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Abstract

This work proposes the univariate and multivariate generalisations
of the following distributions: the Birnbaum-Saunders, the three param-
eter Birnbaum-Saunders and the sinh-normal of spherical type. Simi-
larly, when the stochastic representation of a spherical random vector is
assumed, we propose alternative definitions for the above-mentioned dis-
tributions including the log-elliptical distribution. We emphasize that
all the distributions here derived belong to the family of the spherical
distributions.

Mathematics Subject Classification: 62E15, 62N05

Keywords: Birnbaum-Saunders distribution, life distributions, distribu-
tions, sinh-normal, stochastic representation, multivariate log-elliptical distri-
bution

1 Introduction

Recently, the family of elliptical contour distributions have been a vertiginous
development in many areas of the statistics; the main topic to research goes
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around the extension of the models and techniques of the statistical literature
when the distributions are elliptical. The books of [13], [11] and [12] give
an excellent summary of that literature development. Topics in the context
of distribution theory and sensibility analysis have been treated by [6] and
[8], among many others. Specifically, in statistical theory of reliability [10]
generalise the Birnbaum-Saunders distribution under the spherical case. More
recently, [5] propose a family of distributions based on spherical distributions
for a dependent sample of life data. Another life distribution is the log-normal
distribution, see [19], this was generalised by [11, p. 55] to the multivariate
elliptical case.

In the present work: the multivariate generalisation of the Birnbaum-
Saunders distribution, under an elliptical distribution, is given in Section 3.
In Section 4 we propose the univariate and multivariate generalisations of the
three parameter Birnbaum-Saunders distribution (see [20]). In Section 5, the
univariate and multivariate sinh-spherical distributions are derived (they are
known as the generalised log-Birnbaum-Saunders distributions). Section 6 ex-
tends the results of Section 5 when the three parameter Birnbaum-Saunders
distribution is considered. In Section 7 we propose alternative definitions for
the Birnbaum-Saunders, the log-elliptical and the sinh-spherical multivariate
distributions, in particular, when the stochastic representation of a random
vector with spherical distribution is considered and noting that such repre-
sentation coincides with some algebraic factorizations of that vector; we em-
phasized that the new family of distributions continue belonging the family of
spherical distributions; the section ends with the extension of the new families
to the elliptical case. Finally, in order to check the parameter estimations
of the new families, we took some sets of data given in the literature for the
independent case, and we simulated a set of life data for the dependent case;
then the maximum likelihood estimators of the parameters under particular
distributions are obtained, see Section 8.

2 Preliminary considerations

In this section some preliminary results are given as a necessary background
for the development of the paper.

Suppose that Z ∼ N (0, 1), and let α > 0 and β > 0. The random variable

S = β

[
α

2
Z +

√(α

2
Z
)2

+ 1

]2

(1)

has a distribution known as the Birnbaum-Saunders distribution, which is
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denoted by S ∼ BS(α, β). More over, its density function is given by

fS(s) =
s−3/2(s + β)

2α(2πβ)1/2
exp

{
− 1

2α2

(
s

β
+

β

s
− 2

)}
, s > 0

where α is the shape parameter and β is the scale parameter and the median
of the distribution, see [3].

A generalisation of the Birnbaum-Saunders distribution was proposed by
[20]; in that case, the inverse transformation of (1) is defined by

Z =
1

α

[(
v

β

)λ

−
(

β

v

)λ
]

, λ > 0 (2)

Note that when λ = 0.5 we get as a particular case the Birnbaum-Saunders
distribution.

The generalisation of the Birnbaum-Saunders distribution is termed the
three parameter Birnbaum-Saunders distribution and its density is given by

fV (v) =
λ

αv(2π)1/2

[(
v

β

)λ

+

(
β

v

)λ
]

exp

{
− 1

2α2

[(
v

β

)2λ

+

(
β

v

)2λ

− 2

]}
,

v > 0; and we shall denoted by V ∼ GB − S(α, β, λ).
A very close distribution to the Birnbaum-Saunders is the sinh-normal dis-

tribution, and it plays an important role in the log-linear models for life data
with Birnbaum-Saunders distribution. The density of a sinh-normal distribu-
tion is given by

fY (y) =
2

ασ
√

2π
cosh

(
y − γ

σ

)
exp

{
− 2

α2
sinh2

(
y − γ

σ

)}
, y ∈ �,

and it is denoted by Y ∼ SN (α, γ, σ), where γ ∈ � is a location parame-
ter, σ > 0 is the scale parameter and α > 0 is the shape parameter. This
distribution and some properties are studied in [22].

By other side, we say that a p-dimensional random vector Y = (Y1, ..., Yp)
′

has an elliptical distribution with position parameter μ : p × 1 and scale
parameter Σ : p × p, Σ > 0, if its density function is given by

fY(y) = c|Σ|−1/2h{(y − μ)′Σ−1(y − μ)}, y ∈ �p, (3)

where the function h : � → [0,∞) is termed the function generator and it
is such that

∫∞
0

up−1h(u2)du < ∞ with c a proportionality constant, so that
fY(y) is a density. It shall be denoted by Y ∼ Elp(μ,Σ;h). When the vector
Y has finite moments, we have that E(Y ) = μ and Var(Y ) = chΣ, where ch

is a positive constant, see for example [12] or [11]. In the particular case when
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μ = 0 and Σ = Ip, we get the family of spherical distributions, they shall
denote by Y ∼ Ep(0, I; h). These distributions include as particular cases the
following distributions: the Normal, the t-Student, the Pearson type VII, the
Logistic, the Bessel y Kotz, among many others.

Let �p
+ be the positive part of �p and ln(W) = (ln(w1), . . . , ln(wp))

′. Sup-
pose that w ∈ �p

+ be a random vector such that log(W) ∼ Elp(μ,Σ; h); then
we say that the vector W has a multivariate log-elliptical distribution Type I
if its density function is given by

fW(W) = c|Σ|−1/2

(
p∏

i=1

w−1
i

)
h{(log(w) − μ)′Σ−1(log(w) −μ)}, w ∈ �p

+,

and it shall be denoted by W ∼ LElIp(μ,Σ; h).
Now let us consider the transformation (1) when the normality is substi-

tuted by a spherical law, this is, define

T = β

[
α

2
U +

√(α

2
U
)2

+ 1

]2

by assuming that U ∼ E1(0, 1;h), then T the following density function

fT (t) =
c t−3/2(t + β)

2αβ1/2
h

{
1

α2

(
t

β
+

β

t
− 2

)}
, t > 0.

This is termed the generalised Birnbaum-Saunders distribution and it shall be
denoted by T ∼ GBS(α, β; h), [10].

3 Birnbaum-Saunders distribution

In this section we give some generalisations of the Birnbaum-Saunders distri-
bution to the multivariate case.

Theorem 3.1 Suppose that U ∼ En(0, I; h) and define the transformation

Ti = βi

⎛
⎝1

2
αiUi +

√(
1

2
αiUi

)2

+ 1

⎞
⎠

2

, αi > 0, βi > 0, i = 1, . . . , n;

the distribution of the vector T = (T1, . . . , Tn)
′ is termed the multivariate

generalised Birnbaum-Saunders distribution type I, and its density function is
given by

fT(t) =
c

2n

(
n∏

i=1

t
−3/2
i (ti + βi)

αi

√
βi

)
h

{
n∑

i=1

1

α2
i

(
ti

βi
+

βi

ti
− 2

)}
, t ∈ �n

+, (4)
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and it is denoted by T ∼ GBSI
n(α, β; h), with α = (α1, . . . , αn)′ and β =

(β1, . . . , βn)
′.

Proof : Given that U ∼ En(0, I, ; h), the density of U is given by

fU(u) = c h
(‖u‖2) .

The proof follows easily observing that:

ui =
1

αi

(√
ti

βi

−
√

βi

ti

)
i = 1, . . . , n,

∣∣∣∣∂ui

∂ti

∣∣∣∣ =
1

2n

n∏
i=1

t
−3/2
i (ti + βi)

αi

√
βi

‖u‖2 =
n∑

i=1

1

α2
i

(
ti

βi
+

βi

ti
− 2

)
.

Remark 3.2 An interesting particular case of the distribution (4) appears
when α1 = · · · = αn = α and β1 = · · · = βn = β, which implies that α =
α1 β = β1 with 1 = (1, . . . , 1)′; because if the random vector T denotes a
random sample of a univariate population , then the density of (4) defines a
likelihood function when there is stochastic dependency in the random sample
T . This idea and other particular cases and the estimation of the multivariate
generalised Birnbaum-Saunders distribution type I can be found in [5].

4 Three parameter Birnbaum-Saunders distri-

bution

Now we propose the univariate and multivariate extensions of the three pa-
rameter Birnbaum-Saunders distribution under a spherical model.

Theorem 4.1 Suppose that U ∼ E(0, 1;h) and consider the transformation

U =
1

α

[(
v

β

)λ

−
(

β

v

)λ
]

, λ > 0, β > 0, α > 0; (5)

the distribution of the random variable V is termed generalised three param-
eter Birnbaum-Saunders distribution, and its density function is the following
expression:

fV (v) =
c λ

αv

[(
v

β

)λ

+

(
β

v

)λ
]

h

{
1

α2

[(
v

β

)2λ

+

(
β

v

)2λ

− 2

]}
, v > 0;

this shall be denoted by V ∼ GGB − S(α, β, λ;h).
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Proof : The demonstration follows by noting that

du =
λ

αv

(
v2λ + β2λ

(βv)λ

)
(6)

Also, observe that this distribution keeps the reciprocal property: V −1 ∼
GGB − S(α, 1/β, λ;h)

The generalisation of that distribution to the multivariate case is immedi-
ate:

Theorem 4.2 Suppose that U ∼ En(0, I; h), and consider the transforma-
tion (5), for ui, and αi > 0, βi > 0 and λi > 0, i = 1, . . . , n; the density
function of the random vector V = (v1, . . . .vn)

′ is given by

fV(v) = c
n∏

i=1

λi

αivi

[(
vi

βi

)λi

+

(
βi

vi

)λi
]

h

{
n∑

i=1

1

α2
i

[(
vi

βi

)2λi

+

(
βi

vi

)2λi

− 2

]}
,

v ∈ �n
+. Writing α = (α1, . . . , αn)′, β = (β1, . . . , βn)

′ and λ = (λ1, . . . , λn)′;
we shall call it the multivariate generalised three parameter Birnbaum-Saunders
distribution type I and it shall denote by V ∼ GGB − SI

n(α, β, λ;h).

Remark 4.3 An analogous observation to Remark 3.2 can be established for
the multivariate generalised three parameter Birnbaum-Saunders distribution
type I, seen its role as a likelihood function in the case of a dependent sample.

5 Sinh-spherical distribution

Let GU (u) be denotes the distribution function of the random variable U ∼
E(0, 1;h). By analogy to the case of a sinh-normal distribution( see [22]),
the distribution function FY (y), of the random variable Y with sinh-spherical
distribution, is given by

FY (y) = GU

(
2

α
sinh

(
y − γ

σ

))
;

where α > 0, σ > 0 and γ ∈ �. So, deriving with respect to y we obtain

fY (y) =
2 c

ασ
cosh

(
y − γ

σ

)
h

{
4

α2
sinh2

(
y − γ

σ

)}
, y ∈ �; (7)

this distribution shall termed the generalised sinh-spherical distribution and it
shall be denoted by Y ∼ SE(α, γ, σ).

As in the case of the sinh-normal distribution, the sinh-spherical distribu-
tion is related with the generalised Birnbaum-Saunders distribution.
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Theorem 5.1 Suppose that T ∼ GBS(α, β; h), then Y = σ
2

ln T has a sinh-
spherical distribution with shape, location and scale parameters given by α,
γ = σ

2
ln β and σ, respectively.

Next, we find the first version of a multivariate generalised sinh-spherical
distribution.

Theorem 5.2 Consider T ∼ GBSn(α, β; h) and let Y = 1
2
Σ lnT, where

Σ : n × n is a non-random positive definite matrix. We say that Y has a
multivariate sinh-spherical distribution type I of parameters α ∈ �n

+, γ =
1
2
Σ ln β ∈ �n and Σ > 0, and its density function is given by

fY(y) = 2nc
n∏

i=1

[
e′

iΣ
−1ei

αi
cosh

(
e′

iΣ
−1(y − γ)

)]

h

{
n∑

i=1

4

α2
i

sinh2
(
e′

iΣ
−1(y − γ)

)}
, (8)

with y ∈ �n, and ei is the i-th vector of the canonical base in �n. This fact
shall be written as Y ∼ SEI

n(α, γ,Σ;h).

Proof : Define Σ such that

Σ−1 = (σ∗
ij) =

⎛
⎜⎝

Σ∗′
1
...

Σ∗′
n

⎞
⎟⎠ , Σ∗

i ∈ �n, i = 1, . . . , n

and noting that σ∗
ij = eiΣ

−1e′
j and Σ∗

i = Σ−1ei. Thus, if T = exp
{
2Σ−1Y

}
,

(dT) = 2n

p∏
i=1

eiΣ
−1e′

i exp
{
2e′

iΣ
−1Y

}
(dY),

where (dT) =
∧p

i=1 dti denotes the exterior product of the differential elements
of the vector dT, see [?, pp. 52-53]. The proof follows by making the change
of variable γ = 1

2
Σ ln β in the expression (4).

Interesting particular cases of the distribution (8) are obtained when:

1. Σ = diag(σ1, . . . , σn), in this occasion

(a) Σ−1 = diag(σ−1
1 , . . . , σ−1

n )

(b) e′
iΣ

−1ei = σ−1
i

(c) e′
iΣ

−1(y − γ) =
yi − γi

σi
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then

fY(y) = c 2n

⎛
⎜⎜⎝

n∏
i=1

cosh

(
yi − γi

σi

)
σiαi

⎞
⎟⎟⎠h

{
4

n∑
i=1

1

α2
i

sinh2

(
yi − γi

σi

)}
,

2. Σ = σIn, γi = γ y αi = α for every i = 1, . . . , n, then

(a) Σ−1 = σ−1In

(b) e′
iΣ

−1ei = σ−1

(c) e′
iΣ

−1(y − γ) =
yi − γ

σ

thus

fY(y) =
2nc

σnαn

(
n∏

i=1

cosh

(
yi − γ

σ

))
h

{
4

α2

n∑
i=1

sinh2

(
yi − γ

σ

)}
.

6 Sinh-spherical distribution under three pa-

rameter birnbaum-Saunders distyribution

Now we propose the univariate and multivariate versions of the sinh-spherical
distribution under the three parameter Birnbaum-Saunders distribution.

Theorem 6.1 If V ∼ GGB − S(α, β, λ;h), then Y = σ
2

ln V has a gen-
eralised sinh-spherical distribution with shape, location and scale parameters
given by α, γ = σ

2
ln β and σ, respectively, where the parameter λ > 0. Its

density function is the following:

fY (y) =
4 cλ

ασ
cosh

[
2λ

(
y − γ

σ

)]
h

{
4

α2
sinh2

[
2λ

(
y − γ

σ

)]}
, y ∈ �. (9)

This shall be denoted by Y ∼ GSE(α, γ, σ, λ;h).

Proof. This is straightforward from Theorem 4.1 and noting that

dv =
2

σ
exp(2y/σ)dy. �

Next we write the multivariate extension:
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Theorem 6.2 Consider V ∼ GB − SI
n(α, β, , λ;h) and let Y = 1

2
Σ lnV,

where Σ : n × n is a non-random positive definite matrix, then, we say Y
has a multivariate generalised sinh-spherical distribution type I of parameters
α, λ ∈ �n

+, γ = 1
2
Σ ln β ∈ �n and Σ > 0; and its density function is given by

fY(y) = 22nc

n∏
i=1

[
e′

iΣ
−1eiλi

αi
cosh

(
2λie

′
iΣ

−1(y − γ)
)]

h

{
n∑

i=1

4

α2
i

sinh2
(
2λie

′
iΣ

−1(y − γ)
)}

, (10)

where y ∈ �n, and ei is the i-th vector of the canonical base in �n. Here we
write this fact by Y ∼ GSEI

n(α, γ,Σ,λ; h).

Once again we note that if λi = 0.5, for every i = 1, . . . , n, it is obtained
the multivariate sinh-spherical distribution type I, see Theorem 5.2.

7 Some extensions

Let A ∈ �m×m be a positive definite matrix with spectral decomposition
A = HDH′, where H is an orthogonal matrix, and D = diag(λ1, . . . , λm) is a
diagonal matrix such that λ1 > · · · > λm > 0; if f(x) is a differentiable function
of x and F(D) = diag(f(λ1), . . . , f(λm)); then we define F(A) = HF(D)H′.
For example, if f(x) =

√
x, then F(A) = A1/2 defines the non-negative definite

square root of A. Similarly, if f(x) = x−1, then F(A) = A−1 defines the inverse
of the matrix A, see [24, p. 39], [17, pp. 95-96] and [9]. In function of the
spectral decomposition and the singular value decomposition, SVD, this result
was generalised by [9] to semi-definite positive matrices and general rectangular
matrices, respectively. With these generalisations we can define the function
of a random matrix in an alternative way: instead of the definition of the
logarithm of a matrix A = (aij) in the classical way ln(A) = (ln(aij)), we can
define it like ln(A) = H ln(D)H′. In particular, these results are applicable
to the case of a random vector. But, if X ∈ �m, the SVD of the vector X
is given simply by X = ρW, where W ∈ �m is ‖W‖2 = 1 and ρ = ‖X‖,
and here the vectorial cases for the SVD, the QR decomposition and the polar
decomposition coincide, see [7]. Moreover, the decomposition X = ρW, for
a random vector with spherical (or elliptical) distribution, is known in the
literature as the stochastic representation of the vector X, see [12, Section 2.5.1]
or [11, Theorem 2.3, p. 30]. Also, it is known that (dX) = ρm−1dρ(W′dW),
see [7] or [?]; then we have the following result:
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Theorem 7.1 Let X ∈ �m be a vector such that its SVD is given by X =
ρW, with ρ > 0 y W ∈ �m con ‖W‖2 = 1. Let f(x) be a differentiable
function in x and define F(X) = f(ρ)W. Then

(dF(X)) =

(
f(ρ)

ρ

)m−1(
df(ρ)

dρ

)
(dX), (11)

where, as before, (dX) denotes the exterior product, see [?, pp. 52-53].

Proof : The demonstration is similar to that one given in [9] for the general
case.

As consequences of the present section we can establish the following re-
sults:

Corollary 7.2 Let U ∼ En(0, I; h) be such that U = F(T) = f(ρ)W,
where T = ρW is the SVD of the random vector T, with ρ > 0 , W ∈ �m

and ‖W‖2 = 1; so f(ρ) is given by

f(ρ) =
1

α

[√
ρ

β
−
√

β

ρ

]
, α > 0, β > 0.

The distribution of the vector T = (T1, . . . , Tn)
′ shall be termed the multivariate

generalised Birnbaum-Saunders distribution type II, with density function:

gT(t) =
c (‖t‖ − β)n−1 (‖t‖ + β)

2(α
√

β)n‖t‖3n/2
h

{
(‖t‖ − β)2

α2β‖t‖
}

, (12)

which shall be denoted by T ∼ GBSII
n (α1, β1; h), with 1 : n × 1 = (1, . . . , 1)′.

Similarly, for a generalised three parameter Birnbaum-Saunders distribu-
tion we have the following result:

Corollary 7.3 Suppose that U ∼ En(0, I; h), and consider the transforma-
tion

f(ε) =
1

α

[(
ε

β

)λ

−
(

β

ε

)λ
]

, λ > 0, β > 0, α > 0,

with U = F(V) = f(ε)W, where V = εW is the SVD of the random vector
V, for ε > 0 and W ∈ �m with ‖W‖2 = 1. The density of the vector V is

gV(v) =
c λ

(α‖v‖)n

[(‖v‖
β

)λ

−
(

β

‖v‖
)λ
]n−1 [(‖v‖

β

)λ

+

(
β

‖v‖
)λ
]

h

{
1

α2

[(‖v‖
β

)2λ

+

(
β

‖v‖
)2λ

− 2

]}
,

This shall be termed the multivariate generalised three parameter Birnbaum-
Saunders distribution type II and it shall be denoted by V ∼ GGBSII

n (α1, β1, λ1;h).
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Next we give an extension of the multivariate sinh-spherical distribution:

Corollary 7.4 Suppose that T ∼ GBSII
n (α1, β1; h) and let T = F(Y) =

f(ε)P, with f(ε) = exp{2ε/σ}; where Y = εP is the SVD of Y , for ε > 0,
P ∈ �m and ‖P‖2 = 1. We say that Y has a multivariate sinh-spherical dis-
tribution type II of parameters α1, γ1 with β = exp{2γ/σ} and σI. Moreover,
its density function is given by

gY(y) =
2−nc

σnα‖y‖n−1

(
cosh2

(‖y‖ − γ

σ

)
− 1

)(n−1)/2

cosh

(‖y‖ − γ

σ

)

h

{
4

α2
sinh2

(‖y‖ − γ

σ

)}
, (13)

with y ∈ �n. We write this fact like Y ∼ SEII
n (α1, γ1, σI; h).

Now, the result of Theorem 7.4 is extended to the generalised three param-
eter Birnbaum-Saunders distribution.

Corollary 7.5 If V ∼ GGB − SII
n (α1, β1, λ1;h) and V = F(Y) = f(ε)N,

con f(ε) = exp{2ε/σ}; where Y = εN is the SVD of Y; ε > 0 and V ∈ �m

with ‖N‖2 = 1; then we say Y has a multivariate generalised sinh-spherical
distribution type II of parameters α1, γ1 with β = exp{2γ/σ} and σI. And
its density function is given by

gY(y) =
21−ncλ

σαn‖y‖n−1

{
cosh2

[
2λ

(‖y‖ − γ

σ

)]
− 1

}(n−1)/2

× cosh

[
2λ

(‖y‖ − γ

σ

)]
h

{
4

α2
sinh2

[
2λ

(‖y‖ − γ

σ

)]}
, (14)

with y ∈ �n. This fact shall be denoted by Y ∼ GSE II
n (α1, γ1, σI; h).

An alternative expression for a log-elliptical distribution is the following:

Corollary 7.6 Suppose that Y = ln(W) ∼ Eln(μ,Σ;h). Then we say W
has a multivariate log-elliptical distribution type II and its density function is
given by:

gW(W) =
c lnn−1(‖w‖)
|Σ|1/2‖w‖n

h{(log(w) −μ)′Σ−1(log(w) − μ)}, w ∈ �n
+ (15)

with log(w) = ln(κ)M, and W = κM is the SVD of the vector W; where
κ > 0, M ∈ �m and ‖M‖2 = 1. This shall denote like W ∼ LElII

p (μ,Σ;h).
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Note that the results based on Lemma 7.1 (corollaries 11 - 14) can be
generalised still more. For example, in Theorem 7.2, now suppose that U ∼
En(μ,Σ;h), μ ∈ �n and Σ ∈ �n×n with Σ > 0, then we obtain

gT(t) =
c ‖t‖−3n/2 (‖t‖ − β)n−1 (‖t‖ + β)

2(α
√

β)n|Σ|1/2
h
{
(F(t) −μ)′Σ−1(F(t) − μ)

}
(16)

with F(t) = f(ρ)W, where T = ρW is the SVD of the random vector T, for
ρ > 0, W ∈ �m and ‖W‖2 = 1. Here f(ρ) is given by

f(ρ) =
1

α

[√
ρ

β
−
√

β

ρ

]
, α > 0, β > 0.

An interesting point to highlight comes from the fact that the families of
distributions derived in Corollaries 11- 14 keep being families of spherical dis-
tributions in �n and �n

+; then many of their properties: moments, marginals,
conditionals, etc. can be obtained as particular cases of the general results
derived for the families of spherical distributions, see [12] or [11]. Moreover,
note that from those distributions could be generate the corresponding families
of elliptical distributions just by defining T = Σ−1/2(X−μ), with Σ > 0 and
μ ∈ �n. For example, the corresponding elliptical expression for the density
(12) is given by

gX(x) =
c
([

(x− μ)′Σ−1(x− μ)
]1/2 − β

)n−1 ([
(x− μ)′Σ−1(x− μ)

]1/2 + β
)

2(α
√

β)n|Σ|1/2
[
(x− μ)′Σ−1(x− μ)

]3n/4

× h

⎧⎪⎨
⎪⎩
([

(x − μ)′Σ−1(x− μ)
]1/2 − β

)2

α2β
[
(x − μ)′Σ−1(x− μ)

]1/2

⎫⎪⎬
⎪⎭ . (17)

We finish this section noting that for a sample of dependent life data
X1, . . . , Xn, the expressions of the densities given in Corollaries 11-15, can
be consider with their respective likelihood functions, according to the case.

8 Applications

This sections starts showing some graphics of different densities like: the gen-
eralised three parameter Birnbaum-Saunders distribution (see Figure 1), the
log-elliptical distribution (see Figure 2) and the sinh-spherical distribution (see
Figure 3).

Next we explain, in an example, the way to estimate some of the distribu-
tions derived in the preceding sections: we took the first set of independent
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data given in [4] and we simulated a set of dependent data, for them the param-
eters are estimated and the corresponding criterion of information of Shcwarz
is calculated, see [25].

Distribution SIC LogVer NP μ s2 ν

Special Case 922.5638 -456.6668 2 4.882796 0.038613230
Laplace 923.0040 -456.8869 2 4.890352 0.016497691
Normal 923.4683 -457.1190 2 4.881763 0.028737664

Pearson VII 925.2058 -455.6802 3 4.886503 0.182448431 4.676901
T 925.2058 -455.6802 3 4.886503 0.021840419 8.353855

Cauchy 947.8048 -469.2873 2 4.897028 0.008428758

Table 1: Fit of the Log-Elliptical distributions for the independent case,
ordered according to the SIC criterion from lowest to highest. NP denotes
the number of parameters considered in the optimisation.

Distribution SIC LogVer NP μ s2 ν

Normal 867.20886 -428.99926 2 5.3069933 0.007658998
Laplace 867.90034 -429.34500 2 5.3069934 0.000076589

Special Case 870.26121 -430.52544 2 5.3069933 0.132657078
Cauchy 872.12753 -431.45859 2 5.3069934 0.007658263

T 872.77665 -429.48057 3 5.3069949 0.007658495 62.115737
Pearson VII 873.99107 -430.08778 3 5.3069934 0.100452931 56.557866

Table 2: Fit of the Log-Elliptical distributions for the dependent case,
ordered according to the SIC criterion from lowest to highest. NP denotes
the number of parameters considered in the optimisation.

Distribution SIC LogVer NP α β ν

Special Case 922.30800 -456.53888 2 0.39571929 131.95014
Laplace 922.49944 -456.63460 2 0.26014664 133.00000
Normal 924.75657 -457.76316 2 0.34605813 131.67771

T 925.21941 -455.68702 3 0.29346658 132.49943 7.1484897
Pearson VII 925.21941 -455.68702 3 0.78461501 132.49952 4.0741357

Cauchy 946.59686 -468.68331 2 0.18426419 133.89997

Table 3: Fit of the generalised three parameters Birnbaum-Saunders dis-
tributions for the independent case, ordered according to the SIC criterion
from lowest to highest. NP denotes the number of parameters considered in
the optimisation.
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Distribution SIC LogVer NP α β ν

Normal 867.42236 -429.10601 2 0.175886865 201.77284
Laplace 868.11384 -429.45175 2 0.017588691 201.77315

Special Case 870.47471 -430.63219 2 0.732003896 201.77314
Cauchy 872.34103 -431.56534 2 0.175881535 201.77315

T 872.99746 -429.59097 3 0.175886986 201.77314 61.390864
Pearson VII 874.25650 -430.22049 3 0.619121931 201.77314 56.195175

Table 4: Fit of the generalised three parameters Birnbaum-Saunders dis-
tributions for the dependent case, ordered according to the SIC criterion from
lowest to highest. NP denotes the number of parameters considered in the
optimisation.

Distribution SIC LogVer NP α γ ν

Special Case -383.10426 196.16725 2 0.080578881 1.5853847
Laplace -382.73764 195.98394 2 0.052799946 1.5872637
Normal -380.98375 195.10700 2 0.070163281 1.5848798

T -380.23087 197.03812 3 0.060009231 1.5862995 7.5079185
Pearson VII -380.23087 197.03812 3 0.164429417 1.5862995 4.2539823

Cauchy -358.54091 183.88558 2 0.037500503 1.5888055

Table 5: Fit of the sinh-spherical distribution under generalised three pa-
rameters Birnbaum-Saunders distributions for the independent case, ordered
according to the SIC criterion from lowest to highest. NP denotes the number
of parameters considered in the optimisation.

Distribution SIC LogVer NP α γ ν

Normal -528.44805 268.82920 2 0.032911007 1.6688907
Laplace -527.75657 268.48346 2 0.003291101 1.6688907

Special Case -525.39570 267.30302 2 0.136968769 1.6688907
Cauchy -523.52938 266.36986 2 0.032913891 1.6688907

T -522.88956 268.35253 3 0.032911013 1.6688907 63.054749
Pearson VII -521.72838 267.77194 3 0.123381789 1.6688907 57.027312

Table 6: Fit of the sinh-spherical distribution under generalised three pa-
rameters Birnbaum-Saunders distributions for the dependent case, ordered ac-
cording to the SIC criterion from lowest to highest. NP denotes the number
of parameters considered in the optimisation.
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Figure 1: Densities of generalised three parameter Birnbaum-Saunders distri-
bution type I
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Figure 2: Densities of generalised log-elliptical distribution type I



Birnbaum-Saunders and sinh-normal distributions 1727

(a) Bessel

Variable

D
e
n
si

ty

2.5 3.0 3.5 4.0 4.5

0

1

2

3

4

5

6

7

8

9

10

11

12

Sinh-Spherical Distributions Under Three Parameter Birnbaum-Saunders Distributions

alpha = 0.1, gamma = 3.0, lamda = 0.5, q = 1.0
alpha = 0.1, gamma = 3.0, lamda = 1.0, q = 2.0
alpha = 0.1, gamma = 4.0, lamda = 0.5, q = 2.0
alpha = 0.1, gamma = 4.0, lamda = 1.0, q = 1.0

(b) Laplace

Variable

D
e
n
si

ty

2.5 3.0 3.5 4.0 4.5

0

1

2

3

4

5

6

7

8

9

10

11

12

alpha = 0.1, gamma = 3.0, lamda = 0.5
alpha = 0.1, gamma = 3.0, lamda = 0.3
alpha = 0.1, gamma = 4.0, lamda = 0.5
alpha = 0.1, gamma = 4.0, lamda = 0.7

(c) Normal

Variable

D
e
n
si

ty

2.5 3.0 3.5 4.0 4.5

0

1

2

3

4

5

6

7

8

9

10

11

12

alpha = 0.1, gamma = 3.0, lamda = 0.5
alpha = 0.1, gamma = 3.0, lamda = 0.3
alpha = 0.1, gamma = 4.0, lamda = 0.5
alpha = 0.1, gamma = 4.0, lamda = 0.7

(d) PearsonVII

Variable

D
e
n
si

ty

2.5 3.0 3.5 4.0 4.5

0

1

2

3

4

5

6

7

8

9

10

11

12

alpha = 0.1, gamma = 3.0, lamda = 0.5, q = 1.0
alpha = 0.1, gamma = 3.0, lamda = 0.3, q = 1.0
alpha = 0.1, gamma = 4.0, lamda = 0.5, q = 2.0
alpha = 0.1, gamma = 4.0, lamda = 0.7, q = 2.0

Figure 3: Densities of generalised sinh-spherical distribution type I


