• Z «»/»(—   ) ( — 7 M•»( ~7 )> (5-18)

m=o W(1 — rl)/ \^(1 + r 0) / \<A(1 + r0)J

and for no signal at all we have

Ei£2 22 2 / rqE\Ei \
Wi(£i£2; t) = — — exp - (£1 + £0/2^(1 - rQ) U[— -), (5.19)

i^2(l - rl) \f(l - rl)/

a result originally derived by Uhlenbeck29 and used by him to determine the correla-
tion function R(t) =EiEi for a half-wave linear rectifier when random noise alone is
detected.

The probability density for the phases 0i and 02, Ud = 0, follows in the same way
from (5.13), the final result taking the form

Wi{0x02; A,A2; t)„d=0 = [4tt2(1 - rl)]-»

exp [— (^4i + ^2 — 2r0AiA2)(l — rl — cos2 — cos2 02)/2^(l — ro)]

" F2ra cos (02 — 8i)~\m 1 ( (m + 3\ (—m 2 \
x .?.[ )*■(—~ «'/4)

28 The result (5.17) has been obtained independently by Rice (communication to the author), for
the less general case of an unmodulated carrier, Ai=Ai—Ao.

29 G. E. Uhlenbeck, Theory of the random process, M.I.T. Laboratory Report #454, Oct. 15, 1943.
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[ (m + 3\ / m 2 \
X — a2/4 J

(m \ / m + 1 2 M
+    :^:~a2/4)}' (5-20)

ai = bi cos a2 = Z>2 cos 02, (for 2>i, &2 see Sec. 6).
6. The correlation function and mean power for the envelope of a signal and noise.

The results of the preceding section may be used in (1.7b) to give us an expression
for the correlation function and the mean power associated with the envelope of an
incoming signal and noise wave. Our primary interest is with the low-frequency out-
put, or detected envelope, but the general treatment will first be outlined in brief
fashion below, before returning to a more detailed examination of the former.

For the general non linear device we follow the suggestion of Rice (ref. 2, Sec. 4.3)
and use the Fourier transform (1.8) to represent our output current I = g{V) as a func-
tion of the input disturbance V = E cos (coct — d). Expanding the exponential in a
series of Bessel functions gives us

oo oo

I = E h = £ ME) cos /(co,/ - 0), (6.1)
z=o z=o

where Bi(E) represents the envelope of the Zth output band, viz:

B,(E) = — f f(iz)Ji(Ez)dz, (6.2)
2ir J C

which in principle may be observed when all other contributions are eliminated by
an appropriate band-pass filter, centered about the Zth zone and followed by a linear
half-wave rectifier or "envelope tracer," as it is sometimes called. If Wi{E) is the
probability density of the input envelope, the density function for the /th region is

DU{E) = Bl{E)W1{.E) = Wi(Bi)B i(E) dBi/dE, (6.3)

since

WiiBt) = W1(E)dE/dBl, (6.4)

where Wi(Bj) is the density function of Bt. This latter quantity, W\(Bi), may be
found from (5.15) and from (6.2) by differentiation. For higher order densities we have

W,(BUt Bu;t) = W^EtE.-t)
d{BuBii)
d(E\Ez)

etc. (6.4a)

An important consequence of (6.4) and (6.4a) is that these results enable us to de-
termine the probability density of the envelope of a distribution after successive non
linear operations, provided, of course, that in each operation the concept of the en-
velope remains, i.e., we have a narrow band wave undergoing rectification and not
one whose mean frequency is comparable with the carrier.
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The correlation function and the mean power may be written in a similar manner.
We have from (2.12), (5.12), and (6.1) for the complete correlation

oo co /% T t /* T /i x co /»2t /• 2 v

R(t) = z E TV-1 I <//„' I T0-ldt0 I I dEi I ^ I dd2Bi(Ei)Bm(Et)
1=0 rn=0 ^ 0 ^ 0 ^ 0 J 0 ^ 0 ^ 0

PF2(£i-E2; 01^2; -41^2; 0 COS /(«e*o — #i) cos w[coc(/0 + t) — 02], (6.5)

which simplifies considerably when the noise band is symmetrical, i.e., Ao = 0, the
carrier is unmodulated, and co<j = 0. The spectrum may be found from (1.6). The mean
power associated with the /th harmonic region is given when t = 0 in (6.5), but an
alternative and sometimes simpler expression may be obtained with the help of
Wi{E) and (2.33a), applied to (6.1), (6.2) after averaging over the phases of the zone
central frequencies Zwc.

Specifically, let us examine the interesting case of the fth-law half-wave rectifier
when a modulated signal and narrow-band noise together enter the apparatus. This
is essentially the receiver problem, as we are concerned only with the low-frequency
output—namely, the modified envelope. Then it is in keeping with the problem to set
w<j=Ao(0 =0, the latter on the assumption of a symmetrical spectrum, and we find
for the noise contribution to the correlation function as indicated by the subscript
N, cf. 2(.11), from (5.17) in (6.5),

CO s\ cc

R(t)N = I dEA dE2B0(E1)B0(E2)Wi(E1Ei;A1A2;t)

" rx r°° ( EiEtfo \
= 72/(^M2; r0) dE\ J dE^E^lJ — -)lm{blE^)Im{biEi)

m=0 Jo Jo vKl - rl)/
X e-(Bl+*i>/s*<1—o) ' (6.6)

where f(Ai, A2; r0) is given by

f(A 1, A2; r0) = \p2( 1 - exp [(- a\ — a\ -f 2;vM2)/2^(l - r*)]. and

A1 t oA 2 A 2 v oA 1 v
b 1 = — — ; b2 = —— — ; B0(Ei) = yEi, etc. (6.6a)

- rl) \p(l — rg)

The scale factor 7 is related to the tube factor j3 used throughout this paper by

P r . 0 r[(p + i)/2]7 = — I sin" Odd = —— —  —r • (6.7)
27tJ0 2V* r[(»/2 + l)]

This follows because in (6.6) we are dealing with the envelope E rather than the
amplitude V of the wave. Now the output current I consists of the positive halves of
the oscillations of /? V", while the envelope of I is the same as that of 0 V'. But the area
under the loops of I is to the area under j8E" as the area under a loop of sin "9 is to
an area of unit height and length 2ir, so that as far as the low-frequency portion of
the output is concerned the loops of I are "smeared" together into a current which
varies as 7E", with 7 given by (6.7) above. Compare the appropriate results of the
present section with those of the next, where the problem is treated from the point
of view of the instantaneous amplitude.
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There appear to be three principal ways of evaluating R(t)N, each yielding results
different in form and usefulness. The first is achieved with the aid of the transforma-
tion

Ei = [*(1 - rj)]1'2*1"**'1, E2 = [*(1 - ro)]1/2z1/2e~*/2, (6.8)

followed by the successive application of the expression for the product of two Bessel
functions (cf. (2), p. 148, ref. 21), the integral form of the modified Bessel function
of the second kind ((7), p. 182, ref. 21), of argument n — 2k, and finally, by ((11), p.
410, ref. 21). The second form follows after expanding Im(EiEtr0/^(l — Tq)) and using
termwise integration, with the help of (A3.7), and the third employs a contour inte-
gral representation of the Bessel functions in (6.6) applied to the addition formula for
Io\(xiJry2-\-2xy cos </>)1/21, along with a reversal of the order of integration. We give
the final results:

For the first method we have
^ x m w»+2n m

R(t)N = - rl)'+ ^ e"'r° Cl 
m=o n=o 2 m+nm!

A (cr1c2)2fcr(I;/2 + k + m + i)r(*/2 -k+m+n+ 1)
X 2_,

k=0 kl(k + m) \{n — k)\(m + n — k)!

X 2^x+ k + m + 1; —— i + « + »+ 1;« + 1; > (6-9)

Cl = b, [*( 1 - vl) ]"2, C2 = b2 [*( 1 -vl)}V\

In the case of modulation we must now apply (2.12) to determine the average over
the phases wAto ■ As one can readily see from (6.9) the effort is formidable, even for
the simplest modulations. However, a less general but nonetheless important case
arises when Ai=A2=A0, a constant. With the assistance of (A3.20b) we obtain for
the complete low-frequency correlation function

m
2 00 00 tmrn-bm+nR(t) = ynWe-t'i+u+rt £ Z

X z

0n=0 (1 + r0)2m+2n

r(f/2 + k + m + l)r(y/2 — k + m + n + 1)
kl(k + m) !(n — k)\(m + n — k) !

X 2Fi    n, — k — ; m + 1; , p = A(6.10)

For noise alone the low-frequency correlation is at once found from (6.10), since only
the terms for which m = n — 0 contribute:

*(0noise = 722VT (y + i) iF1 ( - j , - j ; 1 ;

re*2-2 (v +iy / „ , a= ——r(—)a(-T. -y = l ;r.)( (6.11)

the latter from (6.7). For the second method we write
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R(t)rr — Y22"(l — ro)"+V exp { — (a\ + a\ — 2r0Ay.Ai)/2\l/(\ — r~0) j

^ " A tmrT+mV(tn + n + v/2 + l)2(cic2)m

m-on-o (w!)2m!(« + m)\2m
2 2

X 1F1 + m + n + 1; m + 1; ^Fi + m + n + 1; m + 1; , (6.12)

equivalent to (6.9), while the counterpart of (6.10) is

,. , , 2 A tmro /I — n>\m A 'o Y(m + n + 1 + v/2)2
R(t) = 7 2V(1 - ro)'+1e-" £ —-( —    

m—o (w!)2 \ 1 + rj k=o

r " (i - r„)i2
X 1F1 - « - — ; w + 1; - /»—— 

L 2 1 + r0 J

»!(« + ot) !

(6.13)

from (A3.2). When there is no signal it is easy to verify that (6.13) reduces to (6.11),
again with the help of (A3.20b).

There remains the third approach. This enables us to write finally, for the correla-
tion function

2oo / ^2 I

R(1)n = 722^+2(l - rl)t+2f(AiA2; r0)T(v/2 + 1)2£
m-0 (w!)2

i r p+vfcro + W2]8"#
X 2«Jd [| - c2/2]|,/2+I[^ -c\l2]"/2+1 '

The path D of integration in the £-plane is taken to be sufficiently large so that the
series in the integrand converge satisfactorily. The contour also includes any branch
points and poles of the integrand of (6.14). Expanding the denominator of (6.14) in
series and using the binomial development of (£ro+CiC2/2)2"*, gives, after termwise
integration for the case when there is no modulation, viz., ^41 = ^42 = ^40, and C\ = c2 = c,
c2/2=p(\ — r0)/(l+r0),

R(t) = 2fT!rt + l) (1 - r0V+1<r» E
\ 2 / m=o

2m—n ,
^ r0 pn( 1 - r0)"

X

(v/2 +)m(2w)!

w!2

n„o «!2(2w — «)!(1 + r0)n

X lFj— 2m — v — 1 + n; n + 1; — />(1 — ro)/(l + >"o)]. (6.15)

A somewhat different form of the same expression is found by making the substitu-
tion s = £ — c2/2, and again expanding (^ro+c2/2)2'" in a binomial series, followed by
termwise integration of the resulting series. The low-frequency correlation is then

. v / /,-» , .. \ 2  « «. . « v 2m—n/ v \ *> — (v! 2 -4-11
i?(/) = 2"^72r(

,/" . A„ 2 - (»/2 + l).(2«)!^+ i)(i - ^r+1e-"E   Z
\ 2 / m&0 w!2 n„0

(v/2 + l)»(2w)! ^ (1 - r0)nr0~ pn

mi- n-o (2m — n)\n\

xl-irfO-.l— rj^+2) 
m k\L 1 + r„ J r(i» - k + 2)r(v + n - k + 2)

Notice that when p is integral, the series in k terminates after v + 2 terms.
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The mean total low-frequency power (WT)o and the power in the d — c com-
ponent Wd-c may be obtained respectively for the various cases considered above on
setting t = 0 and t= °° in R(f). However, a simpler way of obtaining the same results
is to use (6.6) or (6.7) with (5.15) directly. Application of (A3.7) then gives us

(WT)o =li= 722yrfr+ 1)jFi(— «N 1; - p), A, = A2 = Ao, (6.17)

and for the d—c

Wci = (/o)2 = yV'+'T(y + l) Y ; 1; - />) • (6.18)

When the carrier is modulated we have only to average the various that are
present in the above. Curves illustrating (WT)o and Wd-c as a function of the law
of the detector are included in Figs. 5 and 6, for a number of values of p = Al/2\[/. It
is interesting to note that the output powers actually decrease as v increases in the
interval 0 -^v ^-1.0 when the signal is weak relative to the noise. Strong signals sup-
press the noise, and the output is then proportional to p" for both total-, low-frequency,
and d—c powers, namely,

(Wr)o ss y*2fP0- + "7# H ) a-nd W^c s y*2>Vp»(l + "72p +■••). (6-19)
from (A3.3).

7. General half-wave rectification of random noise. A relatively simple case of
considerable interest arises when random noise alone enters a non linear device which
passes only the positive amplitudes of the incoming disturbance. The current-voltage
characteristic assumes the following general form:

I = pv>, V > 0, v > 0
= 0, V < 0, (7.1)

where we restrict ourselves to unsaturated cases, corresponding in practice to (rela-
tively) small-signal rectification. Here V represents the instantaneous input noise
voltage, and I is the output current.

The analysis of the present section is more general than that of Sections 5 and 6 in
that it is capable of handling broad-band noise, where the concept of the envelope is
no longer meaningful; it is less general in that signals are excluded from the discussion.
Also, a more detailed study of the higher order spectral regions is included, for the
case of narrow-band noise. In fact, Section 7 is in itself a study of a special case of
the analysis of Sections 3 and 4, when there is no bias and no carrier.

(a) Broad-band Noise. We consider first the case of wide-band noise, whose central
frequency, spectrally speaking, is comparable to the bandwidth of the disturbance.
See Fig. 7(a) or (b). From (2.9), (2.11), and (7.1) the correlation function of the out-
put in the absence of a signal is

ay r» r

X exp [- (Xl + Xl - 2rX,X2)/2^(l - r*)] (7.2)
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where r(t) is the normalized input correlation, cf. Eq. (A2.7). The integration of (7.2)
may be effected directly by using polar coordinates: x = p cos 9, y=p sin 6. The latter
approach gives us for (7.2)

py2—-1 rT r00 .RW " [2.(1 - ,■)»■] J. Sin"^J, d<"

7n

a = (1 — r sin <£)/2(l — r2)
<9VT(k + i)(i _ ry+1/2 x sin, ^

4x J o (1 — r sin 0)

o-c

AFTER RECTIFICATION

BEFORE RECTIFICATION

T
CO

n(f0>2fb)

0 f,o Cb)

m(f0»2fb)

Fig. 7. Examples of narrow-band and broad-band noise before and after rectification.
The normalization is arbitrary.

where the substitution 26=<t> has been made. Expansion of the denominator and term-
wise integration (since r sin <£:§ 1), with the help of
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. , . ... ^ ''"(sin <t>Y+"T(y + n + 1)
sin" $(1 — r sin 0)_("+1) = V,   and

Zl n\Y(v + 1)
C v^r[H#+i)/2]

sin»+" 4>d<t> =  r——   (7.4)
J c r[(v + «)/2 + i ]

yields

/3V(1 - r2)^1'2 ^ rnT[(y + n + \)/2}V{v + n + 1)
R{t) = —

4vV „_o «!r[0 + »)/2 + l]
( /" + 1\2 /" + 1 " + 1 \M—H—> —/322"-V" ( (v + 1\2 (v + 1 y + 1

  — (1 - r2)"+1/2 X " '

+ 2,r(|+1)V,(|+1, |

+ *r(i+i)'.*.(V' (7'5)
this last with the help of (A3.20b). The series form of (7.5) is more convenient when
the spectrum is desired; i?(/) may be written accordingly

_ W ^ [(- "/2)»r[(v + 2)/2]222Vn

n=„L (2«)!
[(1 - ")/2\nV[V/2 + 1 ]222n+1r2w+1~|

(2n+ 1)! J'
A number of interesting special cases follow from (7.6). For half-wave linear rectifiers
(v = 1) we obtain

i. - i; 4; '2) + j)

= ^|r(sin-'r + ^+(l-r2)i/2|, (7.7)

a result derived independently by Van Vleck, North, and Rice (see Sec. 4.7 of refer-
ence 2). Half-wave quadratic detectors (i> = 2) give us

(SWtt \m-* = -^7(7 C1 + 2'2) + 4r2i?i(- - J; 1; Oj

= + sin- r)(l + 20 + 3r(l - r2)1'2! . (7.8)

We may continue in this fashion when v is integral and write R(t)=f(r, (1—r2)1/2,
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sin~V) with the help of the recurrence relations for the hypergeometric function.
The total mean output power WT, the d-c power Wd-c, and the mean total a-c

power Wa-c all follow at once from (2.26d), (2.33), (7.5), and (A3.20a). We have
finally

J8V2-1 0V2'-2 (v -f 1\2
IVT = - r(y + i); Wd^c = T ——); W^C=WT-Wd-C (7.9)

\7T TT \ 2 /

Curves of WT, Wd-c, and Wa-C are shown in Fig. 8. It is evident that characteristics
for which v is large (>2) exhibit outputs which are chiefly a-c. The spectra associated
with the output may be found from (1.6) and (7.6), where integrals of the type

/» oor(t)n cos utdt, 03 — 2irf,
o

must be considered. Observe that when v is an even integer, the first series in (7.6)
terminates after the term for which n=v/2, and when v is odd, after n = (v —1)/2.
In particular, the mean output spectrum for the linear rectifier is

/3V C X " (2w) !Co,2n(f) )
WV>- - u {25(/ - °'+ 7'» + 5 „,2*.(2„ - 1).} • •10)

and for a quadratic detector

W(f)„2 = — \*8(f - 0) + 4c0,i(/) + «,'.,(/)2ir I

4 y (2n) \cg,2n+i{j) 1
~i [n!22"(2n - 1)]2(2»+ 1)/ '

(7.11)

where 8(f— 0) is the familiar delta-function. Curves illustrating (7.10) and (7.11)
when the input spectrum is Gaussian, Eq. (A2.9), coc = 0, are given in reference 9.

(b) Narrow-band Noise. The output now consists, as explained above in more
detail in section 3, of bands of noise located about harmonics of the central frequency
fc. The spectra associated with these harmonic zones are "smeared out," or distorted
from their original shape, as Fig. 7(c) indicates. Our result (7.6) is expressed in a form
convenient for obtaining the correlation functions associated with the various har-
monic regions lfc, Z = 0, 1, 2, 3, • • • , and hence the spectral distribution of the mean
power and the mean total power itself pertaining to these regions.

Here the input correlation function is given by (A2.8). When this is substituted
into (7.6) we obtain series involving (cos coct)2n and (cos wc/)2n+1. The expansion in
multiples of coct is then used, and the correlation function of the /th zone follows from
(7.6) on taking those values of n such that j=(2n — 0/2(^0) is integral for even I,
and j=(2n —1-\-\)/2( ^0) for odd values of /(>0). We may write finally

(„ 2
 ) t, cos luet X

2 / n=l/'

(— v/2)lr0(i)2n

1,i (»-//2)!(» + //2)!
1 = 0,2,4,..-, (7.12a)
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f

3.0

Fig. 8. The mean total, a-c, and d-c power outputs Fig. 9. The mean total and a-c powers associated
of a half-wave cth-law detector when the incoming dis- with the low-frequency output when the incoming
turbance is broadband noise, as a function of v. The random noise is narrow-band, as a function of v. The
right-hand scale applies for the ratios. d-c power cutput is the same as that in Fig. 8, and the

right-hand scale applies in the case of the ratios.

and

/ v 00
R,(t) = T~W'2'~lrl — + 1 ) cos lcoct X

\ 2 /
[(1 - v)/2]lr0(ty^

).= (!-D/2 [(2m — I + l)/2]![(2w + I + l)/2]

I = 1, 3, 5, • • • . (7.12b)

We observe that contributions to the spectrum about the frequency lfc arise from
terms for which «^//2, (/ —1)/2; values of n less than this do not appear. Now (7.12a)
and (7.12b) maybe summed; for even values of I we set n—l/2 =m, m = 0, 1, 2, • • • ,
and find that
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r //■> 1 ̂  r , i2 2m
y [- v/2]„r0 - rl Y y/2]'"+i/2»"o

n-i/2 (« — l/2)l(n + l/2)\ U m=0 m\(m + t)\

ro(— v/2)j/2 ^ [(/ - v)/2]lro"'
I! ml(l+ 1),

ro[— f/2]i/2 // - v / - v 2\ Ii (7-13)

and the correlation function appropriate to the even harmonics is then

w-2 / * y r[(„+i)/2]2 ,
K (t) =   — e; I -J    r0 cos lwct

t \ 2 Jui l\
/ I — V l—l 2\

X iFA—-—j -—-— ; / + 1; r0), I = 0, 2, 4, • • • (7.14)

A similar procedure for odd values of I, letting n — (l — \.)/2=m, m= 0, 1, 2 • • - in
(7.12b) yields

j32^2'-1/l - „y T[v/2 + l]2 ,
Ri(t) =—  1— ■]   r0 cos lo}ct

ir \ 2 / (i—1)/2 H

/ I — v I — v 2\
X \—2—' ~~T~ •l+l'r°)' /=1-3- 5, ■••• (7.15)

Notice that when the detector characteristic is an even power of the incoming wave,
only those zones for which I is even and equal to or less than v (even) are produced,
while all odd harmonic zones (I = 1, 3, 5, 7 • • • ) appear in the output. A like situation
is encountered in odd-powered characteristics: only the zones for which 0<lSv
(I and v odd) are generated, whereas all even regions exist. The above is analogous
to the half-wave rectification of a sine wave if we identify the narrow-band input
noise with a sinusoid having the frequency fo=fc- The amplitudes, and hence the
powers, of the zones about lfc corresponding to the sinusoidal components lf0 = lfc are
not equal, as a Fourier analysis readily shows, but their number and location in the
spectrum are.

Of particular interest in practice is the low-frequency output I = 0. The complete
low-frequency correlation function is seen from (7.14) to be just (6.11), which in the
instance v = 1 may also be expressed in terms of the complete elliptic integrals E
and K of modulus r0:

*o(/)_i = ^7 {E(rq) - |(1 - 'oWo)} • (7.16)
IT1

For the quadratic rectifier the form of Ro(t)v=2 is quite simple:

i?oM-2 = /SV2(1 + rJ)/4. (7.17)
When v is even we obtain a polynomial in r0> viz:
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T (2w)! I2 2
Ro(t)r=2n = /3V2" . ., , 2^i(- n, — n; 1; r0)[_2n+1«! J

r/3^n(2«)!"l2 " 2 2(n-i) 1Q.

= h^rJ 5 ■c'° ■ <7-I8)
The d-c component may be found when j is set equal to n.

Again we may determine the various powers by setting / = 0 or /= <» in (7.14) and
(7.15) and using (A3.20a). The mean total power in the low-frequency region and
in the d-c are respectively

W2'~2 r(? + l)r[(? + l)/2]2
iw,h = ,.(0) = _ r(,/2[+1), ;

ISV2"-2 (v + 1\2
= i?„(<») = — (7 • 19)

the latter agreeing with our previous result (7.9), as we would expect in virtue of the
general theorem stated at the end of Appendix II. The higher (/>0) spectral regions
are pure a-c. The mean a-c power as in general

0Y-2"-2 j r[(„ + i)/2]sr(„+1)
(WV.), = R,(0 = ffl T[(V + l)/2+ l]2

/ = 2, 4, • • • (7.20a)

and

php2'-l/\ - A2 Y(v/2 + l)2r(f + 1)1 /1 — A2 _ _ _ , _
=  1 ) —f —. 1= 1, 3, 5, (7.20b)

x V 2 /(1_1)/s r [(»/ + /)/2 + l]2

The contributions from all harmonic zones to the total output power 0) is
simply the first equation in (7.9). Figures 9 and 10 show Wi as a function of v for
several different values of I. It is interesting to note from Fig. 9 that when v<2 the
d-c power exceeds the low-frequency a-c, while for v > 2 the reverse is true. Contrast
this with the behavior of broad-band noise, Fig. 8. We see also in Fig. 10 that over
the usual range of v, i.e., 1 <p<2, the power associated with the higher zones (/=^3)
is quite negligible for most purposes compared with that in the zones 0, 1, and 2. In
the instance of narrow-band noise the fundamental (/ = 1) spectral region appears to
have the greatest relative mean power. Examples of spectra for regions 0 and 1 are
to be found in reference 9.

8. Small-signal detection and full-wave rectification. The method of section 7
is particularly well suited to the study of the important practical case of small-signal
detection. This process is characterized by input amplitudes sufficiently small so that
cut-off, corresponding to large grid-voltage swings in the negative direction, and
saturation, arising from excessively large positive swings, are both avoided. For
periodic disturbances or in general for waves limited in amplitude, it is possible to
achieve this condition. For noise we must modify the "small-signal" concept by speci-
fying that the instantaneous voltage amplitude of the input does not enter the regions
of saturation and cut-off (vide Fig. 1) more than a given percentage of the time. In
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our analysis we assume that this percentage is small enough to permit us to replace
the physically bounded dynamic characteristic by one unaffected by cut-off or satura-
tion.

We may represent the small-signal dynamic path, or dynamic transfer character-
istic, as it is sometimes called,30 by the following

oo

7 = a0 + «iF + «2F2 + • • • + akV" + •••=£ *kV\ (8.1)
fc=- 0

510 3.0

Fig. 10. The mean a-c power outputs associated with the various output
harmonic regions (1=0—4), as a function of v.

where V is again identified as the disturbance on the grid and I is the instantaneous
current output; the series (8.1) is assumed to converge. The quantities ak are dimen-
sional constants, for resistive tube loads, and may be described in terms of the tube
parameters n, rbt rp, drp/deb etc. (See Eqs. 3.41, 3.42, reference 30.) For reactive loads,
however, the ak are complicated functions of the frequency and hence of the input
and output waves. As before, our study is restricted to cases where the plate loads
are primarily resistive.

30 H. J. Reich, Theory and application of electron tubes, McGraw-Hill (1944) pp. 74-77.
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(a) Noise Alone. When the applied voltage V{t) is random noise, the correlation
function of the output is from (2.9) and 1.7b) in normalized form

/OO /I 00dx I dylW^Hyt(8.2)

The substitution of (8.1) in (8.2) gives
00 00 /•» 00 /» CO

R(t)N = [2:r(l - r2)1'2]-1 £ Z aj(Xkipu+k"i I x'dx I D/^d-"*). (8.3)
J_0 *-0 —'00 -00

The integral in (8.3) may be evaluated with the help of polar coordinates, the method
of section 7, or by expanding exp. (xyr/(l—r2)) and applying (A3.20b). The result
in either case is

/oo oo
e^mi-r')xidx | yke-Sm\-r2)exvrl(l-r2)dy

= 0, j + k odd,
2<>+*>/? / / \ / £ \

= 2"—r(T+1)r(T+1)

/I - j 1 - k 3 \
X jF] I >   ; — ; r- ), j, k both odd,

\ 2 2 2 /

- 2('+*)/2 r^_+}_y(j±l\

( j k i \
X 2^1 ( —» — ; — ; r2), i, k both even. (8.4)

Observe that the hypergeometric functions terminate. Equation (8.2) may be written
finally

oo oo

R{i)N = E E aiOikip{'+k)l2Qi,k{r), j + k even. (8.5)
j— 0 t-0

Only when j + & is even is there a non vanishing output. This quite naturally follows
from the basic assumption for our random noise that it contains no d-c and conse-
quently has the average value zero, i.e., x = y = 0, and so x' and yk also vanish (j, k
odd) for the infinite time average. Then it is clear that x'yk on the average must be
zero provided j-\-k is odd, as borne out by (8.4). This also follows at once from (A1.4)
et seq. when Vk = 0.

The output spectrum is obtained from (8.5) and (1.6), and the total output power
is found as before on setting t = 0 in R(t)it. With the aid of (A3.20a) we have

00 M /t^\C»'+*)/2 //j + k\
Wr = -R(O) = 2 Z) ai0Ckyj) (i + k)y j + k even. (8.6)

In practice only the first few terms are generally significant, because aj and ak ap-
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proach zero rapidly for larger values of j and k. The d-c output is easily derived on
setting /= oo in (8.5). The expression is

Wd

Equation (8.7) shows that only the even terms in the dynamic characteristic contrib-
ute to the d-c. The mean power associated with the continuum is now to be obtained
from (8.6)-(8.7) and the fundamental relation Wc = WT — Wd-c-

When the input noise is broadband there is no separation of the output into spec-
tral bands centered about harmonics of the central frequency as explained in section
3. The spectrum must be calculated directly from (8.5). On the other hand, when the
noise is narrow-band, a resolution into harmonics is possible, for which the various
correlation functions and hence the powers and spectra may be determined. We note
again that the input correlation is given by (A2.8).

Let us consider first the low-frequency output, as it is perhaps of greatest practical
interest. Now we observe from (8.4) that only when j and k are both even does r(t)
exist in even powers and therefore contributes to the d-c and low-frequency con-
tinuum. Our procedure for selecting the terms that contribute is similar to that out-
lined in section 7. Application of the expansion of (cos coct)*" to the hypergeometric
function in (8.4) yields

sfJ-L, _A. 1 ; A
\ 2 2 2 /

,i^ki2 ( j/2)b( k/2)„r0 y,
= 2-,  777 I 2-< en-q 2nCq cos 2{n — q)Mct, j, k even, (8.8)

»=o (f)„»!22n 9m>

where either limit applies on the first summation, according to whichever is the lesser,
j/2 or k/2. Only those terms for which g = ra contribute to the low frequency and d-c.
We have then

; — ; A
\ 2 2 2 J0

,72^/2 (— i/2)„(_ k/2)nrT 2nCn / j k .= S  ~T: V J'keven' (89)

since (l/2)„ = (2n) !/w!22". Equation (8.5) becomes finally

Ro(t)i
1 ^ (j + !\ (k + !\

= — S X)«/afr(2"A)0+*)/2r(——
7T j=0 k= 0 \ I / \ I /

( j k 2\
XzFA-—, — — ; 1; r0 J, j, k even. (8.10)

The low-frequency continuum is calculated from (8.10) when all the constant terms
in corresponding to the d-c are removed. The mean total power for the har-
monic zone / = 0 follows from (8.10) and (A3.20a), when t = 0. The d-c power output is
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seen to be precisely (8.7), as we would expect, and the continuum power {Wc)0 fol-
lows from {Wr)^-Wd-o = (Wc)a.

The above procedure may be applied to the higher spectral zones / ^ 1 where, fol-
lowing the analysis of Sec. 7(b), we may derive the interesting partial sum results

( j k 1 2 \
2Fi I , ; — ; r0 cos2 W )

2 2
i

00 r0
= <1/2 cos — (—y/2)i/2(— k/2)u2

1-0.2,-■■ 11

(I - j I - k 2\X zFil—-—i —-—; Z+l; r0J, j, k even, (8.11)

and

To COS
/I — j 1 — k 3 2 \

sFi I >  ; — ; r0 cos2 uct J
\ 2 2 2 /

= ± cosW-p(^) (^)
I- \ 2 / (!-1)/2\ 2 /(

(I — j I ~ k 2\
X2F> —-—? —-—; 1+ 1; r0J, j, k odd.

(l-l>/2

(8.12)

From (8.11) and (8.12) substituted into (8.5) one may write at once for the correlation
functions of the I respective output bands

r\ cos lioct A A /i + l\ /k+l\
Ri(t)x = «I/I—-—EE«i^)w«"(-i/2),/I(- k/2)mT[J—-)r(—-—)

l\ j-o k=o \ 2 / \ 2 /

/I — j I — k 2\
XjFj—-—> —-—i + 1; r„J, j, k even (8.13)

for even values of I, and when I is odd we obtain

2r0 cos luct " ™ /I— j\ /1 —
rMn = —-— EZa^l'^'hr (-V-)

/! y=0 fc=0 \ ^ / (Z—1)/2 \ ^ /(I-1)/2

x r(y+ i)r(y+ : /+1; fcodd. (8.14)

From these relations it is observed that for given values of j and k it is not possible to
have contributions to zones for which I exceeds j or k, whichever is the lesser. Equa-
tion (8.13) and (8.14) also enable us to determine the various mean a-c powers in the
continuum of the output, on setting £ = 0 as before, and with the aid of (A3.20a).

(b) Signal and Noise. Instead of the input voltage being merely random noise, it
now consists of a mixture of noise and a signal S, where the latter may or may not be
modulated. Since the noise and signal are independent, there can be no correlation
between them. Further, if the signal is modulated, correlation may or may not exist
between the modulation and the carrier, but in any case there is still no correlation
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with the noise; (see the first part of section 2). Accordingly, in determining the cor-
relation function that part, Rn, is obtained by a suitable average over the random
noise components independently of the contribution arising from the signal. The
complete correlation follows from (2.12).

Let 5i and 52 be the input signal voltages at times separated by an interval t.
Then the total input voltage may be represented in normalized form by

vi = V,/Vn = (Si + X)/Vn = *i+z;
,2 = v2/r12 = (St + Y)/rn = S2+ y.

The contribution to the correlation, attributable to the noise, follows from (8.2) where
now the input is given by (8.15). We find then that

00 00 /I 00 /% 00

rn = XI H I (x + s^'dx I (y + s2)kW2(x. y; t)dy, (8.16)
J_0 k= 0 J —oo " -00

with Wz(x, y, t) given by (2.9) after suitable normalization. We note several methods
of evaluating these integrals. Unfortunately, none of these methods yields very simple
results., although they appear to be the best available. However, in practice the dy-
namic characteristic (8.1) may be expressed with reasonable accuracy when only the
first few terms are considered; the higher coefficients aa*, j, k^3 are in many cases
negligible, and the complexity of the results is consequently much reduced. One
approach is that used in evaluating (8.3). Applying it to (8.16) one obtains for the
coefficient of ajaktp{i+k)n:

Ij.k = JJ (x + ^i) '(>' + s2)kW2(x. y; t)dxdy

' k 2<»+«>%fs2= j\k\2- «+*>/* y. E
p-o p\q\[(j - p)/2]\[(k - q)/2}\

( P ~ j Q ~ k 1 \
X iF11 >  — : — ; r2 ), / — p, k — q even,

V 2 2 2 /
i ft 2<-v+Q^iSi U

= 2rjlk\2-v+k»2 £ Z
p\ql[(j-p- l)/2 ]\[(k-q- l)/2 ]!

/I - j+ p 1 - k + q 3 \
XzFlV 2   2  ; -T: "j' j~ P' k ~ q0dd' (8"17)

and when j + k — {p-\-q){^0) is odd the integrals vanish. We may also derive (8.17)
with the aid of the transformation to polar coordinates employed in section 7.

Now let us assume that the modulation A0 and the carrier cos cc0t are uncorrelated.
Then the input signal 5 may be written

5,(/0, ti) = Ac(/o') cos a>o/o, S2(to t, to ~\~ t) = Ao(to -|- t) cos ojo(^o t). (8.18)

The complete correlation may be found from (2.12) on averaging over the phases to
and to , and from (2.12) the mean power spectrum follows at once, the mean power
on setting t = 0. As an example, consider the general small-signal quadratic rectifier
a,, aic^0, 2, k^2. With the help of (8.17)31 we find for R.y

81 See Part II of reference 8, section II b.
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o 2 2 2
Rn = «o + <A1/2ao«i(^x + $2) + ^0:0012(2 + Si -f- 52) + ^ai(r + iii2)

+ ^3/2aia2(^i + ■S'2) (•^i-S'2 + ?r + 1)

+ ^2«2(1 + 2r2 + Ji + s2 + 4rsi^2 + Si^)- (8.19)

If the noise is narrow-band, r = r0 cos «ct and further, if the carrier is tuned to the
center of the noise band, as is the case in receivers or transmitters, then coc=co0.
Thus, when (8.19) is substituted into the expression for the complete correlation
function (2.12) and when (8.18) is used, we observe that the terms involving
Si, S2, s\, sf, s?s2, Jisf, 5i52, Sir, s2r, but not s^r, contribute only to the d-c and to fre-
quencies in the neighborhood of fc and 2fc. The low-frequency output, exclusive of
direct current, is from (8.19) in conjunction with (2.12).

R(t)L-F■ = ^2oti|ro(02 + r0(t)T{-i J (A 0iA 02) L-F-dto

rT' 2 2 }
+ (4T0') 1J (A 01A 02) L-F-dto , (8.20)

where we have written A01 (for Ao(to) and 02 for A o(/o +0. and the subscript L— F
indicates that d-c components are to be removed. Observe that the low-frequency
output is composed of three contributions: the first in (8.20) is that arising from the
input noise alone, the second represents the cross-modulation of the noise and signal
components, and the third is the detected signal envelope, squared, of course, since
in this instance the dynamic characteristic is quadratic. We remark that only the
term in 0%, cf. (8.1), is capable of rectifying; hence the low-frequency output alone
results from it. Special cases of (8.19) and (8.20) have been given by Rice, ref. 2,
Eqs. (4.10.1) and (4.10.3), when the incoming wave is noise alone, or consists of
noise and an unmodulated carrier.

As before, vide (8.6) and (8.7), it is possible to deduce (from 8.16) and (8.17) cer-
tain general relations for the output, total continuum, and d-c power.

(e) Full-Wave Rectification. By full-wave rectification it is meant that the dy-
namic characteristic is such that Iont = /31 Vi„ \When the incoming wave is noise
alone, we have merely to multiply the results obtained in section 7 by 2". However, if
the input contains a signal as well, Eq. (7.2) multiplied by 2" still applies, provided
we write for the lower limits of integration — si and — S2 respectively, in place of
x=y = 0. Analytically the problem is now best handled by the methods of section
2 and 3.

We wish to thank Mr. Rice and Prof. J. H. Van Vleck with whom we have dis-
cussed these problems from time to time, and also Prof. L. Brillouin, for their helpful
criticism of this paper.

Appendix I. In this appendix are briefly summarized the analytical results ob-
tained when the solution to the generalized, s-dimensional problem of random flights
is used, with the aid of the characteristic function and central limit theorem,10'32 to
derive the multivariate Gaussian distribution law, so fundamental in all problems of
the type considered in this paper.

The generalized random-walk problem,4 resolved by a method due originally to

32 J. V. Uspensky, Introduction to mathematical probability, McGraw-Hill (1937).
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Markoff,33 leads to an expression for the characteristic function FN(Z), whose asso-
ciated probability density WV(R) it is our task to find: viz.

Fn(0 c * i « « •)= exp < i^Vktk — X) , iv » 1, (Al.l)
V k-1 2 i i )

where the quantities vk and nu are given by

N _ N  

Vjc ^ . Xjk'j V-kl ̂  ^ 1 XjkXjh N 1. (A1 . 2)
j= 1 j— 1

Here ry is the jtb. displacement vector, with components Tjk — Xjk (fe = l, 2, • • • , s),
and the range of values of Xj extends from — °o to + <» ; N is the total number of dis-
placements, here indefinitely large, and R is the resultant displacement. Since Fn
is the Fourier transform of Wn, we have finally, by the usual methods,34 the familiar
result that35

exp - HX - v)M(X - v)
W n\R) = i—i (2x)s/21 |1/2

, , ( 1 * ' nkl )
= [(2t)' | m | ]-i'2 exp \ - — £ D y-T (Xk - p„)(Xt - Vl!\, (A1.

I I k-l 1=1 | M | /
3)

where Xk is the &th component of R and Xk = vk\ here M is an (sxs) matrix reciprocal
to the matrix y; |/x| is the determinant of y, and \xu is the cofactor of \xu- Since the
average of exp (i ^l&kXk) is, by definition, the characteristic function, it is a simple
matter to show that

N   N  

~^k ~ Vk ^ ' Xjki Xk\Xkz "I- Vki^kz ~ ^ 1 (.XjkiXjkt "I" Xjk\' Xjk%) (A1.4)
i= l j=i

by expanding this and (Al.l) and equating coefficients of t,, etc. In the same
way higher moments may be found, it being noted that if Vk = 0, all odd-order moments
vanish.

Appendix II: Some Remarks on Correlation Functions, Spectra, and Power.
The fundamental relationship between the mean power—or mean square amplitude
spectrum—and the correlation function, defined below, is well known. We mention
it briefly here along with a short discussion of some of the more significant and useful
properties of the relation in our work, some of which do not seem to have been treated
previously. There appear to be several approaches, yielding similar results, one, for
example, through the use of Fourier series,1 the other with the help of Plancherel's
theorem.36

Now let us consider g(t) to represent a suitable function of the time, and let us

33 A. Markoff, Wahrscheinlichkeitsrechnung (Leipzig, 1912).
34 See ref. 3; also sec. 10:16 of Margenau and Murphy, The mathematics of physics and chemistry

(D. Van Nostrand, 1943) and ref. 2, sec. 3.5.
36 X and v are column matrices, and ^ indicates the transposed matrix.
36 See E. C. Kemble, Fundamental principles of quantum mechanics (McGraw-Hill, p. 36, 1937); also

M. Plancherel, Rend, di Palermo 30, 289 (1910). The theorem is also known by Parseval's name.
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require that g(t) be in general different from zero in a long time interval T, but be zero
outside this interval. With this in mind we may consider the correlation function for
g{t), which is defined as

1 r00   
R(t) s= lim — I g(.tB)g(tu +t)dt0 = [g(/0)g(*o + (A2.1)

T—« 1 J

where now g(t0) vanishes outside the interval 0 <t<T. The average in (A2.1) is to be
performed over all phases of the disturbance, and the bar indicates the average com-
puted over any random variables in the wave: for it often happens that g(t) is a
stochastic or random function of the time t, or at least that some component of g{t)
is randomly distributed. Analytically such randomness is introduced by treating the
function as involving a certain number of parameters, and then taking these param-
eters to be random variables, distributed according to a certain law. Now for any
given set of parameters there will be a definite correlation function R(t) ,and as we
shall see, a definite mean-square amplitude spectrum also. However, it is the average
of this set of correlation functions and spectra that is important for our work. These
averages may be obtained by averaging over the ranges of the parameters, with the
help of their distributions, as indicated by the superscript bar on (A2.1) and else-
where. We remark further that should g(t) comprise two or more incommensurable
periodic disturbances, the definition (A2.1) is easily extended to include the separate
averages over the respective phases of the additional components, inasmuch as the
correlation function of such a wave is simply the product of the correlation functions
of the separate parts. An important example of this type of function is the modulated
carrier, vide Sec. 2, where no correlation between carrier and modulation exists.

Letting

gi = g('o), (0 < to < T) ; go = g(— to + /), (to — T < t < t0), (A2.2)

and with the help of the Fourier transforms of gi and g* and Plancherel's theorem,
we obtain finally for (A2.1) the correlation function

r* \su) 2 r™
R(t) = lim I 1 Wl e-^'df = I W(f) cos wtdf, f > 0, (A2.3)

r->» T J o

where W(f) is the mean spectral density defined as

2 |S(/) 12W(f) = lim ' ' , /> 0, (A2.4)T

and S(f) is the amplitude spectrum of g(t). The inversion of (A2.3) gives us at once the
other relation

J 0
R(t) cos wtdt. (A2.5)

The limit in (A2.4) is assumed exist. When it does not, the physical significance of
(A2.4) is this: it represents the power at some discrete frequency/0 rather than a
spectral distribution over a continuous range of frequencies. Then analytically in the
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limit W(f) is observed to become infinite at/=/0 and be zero elsewhere, such that
So W(f)df converges. The spectral density W(f) accordingly exhibits the properties of
a delta-function.

On setting / = 0we find from (A2.1) and (A2.3) that

/°° pf/n) r00 dt0 = [*fop].v. = W(f)df, (A2.6)
T J0

showing that the mean total power may be obtained from the correlation function
by putting t equal to zero in the latter; this is in agreement with our definition (A2.4)
of the spectral density. Furthermore, the mean total power is observed from (A2.6)
to be independent of the shape of the spectrum, depending only on the integral W(f)df.
It should also be mentioned that the spectrum (A2.4) can never give us the time-
variation of the wave, since information about the phases is always wanting. Hence
an infinite number of different functions g(t) may be combined to give the same value
of W(f).

It is interesting to observe what happens after very long times. For a purely
stochastic disturbance, which from (A2.1) is seen to be independent of the average
over T, 2?( °°) becomes zero: there ceases to be any correlation at all between an event
at time t0 and one at t0+t, t> oo later. But for periodic components R( «) approaches
no definite limit, since this part of the disturbance is indefinitely repeated and can
never be said ultimately to die down to zero in time. By considering the oscillatory or
constant parts of the expression for the correlation function in the limit t—*°o, we
can determine the contribution to the total power arising from the periodic part of
the wave, for with the help of (A2.5) and the delta-function the result is seen to be
(the sum of) the mean powers in the respective components. These quantities may
also be identified as the coefficients of the constant or of the trigonometric parts of
the correlation function R(t). The constant part corresponds to d-c, the others, to
the various discrete frequencies. Thus, in turn, the power in the continuum is
R(0) — R{ oo), and may be obtained from that portion of the correlation function
which vanishes at /= ». Examples are given in Sections 2 and 7.

It is convenient to use the normalized correlation function r(t), where

r(t)
/oo / /% oo

w(f) cos wtdf! J w(f)df; p(t) = R(t)/R(0). (A2.7)

Here \{/{t) is chosen to represent the correlation of a wave entering some non linear
device and w{f) is its mean power spectrum; p(t), correspondingly, is the normalized
correlation of the output, when R(t) is so distinguished. It follows from (A2.7) that
p(0) =r(0) =1, which is the maximum value of p(t) and r{t).

The important special case in which the incoming noise is confined to a sym-
metrical band of frequencies narrow compared with the central frequency fc, i.e.,
w = w(f—fc) (see Fig. 7c), leads to

r(t) = ^(O)"1 J* w(f — fc) cos utdf = j*(0)-* J w(f) cos u'tdf'^ cos uct

= r0(0 cos uct, (A2.8)
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on the change of variable/— fc =/', where we have ignored the spectral "tail" at/ = 0,
inasmuch as w(—fc) is assumed to be very much smaller than w(0). As an example,
consider the Gaussian spectrum w(f) = Wa exp [ — (J—fcY/fl\, fc/f£$> 1; for this 4*(t)
and are readily shown to be

/ Wb \ a 2 WqCO (,
i(t) = i(0)ra(t) cos uet = (——)«"■" V4 cos wct; t(0).= ——- ; (A2.9)

\2 ir1'1 / 2tt1'2

Wo is the maximum spectral density. In a similar fashion correlation functions for
other input spectral distributions are easily determined with the help of (A2.7) or
(A2.8).

One may expand the output correlation function R(t) in a power series in \p(t)
(or r(t)), the input correlation, and hence as a function of cos lcoct {I — 0, 1, 2, • • • ),
for the case of narrow-band noise, by virtue of (A2.8) and the resolution of (cos wct)n
into harmonics.9 The series then becomes

00 00

R(t) = Gi(t) cos luct = ^2 Ri(t), (A2.10)
!=0 i= 0

where now Ritt) is the correlation of the /th harmonic zone generated in the output. The
spectrum of these bands follows at once from (A2.5), showing also that the various
"resolved" spectra Wt(f) are distributed about the harmonics lfc (1 = 0, 1, 2 • • • ).
Examination of one such region Wi(f) shows that here, too as in (A2.6), the mean
power in any given band is independent of the spectral distribution of the band.
Further, since the input spectrum enters only through ip(t) and (= the mean
input power) the mean power in the l-th band is also independent of the original spectral
shape w(f) of the incoming wave. This is, strictly speaking, only practically true, not
rigorously so, as distortion of the input always spreads its spectrum and thus spectral
"tails" from one region overlap those of another. This overlapping is quite insignifi-
cant most of the time, as long as the band is narrow, the criterion of narrowness de-
pending on what is considered a negligible spectral ordinate.

Appendix III: Special Functions and Integrals. A quantity that appears often in
our analysis, cf. Sees. 4 or 5, is the confluent hypergeometric function

ax a(a + 1) X2 (a)nXn
x) = 1 +- b b H , (A3.1)

/SI I 1805 +-1) 2! G8)„»! ^
where (a)„=a(a + l) • • ■ (a + w —1), and (a)0 = l, as usual. This function has the
important property, known as Rummer's transformation,21 that

iFi(a\ /3; x) = ex iFi(/3 — a; /3; — x), (A3.2)

and it may be shown that the asymptotic development of xFi takes the form,37

T(/3) __ ^ ^ a(a — + 1)r(/3) (
T(fi - a) (. xl!

a(a + l)(a — /3 + l)(a — /3 + 2) )
+ —      -+■• >, R(x)> 0. (A3.3)

x22!

37 See, for example, Whittaker and Watson, Modern analysis (Cambridge Univ. Press, 1940), Chap-
ter XVI.
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The expression (A3.3) is useful in determining the limiting forms of spectra and
power distribution when the root-mean-square noise voltage i/'172 is much less than
either the cut-off voltage b0 or the amplitude of the carrier; see Sec. 4. The confluent
hypergeometric functions of both negative and positive argument may also be ex-
pressed in terms of the modified Bessel functions of the first kind, for certain com-
binations of values of a and |3. Examples are given in Appendix II of Bennett's paper6
and also in ref. 2.

Another function of considerable interest is

«<>">(&) =
du) er^n

dx' \/2x
- (- l)'7/3(i)<r»2'2/(2x)"2, j = 0, 1, 2, • • • . (A3.4)

2dy

Here the Hj{b) are Hermitian polynomials38 of order j. It is not difficult to show, by
successive differentiations with respect to b0 when n = 0, that the ^-functions may
be given as the following infinite integrals

J z2n cos b0ze~*'2'2dz = (^-\ (-

= 7r( — 1)"^»-1/V<!!''W*1/2)

J z2n~l sin b0ze~+z2l2dz = \ (— l)"+V^ne~6°/2^fl2»-i(W^1/2)

= 7r( n = 0, 1, 2, ••• , (A3.5)

and in this connection

1 2 2 rx
0(-1)(Z>o/^1/2) = —-j= e~6»/2^_i(60/^1/2) = 5©(60/-\/where ©(x) = —-=. I e~v

V 2t " \/ir J o

is the familiar error function, tabulated, for example, in Jahnke and Emde and in
Pierce's Tables. Tables of <t>M for n = 0, • • • , 6 are given in T. C. Fry's Probability
and its engineering uses (D. Van Nostrand, 1928, pp. 456, 457). Additional values
may be obtained from the recurrence relation

0(»+i)(b) = - {b<t>^(b) + n^-^ib)}, n = 0, 1, 2, • • • . (A3.6)

We may also express </>(n) in terms of the confluent hypergeometric function
i77i(a;j3;— x). To do this we need Hankel's exponential integral39

r- , , , , tUv + /A/2l / a\" (v + M a2\
I Jr(az)z»-~1e-"1' dz = ( — ) 1Fi( ; v + 1; — ■—),

Jo 29T(x+1) \2q) \ 2 4q2)'
R(n + v) > 0, | arg g | < tt/4, (A3.7)

which is readily established by expanding the Bessel function and integrating term-
wise with help of the T-function. Since

e±ib'>2 = (^„z/2)1/2{/_i/2(M ± i/i/2(M}> (A3.8)

38 W. Kapteyn, Proc. Royal Acad. Amster. 16, 1191 (1914), and G. Szego, Amer. Math. Soc. Colloq.
Pub. 23, 101-104 (1939).

39 Reference 21, 13.3.
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it follows at once for (A3.6) when this is substituted into (A3.7) that

(- 1)»(2«)1 (In +1 1 bl\
4><2"Wf1/2) = -  — i^i ( ; — ; },

2nw!(27r)1/2 \ 2 2 2\f/J
and (A3.9)

(- 1)"(2»)! b0 /2m+1 3 io\
2"w!(2ir)1/2 \ 2 2 2*/

» = 0, 1, 2, ■ •

We notice also from (A3.1), (A3.4), and (A3.9) that the Hermitian polynomials may
be written

(- 1)"(2m) ! / 1 b2\
Hin(b)= ' iFi(-n; — ; -);

2"n\ V 2 2/
(_ i)»+i(2n)! / 3 Z>2\

Hin-i(b)=   -bxFA\-n-, — ; — V n = 0,1,2,.-.
2n«! \ 2 2/ (A3.10)

From these results it is evident that

(— l)"(2w;!
<#>(2">(0) =   — = i72n(0)/(27r)1'2;

2"w!(2ir)1/2 (A3.11)

(2^>/20<2»-»)(O) = - tf2„-1(0) = 0.

Now in the theory of the vth-law non linear device, when e( >0) is not necessarily
an integer, the integrand of the fundamentals integrals (2.20) contains a branch
point at the origin, rather than a simple pole when v is integral. Accordingly, results
like (A3.5) and (A3.7) must be extended to include these more general cases. The
first integral to be established is

■/.

nrc
e-c!j2z2,-yz _ — _ sin x/x, I arg c I < 7t/4, (A3.12)

c c2T( 1 - M) '

where the contour C is the usual one of Eq. (1.8), extending from — oo to + 00 along
the real axis and is indented downward in an infinitesimal semi-circle about z = 0.
Here the argument of z is zero on the positive portion of C and is — 7r on the negative
part. In the neighborhood of the origin the contribution over the semicircle vanishes
in the limit, provided that for the moment we require Then we may set
z = e~Tit, O^tgi oo, z<0; z=t, z>0, so that finally

/» oo /2m—lg-c= (J _ e-2^i)r(M)/2c2" = 7rtVr"i/c2T(l - n),
0

J?(m) > 0, | arg c | < ir/4. (A3.13)

Now Ii(n) is certainly analytic for all values of jx, and therefore by analytic continua-
tion we may extend the domain of I\ to include all values of ju for which 7,(/x) is finite.
This removes the restriction R(n)>0 and gives us (A3.12).
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The generalization of (A3.7) follows from (A3.12). We have only to expand the
Bessel function to obtain

/ a \" °° (a/2)2n(  l)n t*
I2= I zrlJ.{m)trfdz = (— ) E  1_ z,+2»-,-ic-9VrfZi (A3.14)

J c \2/ n_0 + « + 1) Jc

term wise integration being allowed because of the absolute convergence of Jr(az).
Application of (A3.12) with the aid of

gives us finally

iri1~"~''(a/2q)'' (y. -f- v "2
12 =  ;  ———T.——: T77T 1^1

•1+*' ~ !?)•q»T(v + l)r[l - (y + m)/2] 1 A 2 ' ' V
» | arg 9 I < 7r/4. (A3.15)

Equation (A3.15) enables us to evaluate the generalized version of (A3.5), namely,

■/;
zfe+ilbo c *~dz, \ arg c | < tt/4. (A3.16)

c

The substitution of (A3.8) for e±uh° and application of h gives

7ri~M C /-f- 1 1
/. =

c"+1

±'•*■(^4'-*) AH)}-(A3.17)

where x = b0/2c and | arg. c\ <7t/4, for convergence at infinity. Note that only when
ju is an integer can Z3 be expressed as a 0-function, cf., Eq. (A3.9).

In the limit of vanishing noise voltage, ^—>0, or infinite signal or bias and finite
noise power, it is necessary to extend the Weber-Schafheitlin integral and evaluate

J4 = J* Ja(az)Jp(bz)dz/zy. (A3.18)

Again, as in the case of the generalized T-function, Eq. (A3.12), analytic continua-
tion can be used in precisely similar fashion to give us finally40

h=    —   —— > O^b^a, (A3.19)
2v-ia^7+ir(^+l)r[(1+7-a-/3)/2]r[(l+7+a-^)/2]

subject only to the restrictions that R(.y) >0. The function 2^1 has two useful proper-
ties, needed in the present work, which we list below:

1 Reference 21, Sec. 13.4 gives the value of foJa(az)Jp(bz)dz/zy.
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a r(7)r(7 - « - /5) R(7) ^0, - 1, - 2, ■ • •
vFiya, p; 7; 1) = > (A3.20a)

r(7 - a)r(7 - /3) R(7 — a — j8) M 0, — 1, — 2, • • • ,

and

2^i(a, /3; 7; x) = (1 — x)y~"~P jFi(7 — j3, 7 — a; 7; a:). (A3.20b)

(See Chapter XIV of reference 37 for a general treatment.)


