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SOME GENERALIZATIONS OF
THE JACOBSTHAL NUMBERS

Gospava B. Djordjević

Abstract

The main object of this paper is to introduce and investigate some proper-
ties and relations involving sequences of numbers Fn,m(r), for m = 2, 3, 4, and
r is some real number. These sequences are generalizations of the Jacobsthal
and Jacobsthal Lucas numbers.

1 Introduction

In [1] we considered the following classes of polynomials: Jn,m(x)–Jacobsthal poly-
nomials, jn,m(x)–Jacobsthal Lucas polynomials, and polynomials Fn,m(x) and fn,m(x).
These polynomials are given by the following recurrence relations ([1]):

Jn,m(x) = Jn−1,m(x) + 2xJn−m,m(x), (1)

(n ≥ m; n,m ∈ N; J0,m(x) = 0, Jn,m(x) = 1, when n = 1, 2, . . . , m− 1);

jn,m(x) = jn−1,m(x) + 2xjn−m,m(x), (2)

(n ≥ m; n,m ∈ N; j0,m(x) = 2, jn,m(x) = 1, when n = 1, 2, . . . , m− 1);

Fn,m(x) = Fn−1,m(x) + 2xFn−m,m(x) + 3, (3)

(n ≥ m; n,m ∈ N; F0,m(x) = 0, Fn,m(x) = 1, when n = 1, 2, . . . , m− 1);

fn,m(x) = fn−1,m(x) + 2xfn−m,m(x) + 5, (4)

(n ≥ m; n,m ∈ N; f0,m(x) = 0, fn,m(x) = 1, when n = 1, 2, . . . ,m− 1.)

The polynomials Jn,2(x), jn,2(x), Fn,2(x) and fn,2(x) are considered in [3]. For
x = 1 and for a some real number r, by (3), we get the following sequences of
numbers {Cn,m(r)}:

Cn,m(r) = Cn−1,m(r) + 2Cn−m,m(r) + r, (5)
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(n ≥ m; n,m ∈ N; C0,m(r) = 0, Cn,m(r) = 1, for n = 1, 2, . . . ,m− 1).

Particular cases of these numbers are Jacobsthal numbers Jn and Lucas numbers
jn, which were investigated by Horadam [4].

In this note we consider the sequences {Cn,3(r)} and {Cn,4(r)}. Namely, for
these sequence of numbers we find some interesting relations, which are analogous
to those corresponding to generalized Fibonacci numbers [2].

2 The sequence {Cn,3(r)}
For m = 3 in (5), we have

Cn,3(r) = Cn−1,3(r) + 2Cn−3,3(r) + r, (6)

(n ≥ 3; n ∈ N ; C0,3(r) = 0, C1,3(r) = C2,3(r) = 1).

Applying (6), we obtain the first few members of the sequence numbers {Cn,3(r)}:

C0,3(r) = 0, C1,3(r) = 1,

C2,3(r) = 1, C3,3(r) = 1 + r,

C4,3(r) = 3 + 2r, C5,3(r) = 5 + 3r,

C6,3(r) = 7 + 6r, C7,3(r) = 13 + 11r,

C8,3(r) = 23 + 18r, C9,3(r) = 63 + 54r.

First of all, we introduce the following operators which will be needed in our
proposed investigation. Hence, I is the identity operator, Ei is the ”the coordinate”
operator (i = 1, 2, 3), E is the shift operator.

Furthermore, we consider the following operators ∆i for i = 1, 2, 3, and ∇i, for
i = 1, . . . , 5, as well as operators ∆n

i , (i = 1, 2, 3), n ∈ N , and ∇n
i , (i = 1, . . . , 5),

n ∈ N .

∆1 = −4I + E1 + 4E2, ∆n
1 =

∑

i+j=n

(
n

i, j

)
(−1)n−i−j4n−iEi

1E
j
2,

∆2 = 4I + E1 + E2, ∆n
2 =

∑

i+j=n

(
n

i, j

)
4n−i−jEi

1E
j
2,

∆3 = 4I + 4E1 − E2, ∆n
3 =

∑

i+j=n

(
n

i, j

)
(−1)j4n−jEi

1E
j
2,
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where
(

n
i,j

)
=

n!
i!j!(n− i− j)!

, n ∈ N.

∇1 = −4I + 4E1 + 2E2 + E3, ∇n
1 =

∑

i+j+k=n

(
n

i, j, k

)
(−4)n−i−j−k4i2jEi

1E
j
2E

k
3 ,

∇2 = 2E1 − 4I + 4E2 + E3, ∇n
2 =

∑

i+j+k=n

(
n

i, j, k

)
(−4)n−i−j−k2i4jEi

1E
j
2E

k
3 ,

∇3 = −4I + E1 + 4E2 + 2E3, ∇n
3 =

∑

i+j+k=n

(
n

i, j, k

)
(−4)n−i−j−k4j2kEi

1E
j
2E

k
3 ,

∇4 = −4I + E1 + 2E2 + 4E3, ∇n
4 =

∑

i+j+k=n

(
n

i, j, k

)
(−4)n−i−j−k2j4kEi

1E
j
2E

k
3 ,

∇5 = −4I + 4E1 + 2E2 − 3E3, ∇n
5 =

∑

i+j+k=n

(
n

i, j, k

)
(−4)n−i−j−k4i2j(−3)kEi

1E
j
2E

k
3 ,

where
(

n

i, j, k

)
=

n!
i!j!k!(n− i− j − k)!

,

Applying operators ∆n
1 , ∆n

2 and ∆n
3 to the function f(i, j), (see also [5]), we find

the following functions

g(n, k) = ∆n
i f(0, k), n = 1, 2, 3; n ∈ N.

Applying ∇n
i , (i = 1, . . . , 5), to the function f(i, j, k), we get

gpf(n, 0,m) = ∇n
pf(0, 0,m), p = 1, . . . , 5, n ∈ N.

We prove the following two statement.

Lemma 2.1. For a nonnegative integer k, the following relation holds

4Ck,3(r)− 4Ck+3,3(r) + Ck+6,3(r) = Ck+4,3(r). (7)

Proof. Using (6), we get

4Ck,3(r)− 4Ck+3,3(r) + Ck+6,3(r)
= 2(Ck+3,3(r)− Ck+2,3(r)− r)− 4Ck+3,3(r) + Ck+5,3(r) + 2Ck+3,3(r) + r

= Ck+5,3(r)− 2Ck+2,3(r)− r

= Ck+4,3(r) + 2Ck+2,3(r) + r − 2Ck+2,3(r)− r = Ck+4,3(r).
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Theorem 2.1. Let n ∈ N and k be nonnegative integer. Then the following hold:

C6n+3k,3(r) =
∑

i+j=n

(
n

i, j

)
(−1)n−i−j4n−1C4i+3(j+k),3(r); (8)

C6n+4k,3(r) =
∑

i+j=n

(
n

i, j

)
(−1)n+j4n−jC3i+4j+k,3(r); (9)

C4n+3k,3(r) =
∑

i+j=n

(
n

i, j

)
(−1)n+j4n−iC6i+3(j+k),(r); (10)

C3n+4k,3(r) =
∑

i+j=n

(
n

i, j

)
4−i−j(−1)jC6i+4(j+k),3(r); (11)

C3n+6k,3(r) =
∑

i+j=n

(
n

i, j

)
4−i−jC4i+6(j+k),3(r). (12)

Proof. We apply ∆1 to f(i, j) = C4i+3j,3(r), and obtain

∆1f(i, j) = −4C4i+3j,3(r) + C4i+4+3j,3(r) + 4C4i+3j+3,3(r)
= C4i+3j+6,3(r) = E2

2f(i, j).

Now, (8) follows:

∆n
1f(0, k) = E2n

2 f(0, k) =
∑

i+j=n

(
n

i, j

)
(−1)n−i−j4n−iC4i+3(j+k),3(r)

= C3(k+2n),3(r) = C6n+3k,3(r).

Applying ∆3 to f(i, j) = (−1)iC3i+4j,3(r), we have

∆3f(i, j) = 4(−1)iC3i+4j,3(r) + 4(−1)i+1C3i+3+4j,3(r)− (−1)iC3i+4j+4,3(r)
= (−1)i (4C3i+4j,3(r)− 4C3i+4j+3,3(r)− C3i+4j+4,3(r))
= (−1)iC3i+4j+6,3(r) = −E2

1f(i, j).

Hence

∆n
3f(0, k) = (−1)nE2n

1 f(0, k) = (−1)n
∑

i+j=n

(
n

i, j

)
4n−i(−1)jC3i+4(j+k),3(r)

= (−1)nC6n+4k,3(r).

It follows that the relation (9) holds.
Again, applying ∆1 to f(i, j) = (−1)iC6i+3j,3(r), we get

∆1f(i, j) = −4(−1)iC6i+3j,3(r) + (−1)i+1C6i+6+3j,3(r) + 4(−1)iC6i+3j+3,3(r)
= −(−1)i (4C6i+3j,3(r) + C6i+6+3j,3(r)− 4C6i+3j+3,3(r))

= −(−1)iC6i+3j+4,3(r) = −E
4/3
2 f(i, j).
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Hence we conclude

∆n
1f(0, k) = (−1)nE

4n/3
2 f(0, k) = (−1)nC4n+3k,3(r),

It follows that the relation (10) is satisfied.
We apply ∆2 to f(i, j) = (−1)jC6i+4j,3(r), and obtain (11):

∆2f(i, j) = 4E
1/2
1 f(i, j),

wherefrom

∆n
2f(0, k) = 4nE

n/2
1 f(0, k) = 4nC3n+4k,3(r),

Applying ∆2 to f(i, j) = (−1)iC4i+6j,3(r), we obtain

∆2f(i, j) = 4(−1)iC4i+6j,3(r) + (−1)i+1C4i+4+6j,3(r) + (−1)iC4i+6j+6,3(r)
= (−1)i (4C4i+6j,3(r)− C4i+6j+4,3(r) + C4i+6j+6,3(r))

= (−1)iC4i+6j+3,3(r) = 4E
1/2
2 f(i, j).

Thus, we get (12):

∆n
2f(0, k) = 4nE

n/2
2 f(0, k) = 4nC3n+6k,3(r).

As a special case, we obtain the following result.

Corollary 2.1. For k = 0 the relations (8)–(12) become, respectively:

C6n,3(r) =
∑

i+j=n

(
n

i, j

)
(−1)n−i−j4n−iC4i+3j,3(r);

C6n,3(r) =
∑

i+j=n

(
n

i, j

)
(−1)n+j4n−jC3i+4j,3(r);

C4n,3(r) =
∑

i+j=n

(
n

i, j

)
(−1)n+j4n−iC6i+3j,3(r);

C3n,3(r) =
∑

i+j=n

(
n

i, j

)
4−i−j(−1)jC6i+4j,3(r);

C3n,3(r) =
∑

i+j=n

(
n

i, j

)
4−i−jC4i+6j,3(r).
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Lemma 2.2. If the sequence {Xn} (n ∈ N) satisfies the following relation

Xn = Xn−2 + 4Xn−3 − 4Xn−6, n ≥ 6,

then

I = E−2 + 4E−3 − 4E−6.

So,

I = (In) =
∑

i+j=n

(
n

i, j

)
(−1)n−i−j4n−iE−6n+4i+3j . (13)

Also, for nonnegative integers n and k, the sequence {X6n+k} satisfies the following
relation

X6n+k =
∑

i+j=n

(
n

i, j

)
(−1)n−i−jE4i+3j+k. (14)

Proof. Applying the identity operator (13) to the sequence {X6n+k}, we obtain the
relation (14).

Corollary 2.2. The following relation holds

C6n+k,3(r) =
∑

i+j=n

(
n

i, j

)
(−1)n−i−j4n−iC4i+3j+k,3(r). (15)

Proof. Follows from Lemma 2.1 and Lemma 2.2.

For k = 0 in (15), we get the following result.

Corollary 2.3. For every nonnegative integer n, we get

C6n,3(r) =
∑

i+j=n

(
n

i, j

)
(−1)n−i−j4n−iC4i+3j,3(r).

3 The sequence {Cn,4(r)}
From (5), for m = 4, we get the sequence of numbers Cn,4(r) which satisfy the
following recurrence relation

Cn,4(r) = Cn−1,4(r) + 2Cn−4,4(r) + r, (16)

(n ≥ 4; n ∈ N; C0,4(r) = 0, Cn,4(r) = 1, n = 1, 2, 3.)
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Hence, using (16), we obtain the some initial values of Cn,4(r):

C0,4(r) = 0, C1,4(r) = 1,

C2,4(r) = 1, C3,4(r) = 1,

C4,4(r) = 1 + r, C5,4(r) = 3 + 2r,

C6,4(r) = 5 + 3r, C7,4(r) = 7 + 4r,

C8,4(r) = 9 + 7r, C9,4(r) = 15 + 12r,

C10,4(r) = 22 + 19r.

These numbers satisfy the following two statement.

Lemma 3.1. For a positive integer k the following relation holds

4Ck+2,4(r)− 4Ck,4(r) + 2Ck+3,4(r) + Ck+9,4(r) = 3Ck+7,4(r). (17)

Proof. Using the recurrence relation (16), we get

4Ck+2,4(r)− 4Ck,4(r) + 2Ck+3,4(r) + Ck+9,4(r)
= 2(Ck+6,4(r)− Ck+5,4(r)− r)− 2(Ck+4,4(r)− Ck+3,4(r)− r)

+2Ck+3,4(r) + Ck+8,4(r) + 2Ck+5,4(r) + r

= 2Ck+6,4(r) + 4Ck+3,4(r)− 2Ck+4,4(r) + r

+Ck+7,4(r) + 2Ck+4,4(r) + r

= 2Ck+6,4(r) + Ck+7,4(r) + 2(Ck+7,4(r)− Ck+6,4(r)− r) + 2r

= 3Ck+7,4(r).

Theorem 3.1. Let n and k be nonnegative integers. Then the following hold:

3nC7n+9m,4(r) =
∑

i+j+k=n

(
n

i, j, k

)
(−1)n−i−j−k4n−j−k2jA1; (18)

3nC7n+3m,4(r) =
∑

i+j+k=n

(
n

i, j, k

)
(−1)n−i−j−k4n−i−k2iA2; (19)

3nC7n+2m,4(r) =
∑

i+j+k=n

(
n

i, j, k

)
(−4)n−i−j−k2j4kA3; (20)

C9n+7m,4(r) =
∑

i+j+k=n

(−1)i+j4n−j−k2j3kC2i+3j+7(k+m),4(r), (21)

where

A1 = C2i+3j+4(k+m),4(r), A2 = C9i+2j+3(k+m),4(r), A3 = C9i+3j+2(k+m),4(r).



150 Gospava B. Djordjević

Proof. We apply ∇1 to f(i, j, k) = C2i+3j+9k,4(r), and we get

∇1f(i, j, k) = −4C2i+3j+9k,4(r) + 4C2i+2+3j+9k,4(r) + 2C2i+3j+3+9k,4(r)
+C2i+3j+9k+9,4(r) = 3C2i+3j+9k+7,4(r)

=





3E
7/2
1 f(i, j, k)

3E
7/3
2 f(i, j, k)

3E
7/9
3 f(i, j, k).

Hence, we obtain the relation (18) in three ways:

∇n
1f(0, 0,m) = 3nE

7n/2
1 f(0, 0,m) = 3nC2(0+7n/2)+9m,4(r) = 3nC7n+9m,4(r),

∇n
1f(0, 0,m) = 3nE

7n/3
2 f(0, 0,m) = 3nC3(0+7n/3)+9m,4(r) = C7n+9m,4(r),

∇n
1f(0, 0,m) = 3nE

7n/4
3 f(0, 0,m) = 3nC9(m+7n/9),4(r) = 3nC7n+9m,4(r).

Furthermore, applying ∇2 to f(i, j, k) = C3i+2j+9k,4(r), and using (16), we obtain
the relation (19):

∇2f(i, j, k) = −4C3i+2j+9k,4(r) + 2C3i+3+2j+9k,4(r) + 4C3i+2j+2+9k,4(r)
+C3i+2j+9k+9,4(r) = 3C3i+2j+9k+7,4(r)

=





3E
7/3
1 f(i, j, k)

3E
7/2
2 f(i, j, k)

3E
7/9
3 f(i, j, k).

Applying ∇3 to f(i, j, k) = C9i+2j+3k,4(r), we find that

∇3f(i, j, k) = −4C9i+2j+3k,4(r) + C9i+9+2j+3k,4(r) + 4C9i+2j+2+3k,4(r)
+2C9i+2j+3k+3,4(r)

= 3C9i+2j+3k+7,4(r) = 3E
7/3
3 f(i, j, k).

So, we obtain (19):

∇n
3f(0, 0,m) = 3nE

7n/3
3 f(0, 0,m) = 3nC7n+3m,4(r).

Simialrly, applying ∇4 to f(i, j, k) = C9i+3j+2k,4(r), we obtain (20):

∇4f(i, j, k) = 3E
7/9
1 f(i, j, k).

Hence, the relation (17) follows:

∇n
4f(0, 0,m) = 3nE

7n/9
1 f(0, 0,m) = 3nC9(0+7n/9)+3·0+2m,4(r) = 3nC7n+2m,4(r).

Finally, applying ∇5 to f(i, j, k) = C2i+3j+7k,4(r), we get

∇5f(i, j, k) = −4C2i+3j+7k,4(r) + 4C2i+2+3j+7k,4(r) + 2C2i+3j+3+7k,4(r)
−3C2i+3j+7k+7,4(r)

= −C2i+3j+7k+9,4(r) = −E3
2f(i, j, k),
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wherefrom the relation (21) follows:

∇n
5f(0, 0,m) = (−1)nE3n

2 f(0, 0,m) = (−1)nC9n+7m,4(r).

As a special interesting case, we obtain the following result.

Corollary 3.1. For m = 0 the relations (18)–(21) become

3nC7n,4(r) =
∑

i+j+k=n

(
n

i, j, k

)
(−1)n−i−j−k4n−j−k2jC2i+3j+4k,4(r);

3nC7n,4(r) =
∑

i+j+k=n

(
n

i, j, k

)
(−1)n−i−j−k4n−i−k2iC9i+2j+3k,4(r);

3nC7n,4(r) =
∑

i+j+k=n

(
n

i, j, k

)
(−4)n−i−j−k2j4kC9i+3j+2k,4(r);

C9n,4(r) =
∑

i+j+k=n

(
n

i, j, k

)
(−1)i+j4n−j−k2j3kC2i+3j+7k,4(r).
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