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Abstract: Numerous polynomial variations and their extensions have been explored extensively and
found applications in a variety of research fields. The purpose of this research is to establish a unified
class of Apostol–Genocchi polynomials based on poly-Daehee polynomials and to explore some of
their features and identities. We investigate these polynomials via generating functions and deduce
various identities, summation formulae, differential and integral formulas, implicit summation
formulae, and several characterized generating functions for new numbers and polynomials. Finally,
by using an operational version of Apostol–Genocchi polynomials, we derive some results in terms
of new special polynomials. Due to the generic nature of the findings described here, they are used to
reduce and generate certain known or novel formulae and identities for relatively simple polynomials
and numbers.

Keywords: Bernoulli polynomials; Daehee polynomials; poly-Daehee polynomials; Apostol polyno-
mials; differential operator

MSC: 05A15; 11B68; 26B10; 33E20

1. Introduction

The study of special functions is a notable subject of mathematics which has attracted
various mathematicians in the recent past. Some known special functions, including
Bernoulli numbers, polynomials, hypergeometric functions of Euler and Gauss, Euler’s
gamma and beta functions, Abel’s, Weierstrass’ and Jacobi’s elliptic functions, Bessel
functions, Legendre polynomials, Jacobi, Laguerre, and Hermite, are thoroughly discussed
in the literature. Some of these functions were introduced to solve specific problems
and some others were used to solve general problems. In recent years, generalized and
multivariable forms of special functions of mathematical physics have also undergone
significant evolutions (see [1–12] for more details). The theory of orthogonal polynomials
and special functions is of intrinsic interest to many parts of mathematics. Moreover, it can
be used to explain many physical and chemical phenomena. For example, the vibrations
of a drum head can be explained in terms of special functions known as Bessel functions.
Furthermore, the solutions of the Schrodinger equation for a harmonic oscillator can be
described using orthogonal polynomials known as Hermite polynomials. Furthermore,
the eigenfunctions for the Schrodinger operator associated with the hydrogen atom are
described in terms orthogonal polynomials known as Laguerre polynomials.
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The subject of special polynomials of two variables, in particular, enabled the develop-
ment of novel methods for solving vast classes of partial differential equations that are often
encountered in physical issues. The majority of special functions of mathematical physics
and their generalization have been inspired by physical problems. There is an abundance
of remarkable characteristics and correlations with special generalized polynomials in the
literature (see, for details, [13–24]).

2. Background and Preliminaries

The following polynomials and numbers are required for the current investigation:
The κ-th polylogarithm function Liκ(w) is defined by (see, e.g., [25], ([26], Section 2.4); see
also [21,23])

Liκ(w) :=
∞

∑
s=1

ws

sκ
(w ∈ C, |w| 6 1; κ ∈ N \ {1})

=
∫ w

0

Liκ−1(t)
t

dt (κ ∈ N \ {1}),
(1)

where
Li1(t) := − log(1− t). (2)

Here and in the following, N and C denote the sets of positive integers and complex
numbers, respectively. Furthermore, put N0 := N∪ {0}.

Kim and Kim [27] explored the Daehee polynomials Dr(u) which are generated by
(see also [19,20,27–29])

∞

∑
r=0
Dr(u)

ςr

r!
= (1 + ς)u log(1 + ς)

ς
. (3)

Here Dr := Dr(0) are called the Daehee numbers. We find that

Dr = (−1)r r!
r + 1

(r ∈ N0). (4)

The first few are

D0 = 1, D1 = −1
2

, D2 =
2
3

, D3 = −3
2

, D4 =
24
5

, . . . .

Lim and Kwon [28] introduced and investigated the poly-Daehee polynomialsD(κ)
r (u)

which are given by the following generating function:

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u =

∞

∑
r=0
D(κ)

r (u)
ςr

r!
(κ ∈ N). (5)

Then D(κ)
r := D(κ)

r (0) are called the poly-Daehee numbers. In view of (2), it is easy to
find that

D(1)
r (u) = Dr(u) (r ∈ N0). (6)

The Bernoulli polynomials Br(u) (see, e.g., [15], ([26], Section 1.7)) and their second
kind bn(x) (see, e.g., [24]) are defined by the following generating functions:

ς

eς − 1
euς =

∞

∑
r=0
Br(u)

ςr

r!
(|ς| < 2π), (7)

and
∞

∑
r=0

br(u)
ςr

r!
=

ς

log(1 + ς)
(1 + ς)u. (8)
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By combining (3) and (8), we get

r

∑
s=0

(
r
s

)
br−sDs(u) = r!

(
2u
r

)
(r ∈ N0). (9)

Kaneko [21] committed their research on the poly-Bernoulli numbers B(κ)r which are
generated by the following function:

Liκ(1− e−ς)

1− e−ς
=

∞

∑
r=0
B(κ)r

ςr

r!
. (10)

When κ = 1, B(1)r are generated by

∞

∑
r=0
B(1)r

ςr

r!
=

ς eς

eς − 1
=

∞

∑
r=0
Br(1)

ςr

r!
. (11)

From (11), the following relationship between the poly-Bernoulli numbers B(1)r and
the Bernoulli polynomials Br(1) holds:

B(1)r = Br(1) (r ∈ N0). (12)

The poly-Bernoulli numbersB(κ)r are given explicitly by the following identity (see ([21],
Theorem 1)):

B(κ)r = (−1)r
r

∑
s=0

(−1)s s! S(r, s)
(s + 1)κ

(r ∈ N0, κ ∈ Z), (13)

where (elsewhere) Z denote the set of integers, and S(r, s) are the Stirling numbers of the
second kind which are explicitly given by (see, e.g., ([26], Section 1.6))

S(r, s) =
(−1)s

s!

s

∑
j=0

(−1)j
(

s
j

)
jr. (14)

The first few of B(κ)r are

B(κ)0 = 1, B(κ)1 =
1
2κ

, B(κ)2 =
2
3κ
− 1

2κ
, B(κ)3 =

1
2κ

+
6

22κ
− 6

3κ
.

In the usual way, poly-Bernoulli polynomials B(κ)r (u) can be defined by the following
function:

Liκ(1− e−ς)

1− e−ς
euς =

∞

∑
r=0
B(κ)r (u)

ςr

r!
. (15)

Then, obviously, B(κ)r = B(κ)r (0) (r ∈ N0).
The classical Genocchi polynomials are defined by (see, e.g., [30–32], ([26], Section 1.7))

2ς

eς + 1
euς =

∞

∑
r=0
Gr(u)

ςr

r!
(|ς| < π). (16)

As usual, Gr := Gr(0) are referred to as Genocchi numbers generated by

2ς

eς + 1
=

∞

∑
r=0
Gr

ςr

r!
(|ς| < π), (17)

which have a significant role in number theory.
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Luo and Srivastava [33] introduced the generalized Apostol–Bernoulli polynomials
B(m)

r (u; λ) of order m ∈ C which are generated by (see also ([26], Section 1.8))(
ς

λeς − 1

)m
euς =

∞

∑
r=0
B(m)

r (u; λ)
ςr

r!
(18)

(|ς| < 2π, when λ = 1; |ς| < | log λ|, when λ 6= 1; 1m := 1).

Furthermore, Luo [34,35] investigated the generalized Apostol–Euler polynomials
E (m)

r (u; λ) of order m ∈ C and the generalized Apostol–Genocchi polynomials G(m)
r (u; λ)

of order m ∈ C which are defined by(
2

λeς + 1

)m
euς =

∞

∑
r=0
E (m)

r (u; λ)
ςr

r!
(19)

(|ς| < π, when λ = 1; |ς| < | log(−λ)|, when λ 6= 1; 1m := 1).

and (
2ς

λeς + 1

)m
euς =

∞

∑
r=0
G(m)

r (u; λ)
ςr

r!
(20)

(|ς| < π, when λ = 1; |ς| < | log(−λ)|, when λ 6= 1; 1m := 1).

Setting u = 0 in (18)–(20) results in the generalized Apostol–Bernoulli, generalized Apostol–
Euler, and generalized Apostol–Genocchi numbers, respectively, which are defined as follows:

B(m)
r (λ) := B(m)

r (0; λ);

E (m)
r (λ) := E (m)

r (0; λ);

G(m)
r (λ) := G(m)

r (0; λ).

(21)

Obviously , the following relations hold:

B(m)
r (u; 1) = B(m)

r (u);

E (m)
r (u; 1) = E (m)

r (u);

G(m)
r (u; 1) = G(m)

r (u).

(22)

3. Generalized Apostol–Genocchi-Based Poly-Daehee Polynomials

This section introduces and investigates a unified class of polynomials called the
Apostol–Genocchi-based poly-Daehee polynomials. Certain identities and explicit formulae
for these polynomials are derived.

Definition 1. The Apostol–Genocchi-based poly-Daehee polynomials GD
(κ)
r,m(u, v; λ) (abbreviated

by AGPD) are defined by the following generating function:

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m
evς =

∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

ςr

r!
(23)

(
m, u, v ∈ C; κ ∈ N;

|ς| < 1, when λ = 1; |ς| < min{| log(−λ)|, 1}, when λ 6= 1; 1m := 1
)
.

Furthermore, GD
(κ)
r,m(λ) := GD

(κ)
r,m(0, 0, λ) are called Apostol–Genocchi-based poly-Daehee

numbers.
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Remark 1. Let the generating function on the left-member of (23) be denoted by

g(m, u, v, κ, λ; ς) = g1(κ; ς) g2(m, u, v, λ; ς), (24)

where

g1(κ; ς) :=
log(1 + ς)

Liκ(1− e−ς)

and

g2(m, u, v, λ; ς) := (1 + ς)u
(

2ς

λeς + 1

)m
evς.

The right-member of (23) is the Maclaurin series centered at ς = 0. So the generating function
on the left-member of (23) should be analytic at ς = 0. In view of (1), Liκ(1− e−ς)|ς=0 = 0 and
ς = 0 may be a singular point of the generating function. Here we find

d
dς

Liκ(1− e−ς)|ς=0 =
∞

∑
s=1

(1− e−ς)s−1

sκ−1 e−ς
∣∣∣
ς=0

= 1.

Furthermore, by using L’Hospital’s rule,

lim
ς→0

g1(κ; ς) = lim
ς→0

1
1 + ς

/ d
dς

Liκ(1− e−ς) = 1.

Note that g2(m, u, v, λ; ς) is analytic at ς = 0. We thus find that ς = 0 is a removable
singular point of the generating function. Therefore, ς = 0 can be an analytic point of the
generating function.

As noted in (25), the poly-Daehee numbers D(κ)
r are given by the following generating

function:
log(1 + ς)

Liκ(1− e−ς)
=

∞

∑
r=0
D(κ)

r
ςr

r!
(κ ∈ N). (25)

In order to use later in this work, we introduce the other sequence of numbers, which
are similar to the poly-Daehee numbers, in the following definition.

Definition 2. The sequence of numbers Ω(κ)
r (r ∈ N0) is defined by the following generating

function

g(κ; ς) :=
ς

Liκ(1− e−ς)
:=

∞

∑
r=0

Ω(κ)
r ςr (κ ∈ N). (26)

Remark 2. We observe the following properties for the numbers Ω(κ)
r :

(i) We find

lim
ς→0

ς

Liκ(1− e−ς)
= 1 = Ω(κ)

0 .

This means that g(κ; ς) is analytic at ς = 0 and so can be expanded as the Maclaurin series in
a neighborhood (possibly small) of 0 as in the right member of (26).

(ii) By the help of Mathematica, we compute

Ω(κ)
1 =

1
2
− 2−κ ,

Ω(κ)
2 =

1
6
+ 21−2κ − 2× 3−κ ,

· · ·
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(iii) Here let

Liκ(1− e−ς) :=
∞

∑
j=0

Λ(κ)
j ςj. (27)

By the aid of Mathematica, we find

Λ(κ)
0 = 0,

Λ(κ)
1 = 1,

Λ(κ)
2 = −1

2
+ 2−κ ,

Λ(κ)
3 =

1
6
− 2−κ + 3−κ ,

· · ·

(iv) From (26) and (27), we have

ς =
∞

∑
r=0

Λ(κ)
r ςr

∞

∑
s=0

Ω(κ)
s ςs =

∞

∑
r=0

r

∑
s=0

Λ(κ)
r−s Ω(κ)

s ςr,

from which we obtain
r

∑
s=0

Λ(κ)
r−s Ω(κ)

s = 0 (r ∈ N \ {1}). (28)

Due to the AGPD’s generic nature, they may reduce to a number of new and known
polynomials, some of which are included in Table 1.

Table 1. Some known polynomials occurring as special cases of AGPD.

Case m, κ, u, v, ς Generating Function Name of the Polynomials

I. m = 0 = v log(1+ς)

Liκ (1−e−ς )
(1 + ς)u = D(κ)

r (u) ςr
r! poly-Daehee polynomials [28]

II. m = 0 = v; κ = 1 log(1+ς)
ς (1 + ς)u = Dr(u) ςr

r! Daehee polynomials [27,28]

III. m = 0 = v; κ = 1; λ ∈ N
(

log(1+ς)
ς

)λ
(1 + ς)u = Dλ

r (u)
ςr
r! Higher order Daehee polynomials [19]

IV. m = 0 = v; κ = 1; ς = ξς
(

log(1+ξς)
ξς

)
(1 + ξς)u = Dr,ξ (u)

ςr
r! r-th twisted Daehee polynomials [29]

V. m = 0 = v; κ = 1; u→ 1− u (1 + ς)
(

log(1+ς)
ς

)
1

(1+ς)u = Dλ
r,ξ (u)

ςr
r! Daehee polynomials of second kind [27]

Theorem 1. The Apostol–Genocchi-based poly-Daehee polynomials are explicitly given by

GD
(κ)
r,m(u, v; λ) =

r

∑
s=0

(
r
s

)
D(κ)

r−s(u) G
(m)
s (v; λ) (r ∈ N0) (29)

Here, the constraints of parameters and variable would be modified relative to those in (23).

Proof. We first recall the following well-known double series manipulation: Let f , g :
Z≥0 ×Z≥0 → C be functions and p ∈ N. Then

∞

∑
n=0

∞

∑
k=0

f (k, n) =
∞

∑
n=0

[n/p]

∑
k=0

f (k, n− pk), (30)

where the involved double series is assumed to be absolutely convergent.
It is straightforward from (23) and (20) that
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∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

ςr

r!
=

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m
evς

=

(
∞

∑
r=0
D(κ)

r
ςr

r!

)(
∞

∑
s=0
G(m)

s (v; λ)
ςs

s!

)
.

Using the series rearrangement for the case p = 1 in (30), we now obtain

∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

ςr

r!
=

∞

∑
r=0

r

∑
s=0
D(κ)

r−s(u)
ςr−s

(r− s)!
G(m)

s (v; λ)
ςs

s!
,

which, upon equating the coefficients of like powers of ς, immediately yields the desired
assertion of Theorem 1.

Theorem 2. The following identity for AGPD holds true:

GDκ
r,m(u, v; λ) =

GD
(κ)
r+1,m(u + 1; v)− GD

(κ)
r+1,m(u, v)

r + 1
(r ∈ N0). (31)

Here, the constraints of parameters and variable would be adjusted with respect to those in (23).

Proof. Using (23), we write

∞

∑
r=0
GD

(κ)
r,m(u + 1, v; λ)

ςr

r!
−

∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

ςr

r!

=

{
log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u+1

(
2ς

λeς + 1

)m
evς

}
−
{

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m
evς

}
=

∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

ςr+1

r!
,

from which, we have

∞

∑
r=1

[
GD

(κ)
r,m(u + 1, v; λ)− GD

(κ)
r,m(u, v; λ)

] ςr

r!
=

∞

∑
r=1

GD
(κ)
r−1,m(u, v; λ)

ςr

(r− 1)!
. (32)

Now, equating the coefficients of ςr in both sides of (32) yields the desired identity (31).

Theorem 3. AGPD satisfy the following addition property:

GD
(κ)
r,m(u + α, v; λ) =

r

∑
s=0

(
r
s

)
〈α〉s GD

(κ)
r−s,m(u, v) (r ∈ N0), (33)

where 〈α〉s is the well known falling factorial defined as

〈α〉s := α(α− 1) · · · (α− s + 1). (34)

Here α ∈ C, and the restrictions of the other parameters and variable would be modified in
light of those in (23).
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Proof. Substituting u + α for u in (23) gives

∞

∑
r=0
GD

(κ)
r,m(r + α, v; λ)

ςr

r!
=

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m
evς (1 + ς)α

=

(
∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

ςr

r!

)(
∞

∑
s=0
〈α〉s

ςs

s!

)

=
∞

∑
r=0

r

∑
s=0
GD

(κ)
r−s,m(u, v; λ)〈α〉s

ςr

(r− s)! s!
,

for the last equality of which the case p = 1 in (30) is used. Finally, comparing the coefficient
of ςr on both sides offers the desired identity.

Theorem 4. For r ∈ N0, the following correlation holds true:

r

∑
s=0

(
r
s

)
Bs GDr−s,m(u, v; λ) =

r

∑
s=0

(
r
s

)
B(κ)s GD

(κ)
r−s,m(u, v; λ). (35)

Here, the restrictions of the parameters and variable would be modified in light of those in (23).

Proof. Using (10) and (23) reveals

log(1 + ς)

eς − 1
(1 + ς)u

(
2ς

λeς + 1

)m
evς

=

{
Liκ(1− e−ς)

eς − 1

}{
log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m
evς

}
=

Liκ(1− e−ς)

eς − 1
log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2u

λeς + 1

)m
evς

=
∞

∑
r=0

{
r

∑
s=0

(
r
s

)
B(κ)s GD

(κ)
r−s,m(u, v; λ)

}
ςr

r!
.

(36)

Using (7) and rewriting the left hand side of (36) leads to the Apostol–Genocchi-based
poly-Daehee polynomials

log(1 + ς)

eς − 1
(1 + ς)u

(
2ς

λeς + 1

)m
evς

=
ς

eς − 1
log(1 + ς)

ς
(1 + ς)u

(
2u

λeu + 1

)m
evς

=

(
∞

∑
s=0
Bs

ςs

s!

)(
∞

∑
r=0
GDr,m(u, v; λ)

ςr

r!

)

=
∞

∑
r=0

{
r

∑
s=0

(
r
s

)
Bs GDr−m,m(u, v; λ)

}
ςr

r!
.

(37)

Therefore, in view of (36) and (37), we can easily arrive at the desired result.

Theorem 5. For r ∈ N0, the following relation holds true:

Gr,m(v; λ) =
r

∑
s=0

(
r
s

)
b(κ)s (−u) GD

(κ)
r−s,m(u, v, λ). (38)
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Proof. From (20) and (23), we can write

∞

∑
r=0
Gr,m(v; λ)

ςr

r!
=

(
2ς

λeς + 1

)m
evς

=
Liκ(1− e−ς)

log(1 + ς)
(1 + ς)−u

∞

∑
r=0
GDκ

r,m(u, v, λ)
ςr

r!
.

Now using (8), we have

∞

∑
r=0
Gr,m(v; λ)

ςr

r!
=

(
∞

∑
s=0

b(κ)s (−u)
ςs

s!

)(
∞

∑
r=0
GD

(κ)
r,m(u, v, λ)

ςr

r!

)

=
∞

∑
n=0

{
r

∑
s=0

(
r
s

)
b(κ)s (−u) GD

(κ)
r−z,m(u, v, λ)

}
ςr

r!
.

(39)

Using the series rearrangement technique in (30) and equating the coefficients of like
powers of ς in (39), yields (38).

Theorem 6. The following formula for the Apostol–Genocchi-based poly-Daehee polynomials holds

GD
(κ)
r,m+β(u, v + µ; λ) =

r

∑
s=0

(
r
s

)
GD

(κ)
r−s,m(u, v + µ; λ) G(β)

s (µ; λ). (40)

Proof. By replacing v by v + µ and m by m + β in (23) and using (20), we get

∞

∑
r=0
GD

(κ)
r,m+β(u, v + µ; λ)

ςr

r!
=

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m+β

e(v+µ)ς

=

(
∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

ςr

r!

)(
∞

∑
s=0
G(β)

s (µ; λ)
varsigmas

S1

)

=
∞

∑
r=0

r

∑
s=0

GD
(κ)
r−s,m(u, v; λ)G(β)

s (µ; λ)
ςr

(r− s)!s!

which yields the required result (40).

Theorem 7. The following correlation holds

GD
(κ)
r,m(u, v; λ) =

r

∑
s=0

(
r
s

)
D(κ)

r−s,m(u, v− α) G(m)
s (α; λ). (41)

Proof. By (23), we can write

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m
e(v−α)ς+ας

=

(
∞

∑
r=0
D(κ)

r (u, v− α)
ςr

r!

)(
∞

∑
s=0
G(m)

s (α; λ)
ςs

s!

)
.

By using the series manipulation for the case p = 1 in (30), we get

∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

ςr

r!
=

∞

∑
r=0

(
r

∑
s=0

(
r
s

)
D(κ)

r−s,m(u, v− α) G(m)
s (α; λ)

)
ςr

r!
,

which, upon equating the coefficients of the similar powers of ς, leads to the desired identity.
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Theorem 8. The following summation formula holds true:

GD
(κ)
r,m(u, v + 1; λ) =

r

∑
s=0

(
r
s

)
GD

(κ)
r−s,m(u, v; λ). (42)

Proof. Replace the parameter v with v + 1 in (23). By using similar process as those in
previous theorems, we can get the identity (42). Therefore, the details are omitted.

4. Differential Formulas

This section establishes two differential formulas for AGPD with respect to the param-
eters u and v.

Theorem 9. The following differential formula holds true.

∂

∂u G
D(κ)

r,m(u, v; λ) =
r−1

∑
s=0

(−1)r−s−1r!
(r− s) s! GD

(κ)
s,m(u, v; λ) (r ∈ N). (43)

Proof. Differentiating both sides of (23) with respect to u and using the notation in (24),
with the aid of the case p = 1 in (30), we have

∞

∑
r=0

∂

∂u G
D(κ)

r,m(u, v; λ)
ςr

r!
= log(1 + u) · g(m, u, v, κ, λ; ς)

=

(
∞

∑
r=1

(−1)r−1

r
ςr

)(
∞

∑
s=0
GD

(κ)
s,m(u, v; λ)

ςs

s!

)

=
∞

∑
r=0

r−1

∑
s=0

(−1)r−s−1

r− s GD
(κ)
s,m(u, v; λ)

ς

s!
,

which, upon equating the coefficients of ςr, yields the desired identity.

Theorem 10. The following differential formula holds true.

∂

∂v G
D(κ)

r,m(u, v; λ) = r GD
(κ)
r−1,m(u, v; λ) (r ∈ N). (44)

Proof. Differentiating both sides of (23) with respect to v and using the similar process as
in the proof of Theorem 10, we may obtain (44). So the specifics are omitted.

5. Integral Formulas

This section establishes two integral formulas for AGPD.

Theorem 11. The following integral formula holds true.∫ 1

0
GD

(κ)
r,m(u, v; λ) dv =

1
r + 1

{
GD

(κ)
r+1,m(u, 1; λ)− GD

(κ)
r+1,m(u, 0; λ)

}
(r ∈ N0). (45)

Proof. Integrating both sides of (23) with respect to the parameter v from 0 to 1, we by
using (44) get

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m
· 1

ς
(eς − 1) =

∞

∑
r=0

∫ 1

0
GD

(κ)
r,m(u, v; λ)dv

ςr

r!
. (46)

Multiplying both sides of (46) by ς and using (23), we obtain
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∞

∑
r=0

{
GD

(κ)
r,m(u, 1; λ)− GD

(κ)
r,m(u, 0; λ)

} ςr

r!
=

∞

∑
r=1

∫ 1

0
GD

(κ)
r−1,m(u, v; λ)dv

ςr

(r− 1)!
. (47)

Equating the coefficients of ςr on both sides of (47), we derive∫ 1

0
GD

(κ)
r−1,m(u, v; λ)dv =

1
r

{
GD

(κ)
r,m(u, 1; λ)− GD

(κ)
r,m(u, 0; λ)

}
,

which, upon setting r = r′ + 1 and dropping the prime on r, yields the desired formula.

Theorem 12. The following integral formula holds true.

∫ 1

0
GD

(κ)
r,m(u, v; λ) du =

r

∑
s=0

r!
s!

Ω(κ)
r−s G

(m)
s (v; λ) (r ∈ N0), (48)

where G(m)
r (u; λ) are the polynomials in (20) and Ω(κ)

r are the numbers in (26).

Proof. We find ∫ 1

0
(1 + ς)u du =

ς

log(1 + ς)
. (49)

Integrating both sides of (23) with respect to the parameter u from 0 to 1 and using (49),
we obtain

ς

Liκ(1− e−ς)
·
(

2ς

λeς + 1

)m
evς =

∞

∑
r=0

∫ 1

0
GD

(κ)
r,m(u, v; λ)du

ςr

r!
. (50)

Employing (26) and (20) for the first and the second factors, respectively, in the left-
member of (50), with similar process of proofs of the previous formulas, we derive

∞

∑
r=0

∫ 1

0
GD

(κ)
r,m(u, v; λ)du

ςr

r!
=

∞

∑
r=0

Ω(κ)
r ςr

∞

∑
s=0
G(m)

s (v; λ)
ςs

s!

=
∞

∑
r=0

r

∑
s=0

1
s!

Ω(κ)
r−sG

(m)
s (v; λ) ςr,

(51)

on the first and last members of which, upon equating the coefficients of ςr, we obtain the
desired formula.

6. An Implicit Summation Formula

This section explores an implicit summation formula for AGPD.

Theorem 13. The Apostol–Genocchi-based poly-Daehee polynomials satisfy the following implicit
summation formula:

GD
(κ)
q+l,m(u, α; λ) =

q

∑
r=0

l

∑
p=0

(
q
r

)(
l
p

)
(α− v)r+p

GD
(κ)
q+l−p−r,m(u, v; λ) (52)

(l, q ∈ N0; α ∈ C).

Here the restrictions of the other parameters and variable would be modified in light of those
in (23).

Proof. We first recall the following series manipulation formula (consult, for example, ([36],
p. 52, Equation (2)) and [37–41]):

∞

∑
R=0

f (R)
(u + v)R

R!
=

∞

∑
r,s=0

f (r + s)
ur

r!
vs

s!
. (53)
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Replacing ς by ς + µ in (23) gives

log(1 + (ς + µ))

Liκ(1− e−(ς+µ))
(1 + (ς + µ))u

(
2(ς + µ)

λeς+µ + 1

)m

= e−v(ς+µ)
∞

∑
r=0
GD

(κ)
r,m(u, v; λ)

(ς + µ)r

r!
.

(54)

Employing (53) in the series on the right-hand side of (54), we obtain

log(1 + (ς + µ))

Liκ(1− e−(ς+µ))
(1 + (ς + µ))u

(
2(ς + µ)

λeς+µ + 1

)m

= e−v(ς+µ)
∞

∑
q,l=0

GD
(κ)
q+l,m(u, v, λ)

ςq

q!
µl

l!
.

(55)

Note that the left-member of (55) is independent of the parameter v and so, for any
α ∈ C,

e−v(ς+µ)
∞

∑
q,l=0

GD
(κ)
q+l,m(u, v, λ)

ςq

q!
µl

l!
= e−α(ς+µ)

∞

∑
q,l=0

GD
(κ)
q+l,m(u, α, λ)

ςq

q!
µl

l!
.

Or, equivalently,

e(α−v)(ς+µ)
∞

∑
q,l=0

GD
(κ)
q+l,m(u, v; λ)

ςq

q!
µl

l!
=

∞

∑
q,l=0

GD
(κ)
q+l,m(u, α; λ)

ςq

q!
µl

l!
, (56)

for any α ∈ C. Using (53), we get

e(α−v)(ς+µ) =
∞

∑
R=0

[(α− v)(ς + µ)]R

R!
=

∞

∑
r,p=0

(α− v)r+pςrµp

r!p!
. (57)

Setting (57) in (56), we have

∞

∑
q,r=0

∞

∑
l,p=0

(α− v)r+pςrµp

r!p! GD
(κ)
q+l,m(u, v; λ)

ςq

q!
µl

l!
=

∞

∑
q,l=0

GD
(κ)
q+l,m(u, α; λ)

ςq

q!
µl

l!
. (58)

Here, using the series manipulation technique for the case p = 1 in (30) in each one of
two double series in the left-member of (58), we find

∞

∑
q,l=0

q

∑
r=0

l

∑
p=0

(α− v)r+p
GD

(κ)
q+l−r−p,m(u, v; λ)

ςq

r!(q− r)!
µl

p!(l − p)!

=
∞

∑
q,l=0

GD
(κ)
q+l,m(u, α; λ)

ςq

q!
µl

l!
.

(59)

Finally, equating the coefficients of ςq µl on both sides of (59), we prove the desired identity.

Remark 3. It may be interesting to observe that the left-member of (52) is independent of the
parameter v in the right-member of (52). In particular,

q

∑
r=0

l

∑
p=0

(
q
r

)(
l
p

)
(α− v)r+p

GD
(κ)
q+l−p−r,m(u, v; λ)

=
q

∑
r=0

l

∑
p=0

(
q
r

)(
l
p

)
(α)r+p

GD
(κ)
q+l−p−r,m(u, 0; λ).
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for any v ∈ C.

7. Concluding Remarks

The polynomials defined in (23) arises from the well known Apostol–Genocchi poly-
nomials defined in (20). They exhibit a close relationship with Apostol–Euler and Apostol–
Bernoulli polynomials. Therefore, we can explore other hybrid polynomials and obtain
their corresponding properties as well as some new results. Table 2 below illustrates
some hybrid polynomials similar to the Apostol–Genocchi-based poly-Daehee polynomials
in (23).

Table 2. Members similar to the polynomials GD
(κ)
r,m(u, v; λ).

S. No. Name of Polynomial A(ς) Generating Function

I. Apostol–Euler-based

poly-Daehee polynomials
(

2
λeς+1

)m log(1+ς)

Liκ (1−e−ς )
(1 + ς)u

∞
∑

r=0
ED(κ)

r,m(u, v; λ) ςr
r!

=
(

2
λeς+1

)m log(1+ς)

Liκ (1−e−ς )
(1 + ς)u evς

II. Apostol–Bernoulli-based

poly-Daehee polynomials
(

ς
λeς−1

)m log(1+ς)

Liκ (1−e−ς )
(1 + ς)u

∞
∑

r=0
GD(κ)

r,m(u, v; λ) ςr
r!

=
(

ς
λeς−1

)m log(1+ς)

Liκ (1−e−ς )
(1 + ς)u evς

III. Apostol–Bernoulli-based

Daehee polynomials
(

ς
λeς−1

)m log(1+ς)
ς (1 + ς)u

∞
∑

r=0
BDr,m(u, v; λ) ςr

r!

=
(

ς
λeς−1

)m log(1+ς)
ς (1 + ς)u evς

IV. Apostol–Euler-based

Daehee polynomials
(

2
λeς+1

)m log(1+ς)
ς (1 + ς)u

∞
∑

r=0
EDr,m(u, v; λ) ςr

r!

=
(

2
λeς+1

)m log(1+ς)
ς (1 + ς)u evς

V. Apostol–Genocchi-based

Daehee polynomials
(

2ς
λeς+1

)m log(1+ς)
ς (1 + ς)u =

∞
∑

r=0
GDr,m(u, v; λ) ςr

r!

=
(

2ς
λeς+1

)m log(1+ς)
ς (1 + ς)u evς

Example 1 may show how to define some polynomials by means od operational forms.

Example 1. Using the ordinary derivative operator D̂u, an operational form to define the general-
ized Apostol–Genocchi polynomials in (20) could be(

2D̂u

λeD̂u + 1

)m

vr = G(m)
r (v; λ). (60)

Similarly, the generalized Apostol–Euler polynomials in (19) can be cast as(
2

λeD̂u + 1

)m
vr = E (m)

r (v; λ), (61)

which, on comparing with (60), provides the relation

G(m)
r (v; λ) = (D̂u)

mE (m)
r (v; λ) = 〈r〉m E (m)

r−m(v; λ). (62)

From (23) and (60), we can write

GD
(κ)
r,m(u, v; λ) =

log(1 + ς)

Liκ(1− e−ς)
(1 + ς)u

(
2ς

λeς + 1

)m
vr, (63)

which, in view of (62), provides
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GD
(κ)
r,m(u, v; λ) = 〈r〉m E (κ)r−m,m(u, v; λ). (64)
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