
Digital Object Identifier (DOI) 10.1007/s00220-007-0367-3
Commun. Math. Phys. 277, 423–437 (2008) Communications in

Mathematical
Physics

Some Geometric Calculations on Wasserstein Space�

John Lott

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA.
E-mail: lott@umich.edu

Received: 5 January 2007 / Accepted: 9 April 2007
Published online: 7 November 2007 – © Springer-Verlag 2007

Abstract: We compute the Riemannian connection and curvature for the Wasserstein
space of a smooth compact Riemannian manifold.

1. Introduction

If M is a smooth compact Riemannian manifold then the Wasserstein space P2(M) is the
space of Borel probability measures on M , equipped with the Wasserstein metric W2. We
refer to [21] for background information on Wasserstein spaces. The Wasserstein space
originated in the study of optimal transport. It has had applications to PDE theory [16],
metric geometry [8,19,20] and functional inequalities [9,17].

Otto showed that the heat flow on measures can be considered as a gradient flow on
Wasserstein space [16]. In order to do this, he introduced a certain formal Riemannian
metric on the Wasserstein space. This Riemannian metric has some remarkable proper-
ties. Using O’Neill’s theorem, Otto gave a formal argument that P2(R

n) has nonnegative
sectional curvature. This was made rigorous in [8, Theorem A.8] and [19, Prop. 2.10]
in the following sense: M has nonnegative sectional curvature if and only if the length
space P2(M) has nonnegative Alexandrov curvature.

In this paper we study the Riemannian geometry of the Wasserstein space. In order to
write meaningful expressions, we restrict ourselves to the subspace P∞(M)of absolutely
continuous measures with a smooth positive density function. The space P∞(M) is a
smooth infinite-dimensional manifold in the sense, for example, of [7]. The formal
calculations that we perform can be considered as rigorous calculations on this smooth
manifold, although we do not emphasize this point.

In Sect. 3 we show that if c is a smooth immersed curve in P∞(M) then its length
in P2(M), in the sense of metric geometry, equals its Riemannian length as computed
with Otto’s metric. In Sect. 4 we compute the Levi-Civita connection on P∞(M). We
use it to derive the equation for parallel transport and the geodesic equation.

� This research was partially supported by NSF grant DMS-0604829.
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In Sect. 5 we compute the Riemannian curvature of P∞(M). The answer is relatively
simple. As an application, if M has sectional curvatures bounded below by r ∈ R, one
can ask whether P∞(M) necessarily has sectional curvatures bounded below by r . This
turns out to be the case if and only if r = 0.

There has been recent interest in doing Hamiltonian mechanics on the Wasserstein
space of a symplectic manifold [1,4,5]. In Sect. 6 we briefly describe the Poisson geo-
metry of P∞(M). We show that if M is a Poisson manifold then P∞(M) has a natural
Poisson structure. We also show that if M is symplectic then the symplectic leaves of the
Poisson structure on P∞(M) are the orbits of the group of Hamiltonian diffeomorphisms,
thereby making contact with [1,5]. This approach is not really new; closely related re-
sults, with applications to PDEs, were obtained quite a while ago by Alan Weinstein and
collaborators [10,11,22]. However, it may be worth advertising this viewpoint.

2. Manifolds of Measures

In what follows, we use the Einstein summation convention freely.
Let M be a smooth connected closed Riemannian manifold of positive dimension.

We denote the Riemannian density by dvolM . Let P2(M) denote the space of Borel
probability measures on M , equipped with the Wasserstein metric W2. For relevant
results about optimal transport and the Wasserstein metric, we refer to [8, Sects. 1 and
2] and references therein.

Put

P∞(M) = {ρ dvolM : ρ ∈ C∞(M), ρ > 0,

∫
M

ρ dvolM = 1}. (2.1)

Then P∞(M) is a dense subset of P2(M), as is the complement of P∞(M) in P2(M).
We do not claim that P∞(M) is necessarily a totally convex subset of P2(M), i.e. that if
µ0, µ1 ∈ P∞(M) then the minimizing geodesic in P2(M) joining them necessarily lies
in P∞(M). However, the absolutely continuous probability measures on M do form a
totally convex subset of P2(M) [12]. For the purposes of this paper, we give P∞(M) the
smooth topology. (This differs from the subspace topology on P∞(M) coming from its
inclusion in P2(M).) Then P∞(M) has the structure of an infinite-dimensional smooth
manifold in the sense of [7]. The formal calculations in this paper can be rigorously
justified as being calculations on the smooth manifold P∞(M). However, we will not
belabor this point.

Given φ ∈ C∞(M), define Fφ ∈ C∞(P∞(M)) by

Fφ(ρ dvolM ) =
∫

M
φ ρ dvolM . (2.2)

This gives an injection P∞(M) → (C∞(M))∗, i.e. the functions Fφ separate points in
P∞(M). We will think of the functions Fφ as “coordinates” on P∞(M).

Given φ ∈ C∞(M), define a vector field Vφ on P∞(M) by saying that for
F ∈ C∞(P∞(M)),

(Vφ F)(ρ dvolM ) = d

dε

∣∣∣ε=0 F
(
ρ dvolM − ε ∇ i (ρ∇iφ) dvolM

)
. (2.3)



Some Geometric Calculations on Wasserstein Space 425

The map φ → Vφ passes to an isomorphism C∞(M)/R → Tρ dvolM P∞(M). This
parametrization of Tρ dvolM P∞(M) goes back to Otto’s paper [16]; see [2] for further
discussion. Otto’s Riemannian metric on P∞(M) is given [16] by

〈Vφ1 , Vφ2〉(ρ dvolM ) =
∫

M
〈∇φ1,∇φ2〉 ρ dvolM

= −
∫

M
φ1∇ i (ρ∇iφ2) dvolM . (2.4)

In view of (2.3), we write δVφρ = − ∇ i (ρ∇iφ). Then

〈Vφ1 , Vφ2〉(ρ dvolM ) =
∫

M
φ1 δVφ2

ρ dvolM =
∫

M
φ2 δVφ1

ρ dvolM . (2.5)

In terms of the weighted L2-spaces L2(M, ρ dvolM ) and �1
L2(M, ρ dvolM ), let d

be the usual differential on functions and let d∗
ρ be its formal adjoint. Then (2.4) can be

written as

〈Vφ1 , Vφ2〉(ρ dvolM ) =
∫

M
〈dφ1, dφ2〉 ρ dvolM =

∫
M

φ1 d∗
ρdφ2 ρ dvolM . (2.6)

We now relate the function Fφ and the vector field Vφ .

Lemma 1. The gradient of Fφ is Vφ .

Proof. Letting ∇Fφ denote the gradient of Fφ , for all φ′ ∈ C∞(M) we have

〈∇Fφ, Vφ′ 〉(ρ dvolM ) = (Vφ′ Fφ)(ρ dvolM ) = −
∫

M
φ ∇ i (ρ∇iφ

′) dvolM

= 〈Vφ, Vφ′ 〉(ρ dvolM ). (2.7)

This proves the lemma. 	


3. Lengths of Curves

In this section we relate the Riemannian metric (2.4) to the Wasserstein metric. One such
relation was given in [17], where it was heuristically shown that the geodesic distance
coming from (2.4) equals the Wasserstein metric. To give a rigorous relation, we recall
that a curve c : [0, 1] → P2(M) has a length given by

L(c) = sup
J∈N

sup
0=t0≤t1≤...≤tJ =1

J∑
j=1

W2
(
c(t j−1), c(t j )

)
. (3.1)

From the triangle inequality, the expression
∑J

j=1 W2
(
c(t j−1), c(t j )

)
is nondecreasing

under a refinement of the partition 0 = t0 ≤ t1 ≤ . . . ≤ tJ = 1.
If c : [0, 1] → P∞(M) is a smooth curve in P∞(M) then we write c(t) = ρ(t) dvolM

and let φ(t) satisfy ∂ρ
dt = −∇ i (ρ∇iφ), where we normalize φ by requiring for example

that
∫

M φ ρ dvolM = 0. If c is immersed then ∇φ(t) �= 0. The Riemannian length of
c, as computed using (2.4), is

∫ 1

0
〈c′(t), c′(t)〉 1

2 dt =
∫ 1

0

(∫
M

|∇φ(t)|2(m) ρ(t) dvolM

) 1
2

dt. (3.2)

The next proposition says that this equals the length of c in the metric sense.
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Proposition 1. If c : [0, 1] → P∞(M) is a smooth immersed curve then its length L(c)
in the Wasserstein space P2(M) satisfies

L(c) =
∫ 1

0
〈c′(t), c′(t)〉 1

2 dt. (3.3)

Proof. We can parametrize c so that
∫

M |∇φ(t)|2 ρ(t) dvolM is a constant C > 0 with
respect to t .

Let {St }t∈[0,1] be the one-parameter family of diffeomorphisms of M given by

∂St (m)

∂t
= (∇φ(t))(St (m)) (3.4)

with S0(m) = m. Then c(t) = (St )∗(ρ(0) dvolM ).
Given a partition 0 = t0 ≤ t1 ≤ . . . ≤ tJ = 1 of [0, 1], a particular transference plan

from c(t j−1) to c(t j ) comes from the Monge transport St j ◦ S−1
t j−1

. Then

W2
(
c(t j−1), c(t j )

)2 ≤
∫

M
d(m, St j (S−1

t j−1
(m)))2 ρ(t j−1) dvolM

=
∫

M
d(St j−1(m), St j (m))2 ρ(0) dvolM

≤
∫

M

(∫ t j

t j−1

|∇φ(t)|(St (m)) dt

)2

ρ(0) dvolM

≤ (t j − t j−1)

∫
M

∫ t j

t j−1

|∇φ(t)|2(St (m)) dt ρ(0) dvolM

= (t j − t j−1)

∫ t j

t j−1

∫
M

|∇φ(t)|2(m) ρ(t) dvolM dt, (3.5)

so

W2
(
c(t j−1), c(t j )

) ≤ (t j − t j−1)
1
2

(∫ t j

t j−1

∫
M

|∇φ(t)|2(m) ρ(t) dvolM dt

) 1
2

= (t j − t j−1)

(∫
M

|∇φ(t ′j )|2(m) ρ(t ′j ) dvolM

) 1
2

(3.6)

for some t ′j ∈ [t j−1, t j ]. It follows that

L(c) ≤
∫ 1

0
〈c′(t), c′(t)〉 1

2 dt. (3.7)

Next, from [8, Lemma A.1],

(t j − t j−1)

∣∣∣∣
∫

M
φ(t j−1) ρ(t j ) dvolM −

∫
M

φ(t j−1) ρ(t j−1) dvolM

∣∣∣∣
2

≤ W2(c(t j−1), c(t j ))
2

∫ t j

t j−1

∫
M

|∇φ(t j−1)|2 dµt dt, (3.8)
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where {µt }t∈[t j−1,t j ] is the Wasserstein geodesic between c(t j−1) and c(t j ). Now

∫
M

φ(t j−1) ρ(t j ) dvolM −
∫

M
φ(t j−1) ρ(t j−1) dvolM

= −
∫

M

∫ t j

t j−1

φ(t j−1) ∇ i (ρ(t)∇iφ(t)) dt dvolM

=
∫ t j

t j−1

∫
M

〈∇φ(t j−1),∇φ(t)〉 ρ(t) dvolM dt, (3.9)

so (3.8) becomes

(t j − t j−1)

(∫ t j

t j−1

∫
M

〈∇φ(t j−1),∇φ(t)〉 ρ(t) dvolM dt

)2

≤ W2(c(t j−1), c(t j ))
2

∫ t j

t j−1

∫
M

|∇φ(t j−1)|2 dµt dt. (3.10)

Thus

L(c) ≥
J∑

j=1

∫ t j
t j−1

∫
M 〈∇φ(t j−1),∇φ(t)〉 ρ(t) dvolM dt

t j −t j−1√
1

t j −t j−1

∫ t j
t j−1

∫
M |∇φ(t j−1)|2 dµt dt

(t j − t j−1). (3.11)

As the partition of [0, 1] becomes finer, the term

∫ t j
t j−1

∫
M 〈∇φ(t j−1),∇φ(t)〉 ρ(t) dvolM dt

t j −t j−1

uniformly approaches the constant C .
The Wasserstein geodesic {µt }t∈[t j−1,t j ] has the form µt = (Ft )∗µt j−1 for measurable

maps Ft : M → M with Ft j−1 = Id [12]. Then

∣∣∣∣∣
1

t j − t j−1

∫ t j

t j−1

∫
M

|∇φ(t j−1)|2 dµt dt − C

∣∣∣∣∣
=

∣∣∣∣∣
1

t j − t j−1

∫ t j

t j−1

(∫
M

|∇φ(t j−1)|2 dµt −
∫

M
|∇φ(t j−1)|2 dµt j−1

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
1

t j − t j−1

∫ t j

t j−1

∫
M

(
|∇φ(t j−1)|2 ◦ Ft − |∇φ(t j−1)|2

)
dµt j−1 dt

∣∣∣∣∣
≤ 1

t j − t j−1
‖ ∇|∇φ(t j−1)|2 ‖∞

∫ t j

t j−1

∫
M

d(m, Ft (m)) dµt j−1(m) dt

≤ 1

t j − t j−1
‖ ∇|∇φ(t j−1)|2 ‖∞

∫ t j

t j−1

√∫
M

d(m, Ft (m))2 dµt j−1(m) dt

= 1

t j − t j−1
‖ ∇|∇φ(t j−1)|2 ‖∞

∫ t j

t j−1

W2(µt j−1 , µt ) dt

≤‖ ∇|∇φ(t j−1)|2 ‖∞ W2(c(t j−1), c(t j )). (3.12)
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Now continuity of a 1-parameter family of smooth measures in the smooth topology im-
plies continuity in the weak-∗ topology, which is metricized by W2 (as M is compact). It
follows that as the partition of [0, 1] becomes finer, the term 1

t j −t j−1

∫ t j
t j−1

∫
M |∇φ(t j−1)|2

dµt dt uniformly approaches the constant C . Thus from (3.11),

L(c) ≥ √
C =

∫ 1

0
〈c′(t), c′(t)〉 1

2 dt. (3.13)

This proves the proposition. 	

Remark 1. Let X be a finite-dimensional Alexandrov space and let R be its set of nonsin-
gular points. There is a continuous Riemannian metric g on R so that lengths of curves
in R can be computed using g [15]. (Note that in general, R and X − R are dense in X .)
This is somewhat similar to the situation for P∞(M) ⊂ P2(M).

In fact, there is an open dense subset O ⊂ X with a Lipschitz manifold structure and
a Riemannian metric of bounded variation that extends g [18]. We do not know if there
is a Riemannian manifold structure, in some appropriate sense, on an open dense subset
of P2(M). Other approaches to geometrizing P2(M), with a view toward gradient flow,
are in [2,3]; see also [14].

4. Levi-Civita Connection, Parallel Transport and Geodesics

In this section we compute the Levi-Civita connection of P∞(M). We derive the formula
for parallel transport in P∞(M) and the geodesic equation for P∞(M).

We first compute commutators of our canonical vector fields {Vφ}φ∈C∞(M).

Lemma 2. Given φ1, φ2 ∈ C∞(M), the commutator [Vφ1 , Vφ2 ] is given by

([Vφ1 , Vφ2 ]F
)
(ρ dvolM )

= d

dε

∣∣∣ε=0 F
(
ρ dvolM − ε∇i

[
ρ

(
(∇ i∇ jφ2)∇ jφ1 − (∇ i∇ jφ1)∇ jφ2

)]
dvolM

)
(4.1)

for F ∈ C∞(P∞(M)).

Proof. We have

([Vφ1 , Vφ2 ]F
)
(ρ dvolM ) = (

Vφ1(Vφ2 F)
)
(ρ dvolM ) − (

Vφ2(Vφ1 F)
)
(ρ dvolM )

= d

dε1

∣∣∣ε1=0(Vφ2 F)
(
ρ dvolM − ε1 ∇ i (ρ∇iφ1) dvolM

)

− d

dε2

∣∣∣ε2=0(Vφ1 F)
(
ρ dvolM − ε2 ∇ i (ρ∇iφ2) dvolM

)

= d

dε1

∣∣∣∣ε1=0
d

dε2

∣∣∣ε2=0 F
(
(ρ − ε1 ∇ i (ρ∇iφ1)) dvolM

− ε2 ∇ j ((ρ − ε1∇ i (ρ∇iφ1))∇ jφ2) dvolM

)
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d

dε2

∣∣
ε2=0

d

dε1

∣∣
ε1=0 F

(
(ρ − ε2 ∇ i (ρ∇iφ2)) dvolM

−ε1 ∇ j ((ρ − ε2∇ i (ρ∇iφ2))∇ jφ1) dvolM

)

= d

dε

∣∣∣ε=0 F
(
ρ dvolM +ε∇ j (∇ i (ρ∇iφ1)∇ jφ2) dvolM −ε∇ j (∇ i (ρ∇iφ2)∇ jφ1) dvolM

)
.

(4.2)

One can check that

∇ j (∇ i (ρ∇iφ1)∇ jφ2) − ∇ j (∇ i (ρ∇iφ2)∇ jφ1) =
− ∇i

[
ρ

(
(∇ i∇ jφ2)∇ jφ1 − (∇ i∇ jφ1)∇ jφ2

)]
, (4.3)

from which the lemma follows. 	

We now compute the Levi-Civita connection.

Proposition 2. The Levi-Civita connection ∇ of P∞(M) is given by

((∇Vφ1
Vφ2)F)(ρ dvolM ) = d

dε

∣∣∣ε=0 F
(
ρ dvolM − ε ∇i

(
ρ ∇ jφ1 ∇ i∇ jφ2

)
dvolM

)
(4.4)

for F ∈ C∞(P∞(M)).

Proof. Define a vector field DVφ1
Vφ2 by

((DVφ1
Vφ2)F)(ρ dvolM ) = d

dε

∣∣∣ε=0 F
(
ρ dvolM − ε ∇i

(
ρ ∇ jφ1 ∇ i∇ jφ2

)
dvolM

)
(4.5)

for F ∈ C∞(P∞(M)). We also write

δDVφ1
Vφ2

ρ = − ∇i

(
ρ ∇ jφ1 ∇ i∇ jφ2

)
. (4.6)

It is clear from Lemma 2 that

DVφ1
Vφ2 − DVφ2

Vφ1 = [Vφ1 , Vφ2 ]. (4.7)

Next,
(
Vφ1〈Vφ2 , Vφ3〉

)
(ρ dvolM ) = −

∫
M

∇ iφ2 ∇iφ3 ∇ j (ρ∇ jφ1) dvolM

=
∫

M
∇ jφ1 ∇ i∇ jφ2 ∇iφ3 ρ dvolM

+
∫

M
∇ jφ1 ∇ i∇ jφ3 ∇iφ2 ρ dvolM

= −
∫

M
φ3 ∇i (ρ ∇ jφ1 ∇ i∇ jφ2) dvolM

−
∫

M
φ2 ∇i (ρ ∇ jφ1 ∇ i∇ jφ3) dvolM

=
∫

M
φ3 δDVφ1

Vφ2
ρ dvolM +

∫
M

φ2 δDVφ1
Vφ3

ρ dvolM

=〈DVφ1
Vφ2 , Vφ3〉(ρ dvolM ) + 〈Vφ2 , DVφ1

Vφ3〉(ρ dvolM ).

(4.8)
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Thus
Vφ1〈Vφ2 , Vφ3〉 = 〈DVφ1

Vφ2 , Vφ3〉 + 〈Vφ2 , DVφ1
Vφ3〉. (4.9)

As

2〈∇Vφ1
Vφ2 , Vφ3〉 = Vφ1〈Vφ2 , Vφ3〉 + Vφ2〈Vφ3 , Vφ1〉 − Vφ3〈Vφ1 , Vφ2〉

+ 〈Vφ3 , [Vφ1 , Vφ2 ]〉 − 〈Vφ2 , [Vφ1 , Vφ3 ]〉 − 〈Vφ1 , [Vφ2 , Vφ3 ]〉,
(4.10)

substituting (4.7) and (4.9) into the right-hand side of (4.10) shows that

〈∇Vφ1
Vφ2 , Vφ3〉 = 〈DVφ1

Vφ2 , Vφ3〉 (4.11)

for all φ3 ∈ C∞(M). The proposition follows. 	

Lemma 3. The connection coefficients at ρ dvolM are given by

〈∇Vφ1
Vφ2 , Vφ3〉 =

∫
M

∇iφ1 ∇ jφ3 ∇ i∇ jφ2 ρ dvolM . (4.12)

Proof. This follows from (2.5) and (4.4). 	

Let Gρ be the Green’s operator for d∗

ρd on L2(M, ρ dvolM ). (More explicitly, if∫
M f ρ dvolM = 0 and φ = Gρ f then φ satisfies − 1

ρ
∇ i (ρ∇iφ) = f and∫

M φ ρ dvolM = 0, while Gρ1 = 0.) Let �ρ denote orthogonal projection onto
Im(d) ⊂ �1

L2(M, ρ dvolM ).

Lemma 4. At ρ dvolM , we have ∇Vφ1
Vφ2 = Vφ , where φ = Gρd∗

ρ(∇i∇ jφ2 ∇ jφ1 dxi ).

Proof. Given φ3 ∈ C∞(M), we have

〈Vφ3 , Vφ〉(ρ dvolM ) =
∫

M
〈dφ3, dGρd∗

ρ(∇i∇ jφ2 ∇ jφ1 dxi )〉 ρ dvolM

=
∫

M
〈dφ3,�ρ(∇i∇ jφ2 ∇ jφ1 dxi )〉 ρ dvolM

=
∫

M
〈dφ3,∇i∇ jφ2 ∇ jφ1 dxi 〉 ρ dvolM

= 〈Vφ3 ,∇Vφ1
Vφ2〉(ρ dvolM ). (4.13)

The lemma follows. 	

To derive the equation for parallel transport, let c : (a, b) → P∞(M) be a smooth

curve. As before, we write c(t) = ρ(t) dvolM and define φ(t) ∈ C∞(M), up to a
constant, by dc

dt = Vφ(t). Let Vη(t) be a vector field along c, with η(t) ∈ C∞(M). If
{φα}∞α=1 is a basis for C∞(M)/R then {Vφα }∞α=1 is a global basis for T P∞(M) and we
can write η(t) = ∑

α ηα(t) Vφα

∣∣c(t) . The condition for Vη to be parallel along c is

∑
α

dηα

dt
Vφα

∣∣∣∣∣c(t) +
∑
α

ηα(t) ∇Vφ(t) Vηα

∣∣∣∣∣
c(t)

= 0, (4.14)

or
V ∂η

∂t
+ ∇Vφ(t) Vη(t) = 0. (4.15)
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Proposition 3. The equation for Vη to be parallel along c is

∇i

(
ρ

(
∇ i ∂η

∂t
+ ∇ jφ ∇ i∇ jη

))
= 0. (4.16)

Proof. This follows from (2.3), (4.4) and (4.15). 	

As a check on Eq. (4.16), we show that parallel transport along c preserves the inner

product.

Lemma 5. If Vη1 and Vη2 are parallel vector fields along c then
∫

M 〈∇η1,∇η2〉ρ dvolM
is constant in t .

Proof. We have

d

dt

∫
M

〈∇η1,∇η2〉 ρ dvolM =
∫

M
∇ i ∂η1

∂t
∇iη2 ρ dvolM +

∫
M

∇iη1 ∇ i ∂η2

dt
ρ dvolM

−
∫

M
∇iη1∇ iη2 ∇ j (ρ∇ jφ) dvolM

=
∫

M
∇ i ∂η1

∂t
∇iη2 ρ dvolM +

∫
M

∇iη1 ∇ i ∂η2

dt
ρ dvolM

+
∫

M

(
∇ i∇ jη1 ∇iη2 + ∇iη1 ∇ i∇ jη2

)
∇ jφ ρ dvolM

= −
∫

M
η2 ∇i

(
ρ

(
∇ i ∂η1

∂t
+ ∇ jφ ∇ i∇ jη1

))
dvolM

−
∫

M
η1 ∇i

(
ρ

(
∇ i ∂η2

∂t
+ ∇ jφ ∇ i∇ jη2

))
dvolM

= 0. (4.17)

This proves the lemma. 	

Finally, we derive the geodesic equation.

Proposition 4. The geodesic equation for c is

∂φ

∂t
+

1

2
|∇φ|2 = 0, (4.18)

modulo the addition of a spatially-constant function to φ.

Proof. Taking η = φ in (4.16) gives

∇i

(
ρ ∇ i

(
∂φ

∂t
+

1

2
|∇φ|2

))
= 0. (4.19)

Thus ∂φ
∂t + 1

2 |∇φ|2 is spatially constant. Redefining φ by adding to it a function of t
alone, we can assume that (4.18) holds. 	
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Remark 2. Equation (4.18) has been known for a while, at least in the case of R
n , to

be the formal equation for Wasserstein geodesics. For general Riemannian manifolds
M , it was formally derived as the Wasserstein geodesic equation in [17] by minimizing
lengths of curves. For t > 0, it has the Hopf-Lax solution

φ(t, m) = inf
m′∈M

(
φ(0, m′) +

d(m, m′)2

2t

)
. (4.20)

Given µ0, µ1 ∈ P∞(M), it is known that there is a unique minimizing Wasserstein
geodesic {µt }t∈[0,1] joining them. It is of the form µt = (Ft )∗µ0, where Ft ∈ Diff(M)

is given by Ft (m) = expm(−t∇mφ0) for an appropriate Lipschitz function φ0 [12].
If φ0 happens to be smooth then defining ρ(t) by µt = ρ(t) dvolM and defining
φ(t) ∈ C∞(M)/R as above, it is known that φ satisfies (4.18), with φ(0) = φ0 [21,
Sect. 5.4.7]. In this way, (4.18) rigorously describes certain geodesics in the Wasserstein
space P2(M).

5. Curvature

In this section we compute the Riemannian curvature tensor of P∞(M).
Given φ, φ′ ∈ C∞(M), define Tφφ′ ∈ �1

L2(M) by

Tφφ′ = (I − �ρ)
(
∇ iφ ∇i∇ jφ

′ dx j
)

. (5.1)

(The left-hand side depends on ρ, but we suppress this for simplicity of notation.)

Lemma 6. Tφφ′ + Tφ′φ = 0.

Proof. As

∇ iφ ∇i∇ jφ
′ dx j + ∇ iφ′ ∇i∇ jφ dx j = d〈∇φ,∇φ′〉, (5.2)

and I − �ρ projects away from Im(d), the lemma follows. 	


Theorem 1. Given φ1, φ2, φ3, φ4 ∈ C∞(M), the Riemannian curvature operator R of
P∞(M) is given by

〈R(Vφ1 , Vφ2)Vφ3 , Vφ4〉 =
∫

M
〈R(∇φ1,∇φ2)∇φ3,∇φ4〉 ρ dvolM − 2〈Tφ1φ2 , Tφ3φ4〉

+ 〈Tφ2φ3 , Tφ1φ4〉 − 〈Tφ1φ3 , Tφ2φ4〉, (5.3)

where both sides are evaluated at ρ dvolM ∈ P∞(M).

Proof. We use the formula

〈R(Vφ1 , Vφ2)Vφ3 , Vφ4〉 = Vφ1〈∇Vφ2
Vφ3 , Vφ4〉 − 〈∇Vφ2

Vφ3 ,∇Vφ1
Vφ4〉

− Vφ2〈∇Vφ1
Vφ3 , Vφ4〉 + 〈∇Vφ1

Vφ3 ,∇Vφ2
Vφ4〉

− 〈∇[Vφ1 ,Vφ2 ]Vφ3 , Vφ4〉. (5.4)
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First, from (2.3) and (3),

Vφ1〈∇Vφ2
Vφ3 , Vφ4〉 = −

∫
M

∇iφ2 ∇ jφ4 ∇ i∇ jφ3 ∇k(ρ∇kφ1) dvolM

=
∫

M
∇k∇iφ2 ∇ jφ4 ∇ i∇ jφ3 ∇kφ1 ρ dvolM

+
∫

M
∇iφ2 ∇k∇ jφ4 ∇ i∇ jφ3 ∇kφ1 ρ dvolM

+
∫

M
∇iφ2 ∇ jφ4 ∇k∇ i∇ jφ3 ∇kφ1 ρ dvolM . (5.5)

Similarly,

Vφ2〈∇Vφ1
Vφ3 , Vφ4〉 =

∫
M

∇k∇iφ1 ∇ jφ4 ∇ i∇ jφ3 ∇kφ2 ρ dvolM

+
∫

M
∇iφ1 ∇k∇ jφ4 ∇ i∇ jφ3 ∇kφ2 ρ dvolM

+
∫

M
∇iφ1 ∇ jφ4 ∇k∇ i∇ jφ3 ∇kφ2 ρ dvolM . (5.6)

Next, using (2.4), Lemma 4 and (5.1),

〈∇Vφ2
Vφ3 ,∇Vφ1

Vφ4〉 = 〈dGρd∗
ρ(∇i∇ jφ3 ∇ jφ2 dxi ), dGρd∗

ρ(∇k∇lφ4 ∇lφ1 dxk)〉L2

= 〈�ρ(∇i∇ jφ3 ∇ jφ2 dxi ),�ρ(∇k∇lφ4 ∇lφ1 dxk)〉L2

= 〈∇i∇ jφ3 ∇ jφ2 dxi ,∇k∇lφ4 ∇lφ1 dxk〉L2 − 〈Tφ2φ3 , Tφ1φ4〉
=

∫
M

∇i∇ jφ3 ∇ jφ2 ∇ i∇lφ4 ∇lφ1 ρ dvolM − 〈Tφ2φ3 , Tφ1φ4〉.
(5.7)

Similarly,

〈∇Vφ1
Vφ3 ,∇Vφ2

Vφ4〉 =
∫

M
∇i∇ jφ3∇ jφ1∇ i∇lφ4∇lφ2ρ dvolM −〈Tφ1φ3 , Tφ2φ4〉. (5.8)

Finally, we compute 〈∇[Vφ1 ,Vφ2 ]Vφ3 , Vφ4〉. From (4.1), we can write [Vφ1 , Vφ2 ] = Vφ ,
where

φ = Gρ d∗
ρ

(
∇i∇ jφ2 ∇ jφ1 dxi − ∇i∇ jφ1 ∇ jφ2 dxi

)
. (5.9)

Then from (4.12),

〈∇[Vφ1 ,Vφ2 ]Vφ3 , Vφ4〉 =
∫

M
∇iφ ∇ jφ4 ∇ i∇ jφ3 ρ dvolM = 〈dφ,∇ jφ4 ∇i∇ jφ3 dxi 〉L2

= 〈dGρ d∗
ρ (∇i∇ jφ2 ∇ jφ1 dxi − ∇i∇ jφ1 ∇ jφ2 dxi ),

∇ jφ4 ∇i∇ jφ3 dxi 〉L2

= 〈�ρ

(
∇i∇ jφ2 ∇ jφ1 dxi − ∇i∇ jφ1 ∇ jφ2 dxi

)
,

�ρ

(
∇ jφ4 ∇i∇ jφ3 dxi

)
〉L2
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=
∫

M

(
∇i∇ jφ2∇ jφ1 − ∇i∇ jφ1∇ jφ2

)
∇kφ4∇ i∇kφ3ρ dvolM

− 〈Tφ1φ2 , Tφ4φ3〉 + 〈Tφ2φ1 , Tφ4φ3〉
=

∫
M

(
∇i∇ jφ2∇ jφ1 − ∇i∇ jφ1∇ jφ2

)
∇kφ4 ∇ i∇kφ3 ρ dvolM

+ 2 〈Tφ1φ2 , Tφ3φ4〉. (5.10)

The theorem follows from combining Eqs. (5.4)-(5.10). 	

Corollary 1. Suppose that φ1, φ2 ∈ C∞(M) satisfy

∫
M |∇φ1|2 ρ dvolM = ∫

M |∇φ2|2 ρ

dvolM = 1 and
∫

M 〈∇φ1,∇φ2〉 ρ dvolM = 0. Then the sectional curvature at
ρ dvolM ∈ P∞(M) of the 2-plane spanned by Vφ1 and Vφ2 is

K (Vφ1 , Vφ2) =
∫

M
K (∇φ1,∇φ2)

(
|∇φ1|2|∇φ2|2−〈∇φ1,∇φ2〉2

)
ρ dvolM + 3|Tφ1φ2 |2,

(5.11)
where K (∇φ1,∇φ2) denotes the sectional curvature of the 2-plane spanned by ∇φ1 and
∇φ2.

Corollary 2. If M has nonnegative sectional curvature then P∞(M) has nonnegative
sectional curvature.

Remark 3. One can ask whether the condition of M having sectional curvature bounded
below by r ∈ R implies that P∞(M) has sectional curvature bounded below by r . This is
not the case unless r = 0. The reason is one of normalizations. The normalizations on φ1
and φ2 are

∫
M |∇φ1|2ρ dvolM = ∫

M |∇φ2|2ρ dvolM = 1 and
∫

M 〈∇φ1,∇φ2〉ρ dvolM =
0. One cannot conclude from this that

∫
M

(|∇φ1|2 |∇φ2|2 − 〈∇φ1,∇φ2〉2
)

ρ dvolM is
≥ 1 or ≤ 1.

More generally, if M has nonnegative sectional curvature then P2(M) is an Alexan-
drov space with nonnegative curvature [8, Theorem A.8], [19, Prop. 2.10(iv)]. On the
other hand, if M does not have nonnegative sectional curvature then one sees by an
explicit construction that P2(M) is not an Alexandrov space with curvature bounded
below [19, Prop. 2.10(iv)].

Remark 4. The formula (5.3) has the structure of the O’Neill formula for the sectional
curvature of the base space of a Riemannian submersion. In the case M = R

n , Otto
argued that P∞(Rn) is formally the quotient space of Diff(Rn), with an L2-metric, by
the subgroup that preserves a fixed volume form [16]. As Diff(Rn) is formally flat, it
followed that P∞(Rn) formally had nonnegative sectional curvature.

6. Poisson Structure

Let M be a smooth connected closed manifold. We do not give it a Riemannian metric.
In this section we describe a natural Poisson structure on P∞(M) arising from a Poisson
structure on M . If M is a symplectic manifold then we show that the symplectic leaves in
P∞(M) are orbits of the action of the group Ham(M) of Hamiltonian diffeomorphisms
acting on P∞(M). We recover the symplectic structure on the orbits that was considered
in [1,5].

Let M be a smooth manifold and let p ∈ C∞(∧2T M) be a skew bivector field. Given
f1, f2 ∈ C∞(M), one defines the Poisson bracket { f1, f2} ∈ C∞(M) by { f1, f2} =
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p(d f1 ⊗ d f2). There is a skew trivector field ∂p ∈ C∞(∧3T M) so that for f1, f2, f3 ∈
C∞(M),

(∂p)(d f1, d f2, d f3) = {{ f1, f2}, f3} + {{ f2, f3}, f1} + {{ f3, f1}, f2}. (6.1)

One says that p defines a Poisson structure on M if ∂p = 0. We assume hereafter that
p is a Poisson structure on M .

Definition 1 Define a skew bivector field P ∈ C∞(∧2T P∞(M)) by saying that its
Poisson bracket is {Fφ1, Fφ2} = F{φ1,φ2}, i.e.

{Fφ1, Fφ2}(µ) =
∫

M
{φ1, φ2} dµ (6.2)

for µ ∈ P∞(M).

The map φ → d Fφ

∣∣
µ passes to an isomorphism C∞(M)/R → T ∗

µ P∞(M). As the
right-hand side of (6.2) vanishes if φ1 or φ2 is constant, Eq. (6.2) does define an element
of C∞(∧2T P∞(M)).

Proposition 5. P is a Poisson structure on P∞(M).

Proof. It suffices to show that ∂ P vanishes. This follows from the equation

(∂ P)(d Fφ1 , d Fφ2 , d Fφ3) = {{Fφ1, Fφ2}, Fφ3}+{{Fφ2 , Fφ3}, Fφ1}+{{Fφ3 , Fφ1}, Fφ2}
= F{{φ1,φ2},φ3} + {{φ2,φ3},φ1} + {{φ3,φ1},φ2} = 0. (6.3)

	

A finite-dimensional Poisson manifold has a (possibly singular) foliation with sym-

plectic leaves [6]. The leafwise tangent vector fields are spanned by the vector fields
W f defined by W f h = { f, h}. The symplectic form � on a leaf is given by saying that
�(W f , Wg) = { f, g}.

Suppose now that (M, ω) is a closed 2n-dimensional symplectic manifold. Let
Ham(M) be the group of Hamiltonian symplectomorphisms of M [13, Chap. 3.1].

Proposition 6. The symplectic leaves of P∞(M) are the orbits of the action of Ham(M)

on P∞(M). Given µ ∈ P∞(M) and φ1, φ2 ∈ C∞(M), let Ĥφ1 , Ĥφ2 ∈ Tµ P∞(M) be
the infinitesimal motions of µ under the flows generated by the Hamiltonian vector fields
Hφ1 , Hφ2 on M. Then �(Ĥφ1 , Ĥφ2) = ∫

M {φ1, φ2} dµ.

Proof. Write µ = ρ ωn . We claim that (WFφ F̂)(µ) = d
dε

|ε=0 F̂(µ − ε {φ, ρ} ωn)

for F̂ ∈ C∞(P∞(M)). To show this, it is enough to check it for each F̂ = Fφ′ , with
φ′ ∈ C∞(M). But

(WFφ Fφ′)(µ) = F{φ,φ′}(µ) =
∫

M
{φ, φ′} ρ ωn = −

∫
M

φ′ {φ, ρ} ωn, (6.4)

from which the claim follows. This shows that WFφ = Ĥφ .
Next, at µ ∈ P∞(M) we have

�(Ĥφ1 , Ĥφ2) = �(WFφ1
, WFφ2

) = {Fφ1 , Fφ2}(µ) =
∫

M
{φ1, φ2} dµ. (6.5)

This proves the proposition. 	
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Remark 5. As a check on Proposition 6, suppose that φ2 ∈ C∞(M) is such that Ĥφ2

vanishes at µ = ρ ωn . Then {φ2, ρ} = 0, so by our formula we have

�(Ĥφ1 , Ĥφ2) =
∫

M
{φ1, φ2}dµ =

∫
M

{φ1, φ2}ρ ωn =
∫

M
φ1 {φ2, ρ}ωn = 0. (6.6)

Remark 6. The Poisson structure on P∞(M) is the restriction of the Poisson structure on
(C∞(M))∗ considered in [10,11,22]. Here the Poisson structure on (C∞(M))∗ comes
from the general construction of a Poisson structure on the dual of a Lie algebra, consi-
dering C∞(M) to be a Lie algebra with respect to the Poisson bracket on C∞(M). The
cited papers use the Poisson structure on (C∞(M))∗ to show that certain PDE’s are
Hamiltonian flows.
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