# SOME GENERALIZATIONS OF THE JACOBSTHAL NUMBERS 

## Gospava B. Djordjević


#### Abstract

The main object of this paper is to introduce and investigate some properties and relations involving sequences of numbers $F_{n, m}(r)$, for $m=2,3,4$, and $r$ is some real number. These sequences are generalizations of the Jacobsthal and Jacobsthal Lucas numbers.


## 1 Introduction

In [1] we considered the following classes of polynomials: $J_{n, m}(x)$-Jacobsthal polynomials, $j_{n, m}(x)$-Jacobsthal Lucas polynomials, and polynomials $F_{n, m}(x)$ and $f_{n, m}(x)$. These polynomials are given by the following recurrence relations ([1]):

$$
\begin{equation*}
J_{n, m}(x)=J_{n-1, m}(x)+2 x J_{n-m, m}(x), \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\left(n \geq m ; n, m \in \mathbb{N} ; J_{0, m}(x)=0, J_{n, m}(x)=1, \text { when } n=1,2, \ldots, m-1\right) ; \\
j_{n, m}(x)=j_{n-1, m}(x)+2 x j_{n-m, m}(x)  \tag{2}\\
\left(n \geq m ; n, m \in \mathbb{N} ; j_{0, m}(x)=2, j_{n, m}(x)=1, \text { when } n=1,2, \ldots, m-1\right) ; \\
F_{n, m}(x)=F_{n-1, m}(x)+2 x F_{n-m, m}(x)+3,  \tag{3}\\
\left(n \geq m ; n, m \in \mathbb{N} ; F_{0, m}(x)=0, F_{n, m}(x)=1, \text { when } n=1,2, \ldots, m-1\right) ; \\
f_{n, m}(x)=f_{n-1, m}(x)+2 x f_{n-m, m}(x)+5, \tag{4}
\end{gather*}
$$

$\left(n \geq m ; n, m \in \mathbb{N} ; f_{0, m}(x)=0, f_{n, m}(x)=1\right.$, when $n=1,2, \ldots, m-1$.)
The polynomials $J_{n, 2}(x), j_{n, 2}(x), F_{n, 2}(x)$ and $f_{n, 2}(x)$ are considered in [3]. For $x=1$ and for a some real number $r$, by (3), we get the following sequences of numbers $\left\{C_{n, m}(r)\right\}$ :

$$
\begin{equation*}
C_{n, m}(r)=C_{n-1, m}(r)+2 C_{n-m, m}(r)+r, \tag{5}
\end{equation*}
$$

[^0]$$
\left(n \geq m ; n, m \in \mathbb{N} ; C_{0, m}(r)=0, C_{n, m}(r)=1, \text { for } n=1,2, \ldots, m-1\right)
$$

Particular cases of these numbers are Jacobsthal numbers $J_{n}$ and Lucas numbers $j_{n}$, which were investigated by Horadam [4].

In this note we consider the sequences $\left\{C_{n, 3}(r)\right\}$ and $\left\{C_{n, 4}(r)\right\}$. Namely, for these sequence of numbers we find some interesting relations, which are analogous to those corresponding to generalized Fibonacci numbers [2].

## 2 The sequence $\left\{C_{n, 3}(r)\right\}$

For $m=3$ in (5), we have

$$
\begin{equation*}
C_{n, 3}(r)=C_{n-1,3}(r)+2 C_{n-3,3}(r)+r \tag{6}
\end{equation*}
$$

$$
\left(n \geq 3 ; n \in N ; C_{0,3}(r)=0, C_{1,3}(r)=C_{2,3}(r)=1\right)
$$

Applying (6), we obtain the first few members of the sequence numbers $\left\{C_{n, 3}(r)\right\}$ :

$$
\begin{array}{cl}
C_{0,3}(r)=0, & C_{1,3}(r)=1 \\
C_{2,3}(r)=1, & C_{3,3}(r)=1+r \\
C_{4,3}(r)=3+2 r, & C_{5,3}(r)=5+3 r \\
C_{6,3}(r)=7+6 r, & C_{7,3}(r)=13+11 r \\
C_{8,3}(r)=23+18 r, & C_{9,3}(r)=63+54 r .
\end{array}
$$

First of all, we introduce the following operators which will be needed in our proposed investigation. Hence, $I$ is the identity operator, $E_{i}$ is the "the coordinate" operator $(i=1,2,3), E$ is the shift operator.

Furthermore, we consider the following operators $\Delta_{i}$ for $i=1,2,3$, and $\nabla_{i}$, for $i=1, \ldots, 5$, as well as operators $\Delta_{i}^{n},(i=1,2,3), n \in \mathbb{N}$, and $\nabla_{i}^{n},(i=1, \ldots, 5)$, $n \in N$.

$$
\begin{aligned}
\Delta_{1} & =-4 I+E_{1}+4 E_{2}, & \Delta_{1}^{n} & =\sum_{i+j=n}\binom{n}{i, j}(-1)^{n-i-j} 4^{n-i} E_{1}^{i} E_{2}^{j} \\
\Delta_{2} & =4 I+E_{1}+E_{2}, & \Delta_{2}^{n} & =\sum_{i+j=n}\binom{n}{i, j} 4^{n-i-j} E_{1}^{i} E_{2}^{j} \\
\Delta_{3} & =4 I+4 E_{1}-E_{2}, & \Delta_{3}^{n} & =\sum_{i+j=n}\binom{n}{i, j}(-1)^{j} 4^{n-j} E_{1}^{i} E_{2}^{j}
\end{aligned}
$$

where $\binom{n}{i, j}=\frac{n!}{i!j!(n-i-j)!}, n \in \mathbb{N}$.

$$
\begin{array}{ll}
\nabla_{1}=-4 I+4 E_{1}+2 E_{2}+E_{3}, & \nabla_{1}^{n}=\sum_{i+j+k=n}\binom{n}{i, j, k}(-4)^{n-i-j-k} 4^{i} 2^{j} E_{1}^{i} E_{2}^{j} E_{3}^{k}, \\
\nabla_{2}=2 E_{1}-4 I+4 E_{2}+E_{3}, & \nabla_{2}^{n}=\sum_{i+j+k=n}\binom{n}{i, j, k}(-4)^{n-i-j-k} 2^{i} 4^{j} E_{1}^{i} E_{2}^{j} E_{3}^{k}, \\
\nabla_{3}=-4 I+E_{1}+4 E_{2}+2 E_{3}, & \nabla_{3}^{n}=\sum_{i+j+k=n}\binom{n}{i, j, k}(-4)^{n-i-j-k} 4^{j} 2^{k} E_{1}^{i} E_{2}^{j} E_{3}^{k}, \\
\nabla_{4}=-4 I+E_{1}+2 E_{2}+4 E_{3}, & \nabla_{4}^{n}=\sum_{i+j+k=n}\binom{n}{i, j, k}(-4)^{n-i-j-k} 2^{j} 4^{k} E_{1}^{i} E_{2}^{j} E_{3}^{k}, \\
\nabla_{5}=-4 I+4 E_{1}+2 E_{2}-3 E_{3}, & \nabla_{5}^{n}=\sum_{i+j+k=n}\binom{n}{i, j, k}(-4)^{n-i-j-k} 4^{i} 2^{j}(-3)^{k} E_{1}^{i} E_{2}^{j} E_{3}^{k},
\end{array}
$$

where

$$
\binom{n}{i, j, k}=\frac{n!}{i!j!k!(n-i-j-k)!},
$$

Applying operators $\Delta_{1}^{n}, \Delta_{2}^{n}$ and $\Delta_{3}^{n}$ to the function $f(i, j)$, (see also [5]), we find the following functions

$$
g(n, k)=\Delta_{i}^{n} f(0, k), \quad n=1,2,3 ; n \in \mathbb{N} .
$$

Applying $\nabla_{i}^{n}, \quad(i=1, \ldots, 5)$, to the function $f(i, j, k)$, we get

$$
g_{p} f(n, 0, m)=\nabla_{p}^{n} f(0,0, m), \quad p=1, \ldots, 5, \quad n \in \mathbb{N} .
$$

We prove the following two statement.
Lemma 2.1. For a nonnegative integer $k$, the following relation holds

$$
\begin{equation*}
4 C_{k, 3}(r)-4 C_{k+3,3}(r)+C_{k+6,3}(r)=C_{k+4,3}(r) . \tag{7}
\end{equation*}
$$

Proof. Using (6), we get

$$
\begin{aligned}
& 4 C_{k, 3}(r)-4 C_{k+3,3}(r)+C_{k+6,3}(r) \\
& =2\left(C_{k+3,3}(r)-C_{k+2,3}(r)-r\right)-4 C_{k+3,3}(r)+C_{k+5,3}(r)+2 C_{k+3,3}(r)+r \\
& =C_{k+5,3}(r)-2 C_{k+2,3}(r)-r \\
& =C_{k+4,3}(r)+2 C_{k+2,3}(r)+r-2 C_{k+2,3}(r)-r=C_{k+4,3}(r)
\end{aligned}
$$

Theorem 2.1. Let $n \in \mathbb{N}$ and $k$ be nonnegative integer. Then the following hold:

$$
\begin{align*}
& C_{6 n+3 k, 3}(r)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n-i-j} 4^{n-1} C_{4 i+3(j+k), 3}(r)  \tag{8}\\
& C_{6 n+4 k, 3}(r)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n+j} 4^{n-j} C_{3 i+4 j+k, 3}(r)  \tag{9}\\
& C_{4 n+3 k, 3}(r)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n+j} 4^{n-i} C_{6 i+3(j+k),}(r)  \tag{10}\\
& C_{3 n+4 k, 3}(r)=\sum_{i+j=n}\binom{n}{i, j} 4^{-i-j}(-1)^{j} C_{6 i+4(j+k), 3}(r)  \tag{11}\\
& C_{3 n+6 k, 3}(r)=\sum_{i+j=n}\binom{n}{i, j} 4^{-i-j} C_{4 i+6(j+k), 3}(r) \tag{12}
\end{align*}
$$

Proof. We apply $\Delta_{1}$ to $f(i, j)=C_{4 i+3 j, 3}(r)$, and obtain

$$
\begin{aligned}
\Delta_{1} f(i, j) & =-4 C_{4 i+3 j, 3}(r)+C_{4 i+4+3 j, 3}(r)+4 C_{4 i+3 j+3,3}(r) \\
& =C_{4 i+3 j+6,3}(r)=E_{2}^{2} f(i, j) .
\end{aligned}
$$

Now, (8) follows:

$$
\begin{aligned}
& \Delta_{1}^{n} f(0, k)=E_{2}^{2 n} f(0, k)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n-i-j} 4^{n-i} C_{4 i+3(j+k), 3}(r) \\
& =C_{3(k+2 n), 3}(r)=C_{6 n+3 k, 3}(r)
\end{aligned}
$$

Applying $\Delta_{3}$ to $f(i, j)=(-1)^{i} C_{3 i+4 j, 3}(r)$, we have

$$
\begin{aligned}
\Delta_{3} f(i, j) & =4(-1)^{i} C_{3 i+4 j, 3}(r)+4(-1)^{i+1} C_{3 i+3+4 j, 3}(r)-(-1)^{i} C_{3 i+4 j+4,3}(r) \\
& =(-1)^{i}\left(4 C_{3 i+4 j, 3}(r)-4 C_{3 i+4 j+3,3}(r)-C_{3 i+4 j+4,3}(r)\right) \\
& =(-1)^{i} C_{3 i+4 j+6,3}(r)=-E_{1}^{2} f(i, j) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \Delta_{3}^{n} f(0, k)=(-1)^{n} E_{1}^{2 n} f(0, k)=(-1)^{n} \sum_{i+j=n}\binom{n}{i, j} 4^{n-i}(-1)^{j} C_{3 i+4(j+k), 3}(r) \\
& =(-1)^{n} C_{6 n+4 k, 3}(r)
\end{aligned}
$$

It follows that the relation (9) holds.
Again, applying $\Delta_{1}$ to $f(i, j)=(-1)^{i} C_{6 i+3 j, 3}(r)$, we get

$$
\begin{aligned}
\Delta_{1} f(i, j) & =-4(-1)^{i} C_{6 i+3 j, 3}(r)+(-1)^{i+1} C_{6 i+6+3 j, 3}(r)+4(-1)^{i} C_{6 i+3 j+3,3}(r) \\
& =-(-1)^{i}\left(4 C_{6 i+3 j, 3}(r)+C_{6 i+6+3 j, 3}(r)-4 C_{6 i+3 j+3,3}(r)\right) \\
& =-(-1)^{i} C_{6 i+3 j+4,3}(r)=-E_{2}^{4 / 3} f(i, j) .
\end{aligned}
$$

Hence we conclude

$$
\Delta_{1}^{n} f(0, k)=(-1)^{n} E_{2}^{4 n / 3} f(0, k)=(-1)^{n} C_{4 n+3 k, 3}(r),
$$

It follows that the relation (10) is satisfied.
We apply $\Delta_{2}$ to $f(i, j)=(-1)^{j} C_{6 i+4 j, 3}(r)$, and obtain (11):

$$
\Delta_{2} f(i, j)=4 E_{1}^{1 / 2} f(i, j)
$$

wherefrom

$$
\Delta_{2}^{n} f(0, k)=4^{n} E_{1}^{n / 2} f(0, k)=4^{n} C_{3 n+4 k, 3}(r)
$$

Applying $\Delta_{2}$ to $f(i, j)=(-1)^{i} C_{4 i+6 j, 3}(r)$, we obtain

$$
\begin{aligned}
\Delta_{2} f(i, j) & =4(-1)^{i} C_{4 i+6 j, 3}(r)+(-1)^{i+1} C_{4 i+4+6 j, 3}(r)+(-1)^{i} C_{4 i+6 j+6,3}(r) \\
& =(-1)^{i}\left(4 C_{4 i+6 j, 3}(r)-C_{4 i+6 j+4,3}(r)+C_{4 i+6 j+6,3}(r)\right) \\
& =(-1)^{i} C_{4 i+6 j+3,3}(r)=4 E_{2}^{1 / 2} f(i, j) .
\end{aligned}
$$

Thus, we get (12):

$$
\Delta_{2}^{n} f(0, k)=4^{n} E_{2}^{n / 2} f(0, k)=4^{n} C_{3 n+6 k, 3}(r)
$$

As a special case, we obtain the following result.
Corollary 2.1. For $k=0$ the relations (8)-(12) become, respectively:

$$
\begin{aligned}
& C_{6 n, 3}(r)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n-i-j} 4^{n-i} C_{4 i+3 j, 3}(r) \\
& C_{6 n, 3}(r)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n+j} 4^{n-j} C_{3 i+4 j, 3}(r) \\
& C_{4 n, 3}(r)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n+j} 4^{n-i} C_{6 i+3 j, 3}(r) \\
& C_{3 n, 3}(r)=\sum_{i+j=n}\binom{n}{i, j} 4^{-i-j}(-1)^{j} C_{6 i+4 j, 3}(r) \\
& C_{3 n, 3}(r)=\sum_{i+j=n}\binom{n}{i, j} 4^{-i-j} C_{4 i+6 j, 3}(r) .
\end{aligned}
$$

Lemma 2.2. If the sequence $\left\{X_{n}\right\}(n \in \mathbb{N})$ satisfies the following relation

$$
X_{n}=X_{n-2}+4 X_{n-3}-4 X_{n-6}, \quad n \geq 6
$$

then

$$
I=E^{-2}+4 E^{-3}-4 E^{-6}
$$

So,

$$
\begin{equation*}
I=\left(I^{n}\right)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n-i-j} 4^{n-i} E^{-6 n+4 i+3 j} \tag{13}
\end{equation*}
$$

Also, for nonnegative integers $n$ and $k$, the sequence $\left\{X_{6 n+k}\right\}$ satisfies the following relation

$$
\begin{equation*}
X_{6 n+k}=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n-i-j} E_{4 i+3 j+k} \tag{14}
\end{equation*}
$$

Proof. Applying the identity operator (13) to the sequence $\left\{X_{6 n+k}\right\}$, we obtain the relation (14).

Corollary 2.2. The following relation holds

$$
\begin{equation*}
C_{6 n+k, 3}(r)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n-i-j} 4^{n-i} C_{4 i+3 j+k, 3}(r) \tag{15}
\end{equation*}
$$

Proof. Follows from Lemma 2.1 and Lemma 2.2.
For $k=0$ in (15), we get the following result.
Corollary 2.3. For every nonnegative integer $n$, we get

$$
C_{6 n, 3}(r)=\sum_{i+j=n}\binom{n}{i, j}(-1)^{n-i-j} 4^{n-i} C_{4 i+3 j, 3}(r)
$$

## 3 The sequence $\left\{C_{n, 4}(r)\right\}$

From (5), for $m=4$, we get the sequence of numbers $C_{n, 4}(r)$ which satisfy the following recurrence relation

$$
\begin{gather*}
C_{n, 4}(r)=C_{n-1,4}(r)+2 C_{n-4,4}(r)+r  \tag{16}\\
\left(n \geq 4 ; n \in \mathbb{N} ; C_{0,4}(r)=0, C_{n, 4}(r)=1, n=1,2,3 .\right)
\end{gather*}
$$

Hence, using (16), we obtain the some initial values of $C_{n, 4}(r)$ :

$$
\begin{array}{cl}
C_{0,4}(r)=0, & C_{1,4}(r)=1, \\
C_{2,4}(r)=1, & C_{3,4}(r)=1, \\
C_{4,4}(r)=1+r, & C_{5,4}(r)=3+2 r, \\
C_{6,4}(r)=5+3 r, & C_{7,4}(r)=7+4 r, \\
C_{8,4}(r)=9+7 r, & C_{9,4}(r)=15+12 r, \\
C_{10,4}(r)=22+19 r . &
\end{array}
$$

These numbers satisfy the following two statement.
Lemma 3.1. For a positive integer $k$ the following relation holds

$$
\begin{equation*}
4 C_{k+2,4}(r)-4 C_{k, 4}(r)+2 C_{k+3,4}(r)+C_{k+9,4}(r)=3 C_{k+7,4}(r) . \tag{17}
\end{equation*}
$$

Proof. Using the recurrence relation (16), we get

$$
\begin{aligned}
4 & C_{k+2,4}(r)-4 C_{k, 4}(r)+2 C_{k+3,4}(r)+C_{k+9,4}(r) \\
= & 2\left(C_{k+6,4}(r)-C_{k+5,4}(r)-r\right)-2\left(C_{k+4,4}(r)-C_{k+3,4}(r)-r\right) \\
& +2 C_{k+3,4}(r)+C_{k+8,4}(r)+2 C_{k+5,4}(r)+r \\
= & 2 C_{k+6,4}(r)+4 C_{k+3,4}(r)-2 C_{k+4,4}(r)+r \\
& +C_{k+7,4}(r)+2 C_{k+4,4}(r)+r \\
= & 2 C_{k+6,4}(r)+C_{k+7,4}(r)+2\left(C_{k+7,4}(r)-C_{k+6,4}(r)-r\right)+2 r \\
= & 3 C_{k+7,4}(r) .
\end{aligned}
$$

Theorem 3.1. Let $n$ and $k$ be nonnegative integers. Then the following hold:

$$
\begin{align*}
& 3^{n} C_{7 n+9 m, 4}(r)=\sum_{i+j+k=n}\binom{n}{i, j, k}(-1)^{n-i-j-k} 4^{n-j-k} 2^{j} A_{1} ;  \tag{18}\\
& 3^{n} C_{7 n+3 m, 4}(r)=\sum_{i+j+k=n}\binom{n}{i, j, k}(-1)^{n-i-j-k} 4^{n-i-k} 2^{i} A_{2} ;  \tag{19}\\
& 3^{n} C_{7 n+2 m, 4}(r)=\sum_{i+j+k=n}\binom{n}{i, j, k}(-4)^{n-i-j-k} 2^{j} 4^{k} A_{3} ;  \tag{20}\\
& C_{9 n+7 m, 4}(r)=\sum_{i+j+k=n}(-1)^{i+j} 4^{n-j-k} 2^{j} 3^{k} C_{2 i+3 j+7(k+m), 4}(r), \tag{21}
\end{align*}
$$

where
$A_{1}=C_{2 i+3 j+4(k+m), 4}(r), \quad A_{2}=C_{9 i+2 j+3(k+m), 4}(r), \quad A_{3}=C_{9 i+3 j+2(k+m), 4}(r)$.

Proof. We apply $\nabla_{1}$ to $f(i, j, k)=C_{2 i+3 j+9 k, 4}(r)$, and we get

$$
\begin{aligned}
\nabla_{1} f(i, j, k)= & -4 C_{2 i+3 j+9 k, 4}(r)+4 C_{2 i+2+3 j+9 k, 4}(r)+2 C_{2 i+3 j+3+9 k, 4}(r) \\
& +C_{2 i+3 j+9 k+9,4}(r)=3 C_{2 i+3 j+9 k+7,4}(r) \\
= & \begin{cases}3 E_{1}^{7 / 2} f(i, j, k) \\
3 E_{2}^{7 / 3} f(i, j, k) \\
3 E_{3}^{7 / 9} f(i, j, k)\end{cases}
\end{aligned}
$$

Hence, we obtain the relation (18) in three ways:

$$
\begin{aligned}
& \nabla_{1}^{n} f(0,0, m)=3^{n} E_{1}^{7 n / 2} f(0,0, m)=3^{n} C_{2(0+7 n / 2)+9 m, 4}(r)=3^{n} C_{7 n+9 m, 4}(r) \\
& \nabla_{1}^{n} f(0,0, m)=3^{n} E_{2}^{7 n / 3} f(0,0, m)=3^{n} C_{3(0+7 n / 3)+9 m, 4}(r)=C_{7 n+9 m, 4}(r) \\
& \nabla_{1}^{n} f(0,0, m)=3^{n} E_{3}^{7 n / 4} f(0,0, m)=3^{n} C_{9(m+7 n / 9), 4}(r)=3^{n} C_{7 n+9 m, 4}(r)
\end{aligned}
$$

Furthermore, applying $\nabla_{2}$ to $f(i, j, k)=C_{3 i+2 j+9 k, 4}(r)$, and using (16), we obtain the relation (19):

$$
\begin{aligned}
\nabla_{2} f(i, j, k)= & -4 C_{3 i+2 j+9 k, 4}(r)+2 C_{3 i+3+2 j+9 k, 4}(r)+4 C_{3 i+2 j+2+9 k, 4}(r) \\
& +C_{3 i+2 j+9 k+9,4}(r)=3 C_{3 i+2 j+9 k+7,4}(r) \\
= & \left\{\begin{array}{l}
3 E_{1}^{7 / 3} f(i, j, k) \\
3 E_{2}^{7 / 2} f(i, j, k) \\
3 E_{3}^{7 / 9} f(i, j, k)
\end{array}\right.
\end{aligned}
$$

Applying $\nabla_{3}$ to $f(i, j, k)=C_{9 i+2 j+3 k, 4}(r)$, we find that

$$
\begin{aligned}
\nabla_{3} f(i, j, k)= & -4 C_{9 i+2 j+3 k, 4}(r)+C_{9 i+9+2 j+3 k, 4}(r)+4 C_{9 i+2 j+2+3 k, 4}(r) \\
& +2 C_{9 i+2 j+3 k+3,4}(r) \\
= & 3 C_{9 i+2 j+3 k+7,4}(r)=3 E_{3}^{7 / 3} f(i, j, k)
\end{aligned}
$$

So, we obtain (19):

$$
\nabla_{3}^{n} f(0,0, m)=3^{n} E_{3}^{7 n / 3} f(0,0, m)=3^{n} C_{7 n+3 m, 4}(r)
$$

Simialrly, applying $\nabla_{4}$ to $f(i, j, k)=C_{9 i+3 j+2 k, 4}(r)$, we obtain (20):

$$
\nabla_{4} f(i, j, k)=3 E_{1}^{7 / 9} f(i, j, k)
$$

Hence, the relation (17) follows:

$$
\nabla_{4}^{n} f(0,0, m)=3^{n} E_{1}^{7 n / 9} f(0,0, m)=3^{n} C_{9(0+7 n / 9)+3 \cdot 0+2 m, 4}(r)=3^{n} C_{7 n+2 m, 4}(r)
$$

Finally, applying $\nabla_{5}$ to $f(i, j, k)=C_{2 i+3 j+7 k, 4}(r)$, we get

$$
\begin{aligned}
\nabla_{5} f(i, j, k)= & -4 C_{2 i+3 j+7 k, 4}(r)+4 C_{2 i+2+3 j+7 k, 4}(r)+2 C_{2 i+3 j+3+7 k, 4}(r) \\
& -3 C_{2 i+3 j+7 k+7,4}(r) \\
= & -C_{2 i+3 j+7 k+9,4}(r)=-E_{2}^{3} f(i, j, k)
\end{aligned}
$$

wherefrom the relation (21) follows:

$$
\nabla_{5}^{n} f(0,0, m)=(-1)^{n} E_{2}^{3 n} f(0,0, m)=(-1)^{n} C_{9 n+7 m, 4}(r)
$$

As a special interesting case, we obtain the following result.
Corollary 3.1. For $m=0$ the relations (18)-(21) become

$$
\begin{aligned}
& 3^{n} C_{7 n, 4}(r)=\sum_{i+j+k=n}\binom{n}{i, j, k}(-1)^{n-i-j-k} 4^{n-j-k} 2^{j} C_{2 i+3 j+4 k, 4}(r) ; \\
& 3^{n} C_{7 n, 4}(r)=\sum_{i+j+k=n}\binom{n}{i, j, k}(-1)^{n-i-j-k} 4^{n-i-k} 2^{i} C_{9 i+2 j+3 k, 4}(r) ; \\
& 3^{n} C_{7 n, 4}(r)=\sum_{i+j+k=n}\binom{n}{i, j, k}(-4)^{n-i-j-k} 2^{j} 4^{k} C_{9 i+3 j+2 k, 4}(r) ; \\
& C_{9 n, 4}(r)=\sum_{i+j+k=n}\binom{n}{i, j, k}(-1)^{i+j} 4^{n-j-k} 2^{j} 3^{k} C_{2 i+3 j+7 k, 4}(r) .
\end{aligned}
$$

## References

[1] G. B. Djordjević, H. M. Srivastava, Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Mathl. Comput. Modelling, 42 (2005), 10491056.
[2] G. B. Djordjević, H. M. Srivistava, Some generalizations of certain sequences associated with the Fibonacci numbers, J. Indones. Math. Soc. (MIHMI), Vol. 12, No. 1(2006), 99-112.
[3] A. F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35 (1997), 137-148.
[4] A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34 (1996), 40-54.
[5] Z. Z. Zhang, Some properties of the generalized Fibonacci sequences $C_{n}=$ $C_{n-1}+C_{n-2}+r$, Fibonacci Quart. 35 (1997), 169-171.

University of Niš, Faculty of Technology, 16000 Leskovac, Serbia
E-mail: gospavadjordjevic@gmail.com gospava48@ptt.rs


[^0]:    2010 Mathematics Subject Classifications. 33C45, 33C47.
    Key words and Phrases. Jacobsthal numbers; Jacobsthal Lucas numbers.
    Received: April 30, 2010
    Communicated by Dragan S. Djordjević
    Research supported by the Ministry of Science and Technological Development, Republic of Serbia, grant no. 144003.

