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In this paper a uniqueness theorem for the solutions of the differential equations
of thennopiezoelectricity is given, on the basis of the energy balance. The
generalized Hamilton principle and the theorem of reciprocity of work are also
deduced.

INTRODUCTION

The equations governing small vibrations of piezoelectric crystals, including the
coupling among deformation, temperature, and electric field, have been derived by
Mindlin [1]. The coupled problem under consideration consists of determining
the stresses a^(x, i) and strains e/7(x, t), displacement w/(x, t), temperature 0(x, t) and
electric potential < (̂x, f) for xEB and t>0.

In the region B and for ^ > 0 , the following equations should be satisfied: the
equation of motion

a/u + Xt = put i,j= 1,2,3 (1)

the generalized heat equation

TS - ktjdjt + w e = r - r0 (2)

and the equation of the quasistationary electric field

Du = 0 (3)

where Xi = components of mass forces
S = entropy per unit volume

Dj = components of electric displacement
T= absolute temperature

7*0 = temperature of natural state in which stresses and strains are zero
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W = heat source intensity, referred to a unit volume of the body and unit time

kji = coefficients of heat conduction for an anisotropic body

p — density

These equations should be completed with boundary and initial conditions. The

following quantities may be assigned at the surface 35 of the body: the displacements

or loads

ut = Ut(x, t) on 35i

<ty«/ = P((x, t) on 952 (4)

35 = 3fii U 352 951 n 952 = 0

the temperature or heat flux

0 = #(x, 0 on 953

-k{j8jnt=k(x,t) on 354 (5)

35 = 353 U 354 353 n 354 = 0

and the electric field or the electric charge

ip = cj>(x, t) on 35 5

DM = -o(x, f) on 3B6 (6)

35 = 95S U 356 355 n 956 = 0

The initial conditions have the form

ut(x, 0) = ft(x) ut(x, 0) = gt(x) 0(x, 0) = ft(x) x € 5 ^ = 0 (7)

In addition we have constitutive equations in the form [1]

ekijEk - yt/6 (8)

eikEk+gie (9)

+ giE,+-±6 (10)

where

1 .

Hi) Ei = ~*,i (11)
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Equation (8) is the Duhamel-Neumann equation, generalized to piezoelectricity.
Equation (9) is an expression for the electric displacement, and Eq. (10) is an
expression for the entropy in terms of the independent variables e,y, Ek, and 0.

Observe that Eqs. (8)-(10) lead to the constitutive relations

dojj _ doki dDj _ dDi

&€kl d€ij oE; BEj

and

ohk oe,y oT oe,y otj ol

Relations (12) imply that

ctjki = cm e,7 = ejt (14)

The symmetry of the tensors a,y and e# leads to the symmetry conditions

fij ~ yjl ekij ~ ekji (15)

In the case of general anisotropy, we have 21 constants c,yfc;, 18 piezoelectric
constants ekil-, 6 constants yy and e,y and 3 constants gt. There also appears the
constant ce, which is the specific heat at constant strain and constant electric field Ek.

Altogether there are 55 material constants. Introducing the constitutive relations
(8)-(10) into the equations of motion (1), the heat equation (2), and the equation of
the electric field (3), we have

CijkiUkjf + ekijV,kj ~ *nj®,j - Piij (16)

kijOjj - ce6 - T0(yt/et} -g^d - -W (17)

~ eikf.ki + g/Q.i = 0 E{ = -<pti (18)

Assuming that \0/To\ -4 1, we arrive at the linear heat-conduction equation (17).
Equations (16)-(18) constitute the complete set of equations of thermopiezo-

electricity. This set of equations is coupled. In a stationary problem, Eq. (17) becomes
the Poisson equation

ktj6itJ = -W (19)

while Eqs. (16) and (17) are still coupled. In this case the function 0 is known from

Eq. (19).
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UNIQUENESS OF THE SOLUTION OF THE DIFFERENTIAL

EQUATIONS OF THERMOPIEZOELECTRICITY

To prove the uniqueness of the solution of the differential equations of thermopiezo-

electricity, we need a modified energy balance. It follows from the principle of virtual

work

I (Xt - piij)8ui dv + ptSUi da= I cj,75e,7 dv (20)

in which the virtual increments have been replaced by the real increments

Sut = ji-dt = vt dt 6e,y = ytf dt = ktj dt

Thus, we obtain the fundamental energy equation

I (X{ - pvt)Vi dv + I ptvt da= I Otjktj dv (21)

JB JSB JB

into which we introduce the constitutive relations

Oij = cijkleki - ekijEk - ji/0 (22)

Hence

— (w + x) = I Xtvtdv+ I pivtda+ / (7,7e,7 + ekijEkejj) dv (23)

B t)B B

where 3C is the kinetic energy and w the work of deformation:

p( , 1 f
K = ^ / W du w = - / cijkleijekl dv

lJB l J
B

To eliminate the term SB^ij^ij^ dv, we consider the heat-conduction equation

~ (b/8,ti cj) yt/iii +gkEk (24)

Multiplying it by 0 and integrating over the region of the body, after simple
transformations we obtain
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I yijeifd dv = & I 66jn, da - gk f 6Ekdv + J - I W6 dv - ^ - Xe ( 2 5)
S 3fl

where

B a

Substituting Eq. (25) into Eq. (23), we are led to the equation

—- (x + "W + (?) + Xo = / XiVt dv + I PiVi da + -U- I 66 mi da
dt ' J J To J ''

B dB i)B

+ — I W6dv+ I (ekijkijEk-gkEk6)dv (26)

K
 JB

To eliminate the term ekijiijEk from the last integral of Eq. (26), we make use of the
constitutive relations

Dk = ekijeij + gk6 + ekjE, (27)

Finally, let us make use of the equation of the electric field Dk<k = 0. Multiplying
the equation by ip and integrating over the region of the body, we obtain

I Dknkip da + I DkEk dv = 0 (28)
'dB

Using relation (27), after simple transformations we obtain

/

f I C \

(ekijEke,7 -gk6Ek)dv = - I Dknk<p da - - ^ - — \gk I dEk dv) (29)
J at at \ J I

B dB \ B I

where

s = ±- e,7 I EiEj dv

B
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In view of Eqs. (26)-(28), we arrive at the modified energy balance

<P + gk I 6Ek dv\ + xe = I XM dv + I ptvt da
JB ) JB J*B

+ ^i f 66 jHi da- f DifHi da + ^- I W9 dv (30)
T° AB ' J*B ° JB

The energy balance (30) makes possible the proof of the uniqueness of the solution.
We assume that two distinct solutions {u'u ip', 6') and («", / , 6") satisfy Eqs.

(l)-(3) and the appropriate boundary and initial conditions. Their difference
Uj = u'i — u", $ = y' — ip", 6=6' —6" therefore satisfies the homogeneous equations
(l)-(3) and the homogeneous boundary and initial conditions. Equation (30) holds for
the solutions uh ip, 6.

In view of the homogeneity of the equations and the boundary conditions, the
right-hand side of Eq. (30) vanishes. Hence,

— \x+v? + S>+Z+gk\§£k dv) = -xo < 0 (31)
dt

 \
 JB I

where we have made use of the fact that the integrand of the energy-dissipation
function xe ls a positive-definite quadratic form. The integral in the left-hand side of
Eq. (31) vanishes at the initial instant, since the functions uh 6, $ satisfy the
homogeneous initial conditions. On the other hand, the inequality in Eq. (31) proves
that its left-hand side is either negative or zero. The second possibility occurs if the
integrand is a sum of squares.

Consequently, we assume that

3 C = 0 w = 0 <? + £ +gk I 6Ekdv>0 (32)

These results imply that

£/ = 0 gy = 0 0 = 0 Ek = 0 (33)

J. Ignaczak deduced the following sufficient condition. Assume that e,y is a
known positive-definite symmetric tensor, g,- is a vector, and c = ce/2T0 > 0. Consider
the function

A{6, Ek) = c62 + 26gkEk + eijEiEj

*Private communication.
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A is nonnegative (A > 0) for every real pair (Q, Ek)y provided

\gt\
2 < c\m

where \m is the smallest positive eigenvalue of the tensor e,y. Equations (33) imply the
uniqueness of the solutions of the thermopiezoelectricity equations, i.e.,

u[ - u " < O ' = e " E l = E'k (34)

Moreover, it follows from the constitutive relations that

O/y — a (I U( — L>i O — O \3J)

THE GENERALIZED HAMILTON'S PRINCIPLE

We define two functionals

II = I (H + ST — XiUi) dv — I (pfUj — o<p) da (36)

* = I ( r - STt -WT)dv+ I TQtrii da H = F- DiEt (37)

3B

where H = electric enthalpy
ip = electric potential
F = free energy
a = electric charge on dB

T = potential of the heat flow

The generalized Hamilton principle has the form

q, = i L . -kl/T, (38)

1 (K - II) dt = 0 8 I ^ dt = 0 (39)

This form of Hamilton's principle was first stated for the problem of thermoelasticity
by Parkus [2], and for the adiabatic problem of piezoelectricity by Tiersten [3].

The admissible motions of the body must be compatible with the conditions
restricting the motion of the body. Moreover, the following conditions must be
satisfied:



178 W. NOWACKI

5«f(x, r1) = 6«,(x, h) = (40)

The quantities subject to variations are the displacement ut, the temperature d, and the

electric potential <p. Performing the variations in accordance with the first of Eqs. (39)

and bearing in mind that

SH = J2L Bet, + %; 8T + — 8Et
oea 01 oh:

= otj 8eif - S 8T - Dt 5<p>(- (41)

we obtain the equation

I ' dt\\ [CAT, + oM - put) 6M, + Dti, 8<p] dv + / [{pltn, - pt) Sut

+ (Dint + a) Sip] da> = 0 (42)

Since the variations 8ut and 5ip are arbitrary, we obtain from Eq. (42) the equations
governing the motion and the electric field, completed by the appropriate boundary
conditions. These equations and boundary conditions are identical with those presented
in the introduction.

Performing the required variation in the second of Eqs. (39),

\ ~ fir,- - ST 8T - ST 8f - W 8T)dv

and taking into account that

J^ ^^
I 6,-riiSTda
bB

(43)

qt = q'8T-1 = ~%i 5T + fe 5 ^ -

we transform Eq. (43) to the form

j dt)j [(qu - W + ST) 8T - (ST8T)] dv - J (qt - Qt)nt 8T dc
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In view of the second of Eqs. (40), we have

f (ST8T)dt= |£T 57]?* = 0 (45)

We still have the equation

Jt JB

W + TS) ST dv +
JdB

qt)n, bTda = 0 (46)

valid for arbitrary variation dT satisfying condition (45). Equation (46) yields the
entropy balance

TS=-qiii + W xEB

and the boundary condition for the heat flow

(47)

(48)

THEOREM OF RECIPROCITY OF WORK

Consider two sets of causes and effects. The causes are the actions of body forces, heat
sources, prescribed displacements, tractions and temperatures on the boundary, electric
potentials or electric charges on 92?, and finally the actions of initial conditions. The
effects are the displacements «,-, the electric potential y, and the temperature B. The
second set of causes and effects will be denoted by primes.

Based on the equations of motion, for both sets of causes and effects,

aki + X'i =

(49)

(50)

Taking the Laplace transforms of both equations, assuming that the initial conditions
for the displacements are homogeneous, we obtain the equation

(51)

or

I (XjQ'i — X'lQi) dv + I (pju'i — p'jQj) da = I (o/i-e/,- — oy,-e/,-) dv (52)
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where

r
M/(X,P) = I

is the Laplace transform.

In view of the constitutive equations

fy = ctmeki - jijO - ekijEk atf = ctfklek\ - y/,-0' - eki)E'k (53)

we obtain

I {Xfi'i - X\ud dv+ I (Ptu'i - p'fid da+ I baiee'ij - d'e,7)

+ eki,(Eke'if - E'keif)] dv = 0 (54)

In what follows we shall make use of the heat-conduction equation for both

systems of loadings

i - (kt/ei{f - ceP9) -Pifijhj + SiEi) = ~ (55)
i o •'o

i _ ui'

±r QctjWi} - cePd')-pijijEif + SiEl) = - £ - (56)

We now multiply Eq. (55) by 8' and Eq. (56) by 6, substract the results, and integrate
over the region of the body. After transformations, we obtain the equation

j - kij J (8'dj - dd'j)nt da-pj [(7,7e,7 + gkEk)B'

- (7,7e,7 + gkE'k)6] dv + ± I (W6' - W'd) dv = 0 (57)
•* 0 **

Finally, we make use of the equations for the electric field

Dk,k = 0 D'Kk=Q (58)

Multiplying the first by <p and the second by y, subtracting the results, and integrating
over the region of the body, we have



SOME GENERAL THEOREMS OF THERMOPIEZOELECTRICITY 181

j (Bk? - Bk$)nk da + (DkE'k - DkEk) dv = 0 (59)
JdB JB

Introducing the constitutive relation

Ac - ektjhj + 2kQ~ + ekjEj (60)

and a similar relation for D'k into the volume integral, we transform Eq. (60) to the

form

J (Dkif>' - B'k$)nk da + J [eMj(etjE'k - l\jEk) + gk(6E'k - 6%)] dv = 0 (61)

Eliminating the common terms from Eqs. (54), (57), and (61), we arrive at one
common equation of the reciprocity of work containing all causes and effects:

\ (JfaJ - Xltti) dv + J
[ B 3

ToP}\ (JfaJ - Xltti) dv + J [p,s; - p'iQi + (5fc?' - Dk$)nk] da)

[ B 3B

+ J (W'9 - We') dv + kn J (QOj - 0'0(/)«, da = 0 (62)

B as

By taking the inverse Laplace transform of this equation, we obtain [4]

To ) I (Xt © u\ - X[ 0 u() dv+ f \p, 0 u[ -p'f

[JB JdB

+ (Dk (Dip1 -D'k® <p)nk] da} + I (W * 9' - W'* 9) dvH
+ kit J (9 * Oj - 9' * 6j)nt da = 0 (63)

bB

where we have introduced the notation

,- © ui = X,-(x, ? - r) '; dr, . . .
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'"fW*6'= W(x, t - r) 0'(x, T) dr, . . .

As for thermoelastidty [5], we can investigate the action of instantaneous and
moving concentrated sources, we can derive the Somigliana and Green formulas
generalized to thermopiezoelectricity, and so on. It is a simple matter to deduce the
theorem of the reciprocity of work for harmonic vibrations and stationary problems.
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