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Abstrac&--In an effort to relieve peak hour congestion on freeways, various ramp metering algorithms 
have been employed to regulate the inputs to freeways from entry ramps. In this paper, we consider 
a freeway system comprised of a freeway section and its entry/exit ramps, and formulate the 

ramp control problem as a dynamic optimal process to minimize the total time spent in this system. 
Within this framework, we are able to show when ramp metering is beneficial to the system in 
terms of total time savings, and when it is not, under the restriction that the controlled freeway 
has to serve all of its ramp demand, and the traffic flow process follows the rules prescribed by 
the LWR theory with a triangular flowdensity relationship. We also provide solution techniques 
to the problem and present some preliminary numerical results and empirical validation. 
Copyright 0 1996 Elsevier Science Ltd 

1, INTRODUCTION 

Ramp metering has been recognized as an effective way of relieving freeway congestion, 

typically the result of either a surge of demand during peak commuting hours or a temporary 

reduction of freeway capacity. It has been in use for over 30 years and is presently employed 

in a number of urban areas in North America (Blumentritt, 1989). Theoretically, ramp 

metering is effective if the traffic volume on the mainline freeway at the section immediately 

upstream of the ramp is less than the capacity. Under such conditions, metering can be 

used to ensure that the traffic volume delivered downstream of the ramp does not create 

a bottleneck situation in which upstream demand exceeds the downstream capacity. This 

is accomplished by three mechanisms: (1) actual reduction in ramp flow rate, by spreading 

peak demand over a greater time period, (2) diversion of potential freeway traffic to adjacent 

surface streets, and (3) breaking of “platooning” of entering vehicles to allow more 

efficient merging. Under conditions of heavy congestion, mechanisms (1) and (3) are generally 

ineffective and, theoretically, metering is potentially beneficial only to the extent that 

freeway traffic can be diverted to surface streets. In actual operation, however, the metering 

may serve to shorten the duration of congested conditions on the freeway by reducing the 

magnitude of the associated bottlenecks downstream from the entry ramps. Alternatively, 

metering under congested conditions may simply exacerbate congestion on surface streets, 

while providing no significant relief to freeway travel. 

Under prolonged periods of heavy congestion, traffic desiring to use the freeway facility 

can exceed the capacity for an extended period of time. For ramp metering to have a 

significant effect in shifting demand over time, it would be necessary for vehicles to spend 

a similar amount of time in the queue. This may be technically possible in some situations, 

but not acceptable. The need to provide acceptable queue lengths may also negate other 

benefits provided by ramp metering. To reduce queues to acceptable limits, both in terms of 

the size of the queue on the ramps and streets and the time spent in the queue, it may be 

necessary to set the metering rate high enough that a steady stream of vehicles enters the 

freeway, thus negating the savings from platoon reduction (TRB, 1975). Under conditions 

of heavy, prolonged demand on the freeway facility, the principal mechanism by which 

ramp metering can improve the situation is by encouraging diversion to alternate routes. 
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If enough vehicles divert to alternate facilities, the reduced demand will reduce, or even elimi- 

nate, freeway congestion. However, since the freeway is part of a larger traffic system, this 

diversion is truly beneficial only when the alternate routes have sufficient capacity available to 

carry the diverted traffic (Newman, 1969). Otherwise, the only effect will be to move congestion 

from the freeway to the surface streets, but not to actually improve overall traffic conditions. 

A variety of algorithms have been proposed (and, in some cases, implemented) to control 

ramp metering; some are largely empirical (ITE, 1985), others are based either on optimization 

techniques (e.g. Wattleworth and Berry, 1965; Yuan and Kreer, 1971; Wang and May 

1973; Chen and Cruz, 1974) or on automatic control theory (e.g. Isaksen and Payne, 

1973; Goldstein and Kumar, 1982; Papageorgiou et al., 1990, 1991; Zhang et al., 1994). 

Popular examples of the latter case are the Time-of-Day control method initiated by 

Wattleworth and Berry (Wattleworth and Berry, 1965) and the Linear Quadratic feedback 

control method initiated by Payne et al. (Payne et al., 1973). The objective of Time-of-Day 

control algorithms is to maximize ramp inputs, which is equivalent to minimizing total 

travel time under non-congested steady-state traffic conditions. The objective of the feedback 

approach is to minimize deviations from the nominal states, taking into account the 

traffic evolution, but giving no direct consideration to total travel time, which is a more 

appealing measure-of-effectiveness to traffic operators. 

This paper is concerned with the control of freeway entry ramps during peak periods 

in order to minimize the total time spent in a freeway system that is defined by the mainline 

freeway and its entry/exit ramps. It examines the effectiveness of ramp metering under 

conditions of recurrent congestion and establishes theoretical guidelines for the use of ramp 

metering under such conditions. The results of this research may assist in the formulation 

of ramp metering policy in heavily congested urban areas by providing a clear breakdown 

of conditions and parameters necessary for successful operation of ramp metering under 

congested conditions. In this exposition, the total time spent in the system is comprised 

of both travel time on the freeway mainline and also queuing time on the entry ramps. 

We assume that there is no alternative route to the freeway system (this system has to 

serve the total traffic demand), and that the traffic flow process is governed by the LWR 

theory with a triangular flowclensity relationship (Daganzo and Lin (1994) considered a 

similar case using a different approach). Within this framework, we show when ramp 

metering is beneficial to the system in terms of total time savings, and when it is not. We also 

provide solution techniques to the problem and present some preliminary numerical results. 

2. THE RAMP CONTROL OBJECTIVE 

The effectiveness of ramp control can be evaluated relative to a number of different 

performance measures. Some are based on throughput; others are based on travel time 

or travel delay. In this paper, we choose the total time spent in a freeway system as the 

objective to be optimized, since it includes both travel times and ramp delays. 

Consider a freeway consisting of n sections with n entry ramps, one for each section. 

Let L’ = [L,,L1,...L,] be the vector of the number of lanes in a freeway section, and 6 t = 

[A,,A,,...A,J be the vector of section lengths, and a’ =[A,L,,A,L2,...,A,,L,J. Further let x{(k) = 

[p:, p$,...pz] be the per lane section densities during time interval k, and x;(k) = [lf, & 

. ..SfJ be the corresponding vector of vehicle queue lengths at entry ramps where the 

superscript t denotes the transpose of a vector or matrix. Then, the total vehicle time 

spent on the mainline freeway during some control period K*T is: 

Tf= T$ a’x,(k), 
iC=I 

(1) 

and the total time spent in the ramp queues is: 

T, = T k l’x?(k), 
li=l 

(2) 
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and the total time spent in the whole system is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TT = T, + T, = T 5 [a’~,@ ) + l’x,(k)], 

where T is the length of each interval, K is the number of such intervals that define the 

control period, and 1’ is a row vector of proper dimension, whose elements are all unit 

values. Then, the ramp control objective is stated simply as 

minimize TT = T, + T, = T $ [a’~,@ ) + l’x#)]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k=l 

(4) 

3. THE TRAFFIC FLOW PROCESS 

3.1. Freeway trafficflow 

We assume that, for purposes of this development, the traffic flow process is governed 

by the macroscopic traffic model developed by Lighthill and Whitham (1955) and 

Richards (1956): 

4, + PI = 0 (5) 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=f (ph 

and, if the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is smooth, we have 

(6) 

PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+.fYP)P.Y = 09 (7) 

where x denotes space and t time, q and p are flow rate and traffic density, respectively. 

Here q represents the partial derivative andf‘ the total derivative. 

Equation (7) is the well-known hyperbolic conservation law in one dimension, which can be 

solved analytically by the method of characteristics. It is known to possess waves that travel 

at a speed c = f‘ (p). Equation (7) can admit discontinuous solutions, which gives rise to 

shock waves. The speed of a shock wave is given by c,~ = (f(p,) -f(pJ)l(p,-p2), which can 

be constructed graphically from the (p, f(p)) graph. During the control period considered, 

we assume that the system demand is such that all sectional speeds are positive for the 

freeway system, and we call the freeway traffic unif2mzly uncongested if there exist only forward 

traffic waves for all freeway sections, umformfy congested if there exist only backward 

traffic waves for all freeway sections, and transient if forward and backward traffic waves 

coexist on the freeway. 

The flow-density relationship q = f(p) is generally referred to as the fundamental diagram 

of traffic flow. The LWR theory does not specify any form for the speed-density relationship. 

Rather, this relationship is usually obtained by fitting observed field data. The flow-density 

relationship must satisfy two boundary conditions:f(O) = 0 = f@ ,,), where pj,,,, is the density 

at which traffic is at a standstill. In addition, there exists a density pC such that Ap,.) is 

maximal, andf(p) > 0, if p < pC andf(p) < 0, if p > pC. There are many proposals for the 

form that this relationship should take; for example, Newell (1991) suggests a triangular 

flow-density relationship: 

4= 
i 

vfp, if p I p< 

cch& - p), if p 2 t4, 

where v, is the free flow travel speed and co is the wave speed traveling in a direction 

against the traffic stream. 

For the purpose of exposition, we assume that the freeway is comprised of n sections 

of equal length and equal number of lanes, and that each section has only one entry and 

one exit ramp (these assumptions will later be relaxed). We then convert the above equations 

into difference equations, and add sources/sinks to represent entry/exit ramps in the analysis. 
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Because of the nature of the discontinuities associated with the traffic flow law, the selection 

of an appropriate difference scheme and discretization scale is essential (Newell, 1989). 

Here, we adopt a simple difference scheme that depends on the wave directions. This scheme 

is known to be stable and capable of capturing traffic shocks. 

Let p$ be the section density of the ith section at time step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, rf, ef the entry and exit 

rates from ramps in the ith section at time step k, $ the exit rate/freeway flow rate ratio 

for exit ramp i at time step k, T the length of each time step, L the number of freeway 

lanes, and A the length of each freeway section. Then, in difference form: 

P”’ = pf + + 

t 
i_,,2 -A+,,? + yj, i = 1, 2, . . . . n 

ef = sf (L.f(p{)), 0 I sf 5 1 (8) 

This numerical scheme is stable if (1 + $)[-7d_f(p$)l 5 1 for all p; and S: (see Appendix). 

For example, taking the maximumf(pj)= v, = 60 m.p.h., sf = 0.2 and A = 0.5 mile, then 

the maximum time step T = 25 s. The expression ]-Lf(&] plays a pivotal rule in the later 

analysis; we denote it as (Y $, i.e. (Y r = I$ f’(pQ. 

3.2. Ramp trajic queues 

When a ramp cannot service all of its demand, a queue will build up. For a single 

ramp i, with demand d,, and queue length &, the queuing process is described by 

5; = d, -  ri (9) 

or, in difference form, 

l”’ = Jf + T(& -rf). (10) 

To avoid the perception of signal failure by drivers, the control cycle in most practical 

applications is restricted from exceeding a certain maximum value (e.g. 20 s), which sets a 

lower bound r~min for the metering rate 1-7. Alternatively, the metering rate cannot exceed 

the virtual demand of a ramp, df + #T, i.e. 

ri.min I rf I df + LflT. (11) 

3.3. The trajic process in vector notation 

To conform to the optimal control formalism, we write the state and constraint equations 

developed above in vector notation. Let the control vector u’(k) = [rl;, r$,...rj be the 

ramp metering rate with superscript t denoting the transpose of a vector or matrix, and 

its lower bound z&,, = [rl,min. rz..,, ,“,... r,,,,,i” 1, We further define a disturbance vector w;(k) = 

[df, d$,...dk] as the vector of on-ramp demand, and another disturbance vector w’,(k) = 

[q{, $, s:,...qt], with qi freeway inflow and q: the freeway outflow and $, i = 1, . ..n 

defined as in equation (8). Then, eqns (8) and (10) can be written as: 

x,(k + 1) = @Kx,(k), u(k), w,(k)), (12) 

x,tk + 1) = x2(k) + W ?(k) -  u(k)] = @ $(x2(k), u(k), w,(k)), (13) 

or, 

where 

,q+, = P(x,, u,, WC), (14) 
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Similarly, the constraint represented by eqn (11) becomes: 

c,(x,, 5,) 5 Uk 5 c,(x,, n,), 

where 

cl@,, Wk) = Uminr and c~(x~, Sk) = W#C) + x2(k)/T 

(15) 

4. THE OPTIMAL CONTROL PROBLEM 

Optimal control theory is concerned with the control of a dynamic process in the best 

manner. The dynamic process is generally described by ordinary differential/difference 

equations, and the objective is to optimize a performance index that consists of states and 

control variables. In addition, there may be constraints imposed on the controls. This theory 

has been applied to the ramp control problem (Papageorgiou, 1983), and has recently 

gained popularity in dynamic network assignment (e.g. Ran et al., 1993). In this section, we 

present the standard form of the discrete optimal control problem, and state its necessary 

conditions for optimality, which will be used to analyze the ramp control problem. For more 

information on optimal control theory, the reader is referred to Bryson and Ho (1975). 

Consider the discrete optimal control problem 

K-I 

minimize J = 4 (xK) +k%, Lk(xk, uk), 

with 

&,I = Fk(x,, u/J, (17) 

and with initial condition x0 given, and u, E a,, where fik is convex, and where 

xA E R”, uk E R”‘, (nk c R”‘, L”:R” x R”’ + R’, ~$3’ + R’, Fk:R” x R”’ + R”. 

We first adjoin state equation (17) with objective function (16) by multiplier (column) 

vector A, + , to form the Hamiltonian 

Hk = L” + (Ak+,)‘Fk. (18) 

Then, on the optimal state trajectory, the following equation must hold: 

(hk)l = H’: = Lt(X,, uk) + (hk+,)lFt.(Xk, U,), (19) 

with end condition given by 

(U’ = 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,-(xk). 

The gradient of the objective function J with respect to control vector uk, denoted here 

as a row vector pk, is given by 

pk = Hi = L(i,(xk, uk) + (hk+,)lF;.(Xk, uk). 

The optimal control policy U * = [(u,)‘,(uJ’,...,(~~ J]’ must satisfy: 

(20) 

(21) 

If the problem is linear in objective and state equation, and the admissible controls are 

given by box constraints c&.) luk < c2(xk), eqn (21) reduces to: 

uk * = c,(xk) 

uk* = c&) 

singular case 

ifpk > 0 

ifp, < 0 

ifp, = 0 
(22) 
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5. ANALYSlS OF OPTIMALITY OF THE RAMP CONTROL PROBLEM 

Recall the formulation of the ramp metering objective function in Section 2 above. Let 

LA&, Uk) = a’x,(k)+l’xz(k)+O’U(k), 

and 

f$ (XK) = a’x,(K)+p I’x#C)$ E R’$ 2 1. 

where p is some penalty for the presence of ramp queues at the end of the control period. 

With this modification, the objective function specified by eqn (4) becomes 

minimize TT = T 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K I 

C#J (xK) + c L’ (xk, u,J . 
k=l I 

Alternatively, since T is a positive constant, this is equivalent to 

minimize J = 4 (xk) +K$ Lk(x,, ZQ), 
k=l 

which is the same form as eqns (16) and (17). In this section, we use the gradient information 

and the optimality condition set forth in Section 4 above to analyze when ramp metering 

is beneficial and when it is not. 

From equation (14), the Jacobian of Fk with respect to states and controls can be represented 

as 

c” = 4 :,,,(-Y,,k, uk, w,.k). D” = 0 &,(XZ.k, uk, W2.k) 

and from eqns (l)-(4): 

(Lt.)’ = ; 

[ I 

a ( L; = 0, (4 t)’ = 

[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Pl 
and 

(23) 

or, 

A: = CI + (A")'A:+', A: = a (24) 

A: = 1 + (@)‘A;+‘, A$ = pl, (25) 

As in eqn (20) the gradient of the objective function with respect to control is 

A:” 
(Pk)’ = [(C”)‘(D”)‘l 

[ I A$” 
= (Ck)‘A:+’ +  (Dk)‘A$+’ (26) 

With the triangular flow-density relationship, traffic may have two constant wave speeds, 

one forward, the other backward. Therefore, (Y 1’ assumes two values: 

(Y;= I(T/A)f’(p;)l = (T/A)v, = a ifpf< p(. 

and 



Further, we have 

The optimal ramp control problem 

a = (AL)l, (B”)’ = Z<,, (C’)’ = +,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(D”)’ = T.I,,, 

where I,/ is the identity matrix of proper dimension. 

Equation (26) can now be simplified as: 

T 
(Pk)’ = AL 

,,:+I _ TAk+l _ ? -  T($&h:_l)= T(P;+~_-{+l) 

A:“’ 
lJ:+’ = Tic’ 

Finally, dividing both sides of eqn (24) by AL, we have 

/.L: = 1 + (AC)Ip;+‘, EL: = 1. 

(27) 

(28) 

We next derive some basic properties from these relationships regarding the effectiveness 

of ramp metering control for the three regimes of traffic identified earlier. 

5. I. Case I: trafic is uniformly congestedhcongested 

In this scenario, the Jacobian Ak forms a single Jordan block, with the diagonal elements 

1 - (1 + s~)(Y, lower off-diagonal elements (Y if traffic is uniformly uncongested, as shown 

in eqn (29), or diagonal elements 1 - (1 - s$)(Y ‘, 

uniformly congested, as shown in eqn (30). 

. 1 - (1 + s:>cX 0 

A” z ff 1 - (1 + s:>(.y 

0 cx 

0 0 

. 1 -(l -$)a’ ’ 

Ak = 0 1 -  (1” .$)a’ 

0 0 

0 0 

upper off-diagonal elements (Y’ if traffic is 

0 0 . 

0 0 
(29) 

1 -(1 +sf)cV 0 

(Y 1 - (1 + sQ(Y 

0 0 

Ly’ 0 
(30) 

1 -(l -.$)a’ ’ 

0 1 - (1” s1;4)(Yt . 

Comparing eqns (25) and (28), and keeping in mind that /3 2 1, we have pK I 0. As max 

((1 + sf)n,(l - $)a’}; i = 1 ,..., n; k = l,... K is in the interval (0, 11, both the spectra (the 

set of eigenvalues) of A” and its off-diagonal elements lie within the union disk; hence A” 

is a contraction mapping, while P = I,/ is constant with its spectra on the union disk. 

Thus, pk < 0, for k = 1, 2,...,&1, and is decreasing as k decreases. Because pk < 0, regardless 

of the controls (metering rate), according to the optimality condition of eqn (22), the 

performance function obtains its global minimum at the upper bound of controls (because 

the problem is linear in objective, state equations and constraints when traffic is uniformly 

congested/uncongested, and hence is convex in its controls). This result means that it is 

better not to meter when traffic is uniformly congested/uncongested, a result that coincides 

with a previous result found by Daganzo and Lin in a different analysis (Daganzo and 

Lin, 1994). 

5.2. Case 2: traffic is in transition 

When traffic is in transition, that is, forward and backward traffic waves co-exist in the 

freeway section during some periods, then the Jacobian matrix A” may become tridiago- 

nal, as shown in eqn (31), 

I 

1 - (1 + si)a 0 0 0 . 

A” = (Y 1 + SAL? 

O2 

ff’ 0 (31) 
0 1 - (1 - sr;)(Y’ CY’ 

0 0 0 1 - (1 - sl;)(Y’ . 
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where section 1 has forward waves, while section 2, 3 and 4 have backward waves. In 

such a situation, some of the spectra of Ah lie outside of the union disk, and the mapping A’ 

becomes expansive, which may cause some of the pBs to be positive. For such situations, 

according to eqn (22) the objective function can be decreased by reducing the control 

variables corresponding to the positive pLs. That is, ramp metering can reduce total time 

spent in the system under such situations. 

5.3. Case 3: unequal section lengths and number of lanes 

As can be seen from the above analysis, the form of the Jacobian matrix A” and its spectra 

play pivotal roles in determining when ramp metering can be beneficial under the present 

assumptions. If we now relax the assumptions of equal freeway section length and number 

of freeway lanes, it is clear that the Jacobian matrix A’ assumes the same forms as above, 

with elements taking values from the set { 1 - (1 + $)a;, 1 - (1 - $)(Y~, ai}, with czi = (T/Ai)vP 

if pi < pC, and oi = (T/A,)c, if p, > pC. However, since max { (1 + $)ai, i = I,..., n, k = l,..., K} 

must be less than or equal to unity in order that eqn (8) be stable, the contraction or 

expansive properties of A’ under these relaxed conditions continue to hold. 

Next, we show that the control gradient pk is negative under uniform congested/uncongested 

conditions with lane drops and varying section lengths, except in a few time intervals 

near the end of the time horizon considered, where it may be non-negative. Under the 

new conditions, the Jacobian of states with respect to the control is 

llA,L, 0 0 0 ‘. 0 <LI - 
<I, 

0 0’ llA,L, I A’L’ 

A’L’ = min{A,L,, i = I,..., n), 

and 

(D”)’ = -T * Z, 

and the control gradient becomes 

where 

Now, let 8 = -& a. Instead of eqn (28), we have 

PI;= 8 + (Ak)‘~t+‘. ~7 = 8, and --$+r1, 

(32) 

(33) 

where 

AL = max {AiL,, i = l,..., n}. 

Solving eqn (33), we obtain 

,:= (I,/ + Mk + MkMk+’ +...+ WW+‘...W “)0, k = I,..., K - 1, IW~= (A”)‘. 

Observe also that 

A!= (Z, + I,, + 4 +...+ I,: !C ‘)l + PI,:“1 2 (I,, + I,, + 1; +...+ I,: t ’ + C”)l. 

Because Mk is contracting and I,, is constant with its eigenvalues equal to unity, pi increases 

more slowly than does A$ as k decreases. In most situations of practical importance, the 

net change in the number of freeway lanes in any particular freeway section is likely to be 

less than 2, and the section lengths may be in the range of 0.2-0.5 miles, which requires 
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T to be in the range of lo-30 s. Since the time step T is assumed to be constant, the 

model’s numerical stability is satisfied if the section lengths are taken to be roughly the same. 

Then, for most situations of practical interest, we have the following estimates: 5 2 8 2 1, 

1 2 (Y, 2 0.5; 0 I $ I 0.25; the magnitude of the spectra of Mk then generally lies in the 

interval [0, 0.51 when traffic is either uniformly congested or uniformly uncongested, 

which makes A: increase much faster than CL{ as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk decreases. Also, since K >> n, the 

slower increase of ~7 thus leads to negative pk, except for a few time intervals (roughly 

in the order of n) near the end of the time horizon. 

The conclusion that ramp metering does not improve total travel time for a uniformly 

congested freeway system may be counterintuitive, and worthy of more comment. For a 

controlled freeway section, uniform congestion occurs in three possible scenarios: (1) 

ramp demand in this section is high enough to congest the whole freeway section during 

the whole control period, as is typical during a commuting peak; (2) the freeway section is 

short, and mainline flow dominates ramp flow, and congestion is caused by high mainline 

demand; (3) the controlled section is immediately upstream of a bottleneck, created by, 

for example, a severe incident. Under all three possible scenarios, temporarily holding 

vehicles on entry ramps will not bring the freeway system to congestion-free conditions, but 

rather will only decrease freeway travel time marginally. At the same time, it inevitably 

increases the delay time at ramps, which more than offsets the time savings on the freeway 

system (this is clearly illustrated by the magnitude of h’; and Ai) since vehicles held at 

ramps will wait until they are being serviced, and any waiting time in the queue is wasted 

time. Therefore, as long as the freeway can service traffic, the system is always better off 

by servicing as many vehicles as possible, and as early as possible (this can be seen from 

the increasing magnitude of negative pk as k decreases). 

On the other hand, when traffic is in transition, holding vehicles at certain ramps temporarily 

may prevent freeway congestion from building up, thereby reducing freeway travel time 

to an extent that offsets the delay of queued vehicles. Thus, redistributing demand over time 

by ramp metering can reduce the total time spent in the system when traffic is in transition. 

It is important to emphasize that these conclusions may not hold if vehicles can divert 

from ramp queues to alternative routes. Under such situations, ramp metering can always 

reduce the total time spent in the freeway system (mainline and ramps) if the diverted 

vehicles do not rejoin the controlled freeway section, but it may increase or decrease the 

total time spent in the whole system (freeways and alternative routes), depending on the 

traffic impact made by diverted vehicles on the alternative routes. If diverted vehicles rejoin 

the controlled section, total system time savings, if any, would be marginal because 

traffic is uniformly congested, that is, redistributing ramp demands over space for a uniformly 

congested freeway can, at best, reduce total system marginally. 

6. SOLVING THE OPTIMAL CONTROL PROBLEM NUMERICALLY 

In this section, we present numerical methods for solving the optimal ramp control 

problem. Before proceeding further, we simplify the problem by introducing a new control 

vector v, E R”, such that 0 I vi,k II, and 

u, k = u,L, c&I, wk) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - v,,k)c2,,(xk, wk), i = l,..., n. (34) 

Replacing u,,~ by v,,~, i = I,..., n, k = l,..., K, in eqns (141, (15) and (16) and introducing 

V = [v I,..., Vk ,..., Vk]E R,IK, 

we have 

minimize J( v, w) = 4 (xK( v, w)) +~~~~k(x~( v9 w), vk), (35) 

with constraint 

01 v,ll 
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where the vectors xk ( V, W) are obtained by solving the equation 

x,,, = P(x,, v,, CC,), (36) 

with initial condition x,, and W = [Z,,i$,...,i+J. 

The problem in this form is a constrained non-linear programming problem in terms of 

variable V, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW viewed as a parameter vector. In light of the special structure of this 

problem (i.e. the box constraints), numerical methods for unconstrained non-linear program- 

ming problems, such as steepest decent, conjugate gradient, or Quasi-Newton methods such 

as the BFGS algorithm (Luenberger, 1984) can be applied with the special consideration 

that once a constraint is reached, the moving direction is projected to that constraint. 

The gradient information & = d.?ldv, is required to determine a moving direction. 

From the results presented in Section 4 above, we have ak = fit., with I?’ = i” +(ik+ ,>l& 

and A/, = fit, i K = c$~(x~). This provides the following update for the ith iteration. 

with 

v”’ = v’ + old 
(37) 

d:=Oif~k>OandV,=OOr@,<OandV,= 1 

d: = fikGA otherwise, 

where G;, is a linear operator, assuming different forms depending on the direction 

finding algorithm used. For example, CL = -Id, when the steepest decent is the choice. 

The moving size (+; is determined by a line search. Since the gradient information is 

available, the bisection line search method is recommended. 

7. TEST EXAMPLES 

The optimal control algorithm developed above was tested on a four-lane freeway section 

of approximately 5 miles in length, with 10 subsections (each section is approximately 

half a mile long), with seven entry ramps and five exit ramps. Each exit ramp and entry ramp, 

except for the third entry ramp, has only one lane (Fig. 1). The third entry ramp has two lanes. 

The time step is T = 30 s, and the flow-density relationship used is as for Greenshields 

(1934) with vf = 60, Pjam = 120. 

We consider two cases; one for transient traffic, and the other for uniformly congested 

traffic. We assume that the average OD demand pattern is known for the whole control 

period of 3 h, and that traffic density falls within the range of zero and jam density under 

such demand patterns. The freeway boundary influx for both cases is shown in Fig. 2. 

I________r _-_---_,________&-___-___‘_______< I 
1 r + 

r-------- l--------- 
L--_--__+____-___+______!_ 

+--_-----__ I____--__, L_______~_________.&_-_____; 
I I I I 

I 

Fig. 1. A test case freeway section. 
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The ramp demand used in the transient traffic case is shown in Fig. 3(a). The gradient 

information ok with no metering is plotted in Fig. 3(b). It is clearly seen that metering 

ramps 4-7 would increase system time, but metering ramps l-3 during time interval about 

[80,140] would reduce system time. The optimal metering rate is plotted in Fig. 4(a), and ramp 

queues in Fig. 4(b). Figures 5(a) and (b) show the section densities before and after ramp 

metering. The total time saving in this case is 61 vehicle hours. 

The second example illustrates the case where ramp metering does not improve total time 

spent in the system under uniform congested conditions. Figure 6(a) shows the ramp demand 

for this case. The control gradient j$ with no metering is shown in Fig. 6(b). Because 

fik is negative over the whole control period, it would not be beneficial to meter any 

1200 - 
2 
c 
c‘ 
: 

800 - 2 

z Transient traffic 
600 - 

- - - - - - Uniformly congested traffic 
400 - 

200 - 

I I I I I I I I I I 
0 20 40 60 80 100 120 140 160 180 

Time (min) 

Fig. 2. Freeway demand profiles. 

(a) ramp demand profile 

time (3 min.) 
ramps 

(b) gradient profile without control 

60 

ramps time (3 min ) 

Fig. 3. Ramp demand profile and control gradient profile, transient traffic. 
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ramps. This is confirmed by starting metering rates as half of the ramp demand, and the 

optimal solution by the control algorithm produces a set of metering rates the same as 

(a) metering rate 

1, ..,..... .’ 
. 

7 

time (3 min.) ramps 

(b) queue profile, after control 

.., . . . ‘. ‘I 

. . . . . ‘1 
-.., 

,,,..........(~~~ ‘. 

.:... ‘.. 
,, 

7 

time (3 min ) ramps 

Fig. 4. Ramp metering rates and ramp queues, transient traffic. 

(a) density profile, before control 

time (3 min ) sections 

(b) density profile, after control 

., 

.I. 

,,,,.._... :. ” 
‘.,., 

‘. 
” 

: ..,. .:. 

10 

time (3 min ) sections 

Fig. 5. Traffic density, before and after control, transient traffic. 
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the demand, As a result, we obtained identical section density profiles with and without 

ramp metering, which are shown in Fig. 7(a) and (b). 

(a) ramp demand profile 

. ” 

. . 

.-’ 

7 

time (3 min ) ramps 

(b) gradient profile without control 

time (3 min ) ramps 

Fig. 6. Ramp demand and control gradient profiles, uniformly congested traffic. 

(a) density profile, before control 

time (3 min ) sections 

(b) density profile, after control 

time (3 min ) sections 

Fig. 7. Traffic density, before and after control. uniformly congested traffic. 
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8. SOME EMPIRICAL VALIDATION OF THE THEORETICAL RESULTS 

The results presented in the previous sections are based on the regulation of traffic on 

idealized, hypothetical freeway networks governed by a simplified traffic flow relationship; 

only superficial consideration was given to the interaction between the freeway and surface 

street systems and the potential impact of ramp metering strategies on that interaction. In 

this section, a case study based on existing traffic conditions on a section of a heavily-traveled 

freeway (and surrounding surface street network) in the Los Angeles area is presented. 

Because of the infeasibility of field experimentation, traffic flow is modeled using the 

computer simulation program INTRAS (INtegrated TRAffic Simulation), developed for 

the Federal Highway Administration. This program is a microscopic, car-following model 

which accurately simulates traffic flows while giving the experimenter far more control 

over the independent variables than would be possible in a real world situation. The model 

was used to study the behavior of a freeway-arterial system under a variety of parameters 

including varied traffic volumes, capacity bottlenecks, and different ramp metering strategies. 

For each case, the effect of the ramp metering on congestion was evaluated. 

Selection of the case study site was constrained by the availability of concurrent traffic 

and control information for both the freeway section and adjacent surface street, including: 

hourly freeway and ramp volumes, and turn movement counts and associated signal timing 

information for adjacent intersections. The case study site selected for evaluations consisted 

of the 3000 ft section of the westbound I-210 freeway between Hill Street and the entry 

ramp west of Fair Oaks (mileposts 25.14OL to 26.822L) and the surface street network 

bounded by these two streets on the west and east, respectively, and by Villa and Walnut on 

the north and south, respectively, all within the City of Pasadena, California (Fig. 8). 

This section of the westbound mainline freeway has five lanes, three entry ramps off of 

Maple (Rl west of Hill, R2 east of El Molino, and R3 west of Fair Oaks), and two exit 

ramps to Maple (one near Wilson, the other near Euclid). Peak hour (6.3k7.30 a.m.) 

volumes for the westbound section of I-210, as determined by Caltrans District 7 for 

8 January 1989, are shown in Table 1, for the four 1%min periods comprising the peak 

hour. The associated entry ramp volumes for the peak hour are shown in Table 2. 

These latter figures were derived from data collected by the City of Pasadena, as were 

similar data for the exit ramps and surface streets (not shown for brevity). Based on discussions 

with the local Caltrans District, the range of ramp metering headways considered was 

from 4 to 24 s. Simulations were prepared and run for the various combinations of possible 

metering headways on the three entry ramps; to keep the number of runs manageable, 

the range of headways was transformed into five discrete values (4, 8, 12, 20 and 24 s) 

plus a base case representing no metering. Simulations were run for the four 15-min periods 

comprising the peak hour, and results were obtained both for the full hour as well as for 

Marengo El Molino 

Raymond Bucco Hudson Sierra Both 

Garfield Madison Wilson 

Fig. 8. Case study site. 
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Table 1. Peak hour mainline volumes Table 2. Peak hour entry ramp volumes 

Period Volume Nominal D/C Ramp Volume 

WPW WPW 

I 8064 0.81 RI 408 
2 8860 0.89 R2 464 
3 9684 0.97 R3 220 

4 10,416 1.04 

each 15min period; these latter breakdowns were used to estimate the effects of various 

levels of mainline demand on the efficacy of ramp metering. 

Results on the freeway delay for the peak hour simulations are summarized in Fig. 9, 

which presents the ratio of mainline freeway delay for a given combination of metering 

headways on Rl and R2 to the delay experienced when the meters are not operating (base 

case). (For simplicity, results are presented only for a case in which the metering headway 

on ramp R3 is held constant at 4 s; because of the relatively low volume on ramp R3, 

the results are generally not sensitive to metering headways on this ramp.) The results 

demonstrate the general insensitivity of freeway delay to the presence and operation of the 

ramp meters. Although a portion of the variation evidenced in Fig. 9 can be attributed 

to stochastic elements within the simulation model, there appears, none the less, to be a 

trend toward slight improvement with certain combinations of ramp metering rates on Rl 

and R2. The apparent anomaly of higher delays with certain metering strategies than what 

with the unmetered base case can be attributed principally to stochastic “noise” and the neces- 

sity of metered vehicles to accelerate to freeway speed. Ostensibly, the combination of 

light metering rates on both Rl and R2 is not sufficient to produce measurable gains in 

performance of the mainline freeway, although it does result in measurable acceleration 

delay; anomalies at heavy rates are probably more indicative of stochastic effects in the model. 

Although freeway conditions in the case study have been shown to be relatively 

unaffected by the range of ramp metering strategies examined, the same cannot be said for 

the impact of metering strategies on the entry ramps and on the adjacent surface street 

network. A picture of potential adverse effects of heavy metering on the total network 

(i.e. freeway and adjacent surface streets) is given in Fig. 10. These results displayed in 

this figure indicate that, for virtually all combinations of metering strategies in the case 

study, the tradeoff between any gains in freeway performance and adverse effects on the 

surface street network results in an overall degradation of network performance. There 

are, however, a few strategies that result in relative improvement to the total network, 

notably the metering combinations of Rl = 12 s with R2 = 8 s, Rl = 16 s with R2 = 12 s, 

and Rl = 20 s with R2 = 4 s. These results are based on the aggregate peak hour simulation; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 
0 = + 

R2 4 set 

A R2 = 8 set 

0 
+ RZ=lZsec 

* R2 = 20 set 

. R2 -24 see 

0.7 
I I I I I I 

4 8 12 16 20 24 

Metered headway on ramp l(sec) 

Fig. 9. Normalized freeway delay relative to unmetered case. 
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0 R2 = 4 set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2 = 8 set 

1.7 + R2=12sec 

3 s R2 20 set = 

z 1.6 . R2 = 24 set /+ 

T3 

s 1.5 +- -+-_+ 

t; 
5 1.4 . * 
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. 
+ 

1.3 
* 

ii 

-~~ 

. . 

2 
1.2 

* + 

3 

5 

1.1 

2 1.0 
* 

0.9 1 
I I I I I I 

4 8 12 16 20 24 

Metered headway on ramp I (set) 

Fig. 10. Normalized total system delay relative to unmetered case. 

the sensitivities of total network delay to the full range of metering strategies for two 1%min 

periods within the peak hour (the first and third) are shown in Figs 11 and 12. Under the 

relatively light traffic conditions of the first 15-min period (Fig. 1 l), virtually all metering 

strategies result in total network improvement. Conversely, for the third period in which 

mainline freeway demand approaches the nominal capacity, metering generally results in 

a substantial degradation in total network performance (Fig. 12). 

The results of the case study analysis generally support the conclusions reached in the 

analysis of the idealized optimal control cases. For the existing ramp volumes in the case study, 

ramp metering strategies apparently have little impact on freeway performance for conditions 

in which the nominal mainline D/C is greater than about 0.80. (Conclusions for D/C less 

than 0.80 are not advanced since the data did not support such analysis.) Such strategies, 

however, generally can have a deleterious impact on the surface street network performance 

for conditions in which the mainline freeway demand approaches nominal capacity, as a result 

of ramp queue buildup and spillback. It is emphasized that these conclusions are restricted 

Fig. 1 I. Sensitivity of total network delay to ramp metering rate on Ramp I for D/C = 0.81. 
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METERED HEADWAY ON RAMP 1 (SECONDS) 

Fig. 12. Sensitivity of total network delay to ramp metering rate on Ramp 1 for D/C = 0.97. 

by the assumption of ramp demand being invariant with metering rates; the impact of 

metering rates on diversion was not considered in this case study. 

9. CONCLUSIONS 

In this paper, we considered a freeway system that consists of a freeway section and its 

entry/exit ramps, and formulated the ramp control problem as a dynamic optimal process 

to minimize the total time spent in this system. Under the assumption that the controlled 

freeway has to serve all its demand, and the traffic flow process follows the rules prescribed 

by the LWR theory, we are able to show that when traffic is uniformly congested, or 

uniformly uncongested, ramp metering leads to inferior solutions to the problem. However, 

it is effective in reducing the total time spent in the system when traffic conditions have 

the potential to switch between congested and non-congested situations. Numerical methods 

have been provided to solve the optimal ramp control problem when ramp metering is 

beneficial. Results of a case study involving an actual freeway system, using a detailed 

microscopic simulation model, support the theoretical conclusions. 
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APPENDIX 

In this appendix, we derive the stability requirement for the finite difference eqn (8) with the triangular fundamen- 

tal diagram. The concept of stability for a numerical scheme is concerned with the growth or decay of errors 
introduced at any stage of the computation, and there exists a number of methods to study the stability of various 
types of numerical schemes (Lu and Guan, 1989). We adopt the Fourier method in this analysis. 

Notations: 

i: 

k: 

j: 

A: 

T: 

Vf: 

co: 

$: 

s: 

d: 

*p:: 

E$ 

65: 

freeway section index, 

time index, 

the complex number n 

length of each freeway section, 

length of discrete time interval, 

free-flow speed, 

constant wave speed when traffic density is greater than critical density, 

the ratio of exit ramp flow rate to freeway flow rate of section i at time k, 0 < sf I 1, 

shift operator, e.g. Spf; = pf,,, 

the density of section i at time k with computation error, 

the density of section i at time k without computation error, 

computation error at time k, l t = pf - *pf, 

the Fourier transform of E;, defined as E^ 5 = I”, t fe-iW ci”dw. 

Examine the following difference equation: 

P;+’ = [b_,K’ + b,, + b,S]p:. 

where b_,, b,, b, are constants. 
It is clear that E f also satisfies eqn (al), i.e. 

P;+’ = [b_J’ + b,, + b,S]e;. 

Taking the Fourier transform on both sides of (a2), we have 

,;+I = (/,, ,,+-t + /,, + b,e jti3)zt. 

Now, let G(A,w) = b ,e-jw’+bO + ble’“- ‘, we have 

i)“’ = G(A,w)il’. 

Since G(A,o) is independent of time step k, we can write 

e)- = [G(A,o)]“iq. 

For the error to decay over time kT, it is necessary and sufficient to require 

jG(A, w)l I I. for all w. 

(al) 

W 

(a3 

(a4 

(a3 

(a@ 
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We now examine eqn (8) when traffic is uniformly uncongested, where we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b,=+a 

69 

b,= l-(1 +s~)+“,= l-(1 +Sf)Cr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b,=O. 

Substituting these expressions into G(A, o), we have 

G(A, w) = I (I + $)a +aelw3 

= I - (I + $)(I +(Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcos(wA ) - ja sin(oA ), 

and 

IG(A, w)l' = [I - (1 + $)a +a cos(wA)]' + [a sin(wA )I’ 

= [(I + $a) ~ a (I - cos(oA ))I' + [a sin(wA )]’ 

(a71 

(a81 

(a9) 

= 
1 
(I + &a ) - 2a sin’(+)]’ + 4a %it?(~)co?(+) 

=(I +$a)-4asin’(+)[IL(I +$)a]. 

Clearly, if l-(1 + $)a 2 0, i.e. (I + .$)a 5 I for all a and $, then IG(A,o)l 6 I, and (8) is stable when traffic is 
uniformly uncongested. 
Similarly, when traffic is uniformly congested, one can show that if (I - $) a’ 2 I, for all a’ and sf, where 
a’ = f cp. then (8) is stable. 

In choosmg a more stringent condition, we conclude that if (I + sf;) mad { a,a'} I I for all a’ and s), then (8) 
is stable under all traffic conditions. 


