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SOME GEOMETRIC GROUPS WITH RAPID DECAY

I. Chatterji and K. Ruane

Abstract. We explain simple methods to establish the property of Rapid
Decay for a number of groups arising geometrically. Those lead to new
examples of groups with the property of Rapid Decay, notably including
non-cocompact lattices in rank one Lie groups.

Introduction

A discrete group Γ is said to have the property of Rapid Decay (property
RD) with respect to a length function � if there exists a polynomial P such
that for any r ∈ R+ and any f in the complex group algebra CΓ supported
on elements of length shorter than r the following inequality holds:

‖f‖∗ ≤ P (r)‖f‖2 ,

where ‖f‖∗ denotes the operator norm of f acting by left convolution on
�2(Γ), and ‖f‖2 is the usual �2 norm. Property RD had a first striking
application in A. Connes and H. Moscovici’s work proving the Novikov
conjecture for Gromov hyperbolic groups [CoM] and is now relevant in
the context of the Baum–Connes conjecture, mainly due to the work of
V. Lafforgue in [L2] (see section 3). First established for free groups by
U. Haagerup in [H], property RD has been introduced and studied as such
by P. Jolissaint in [Jo1], who notably established it for groups of polynomial
growth, and for classical hyperbolic groups. The extension to Gromov
hyperbolic groups is due to P. de la Harpe in [Ha]. The first examples
of higher rank groups with property RD have been given by J. Ramagge,
G. Robertson and T. Steger in [RRS], where they established it for Ã2 and
Ã1 × Ã1 groups. Lafforgue proved property RD for cocompact lattices in
SL3(R) and SL3(C) in [L1]. His result has been generalized by the first
author in [C1] to cocompact lattices in SL3(H) and E6(−26) as well as in
a finite product of rank one Lie groups. It is well known (see section 1)
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that non-cocompact lattices in higher rank simple Lie groups do not have
property RD, and it is a conjecture due to Valette that all cocompact
lattices in a semisimple Lie group should have property RD (see [V]). In
this paper we shall see that the situation is different in rank one. Indeed,
all lattices have property RD. More precisely we prove the following.

Theorem 0.1. Groups which are hyperbolic relative to a family of
polynomial growth subgroups satisfy property RD.

This result has recently been generalized in [DrS2]. The following is
then an immediate consequence.

Corollary 0.2. (a) Let M be a complete and simply connected Rie-
mannian manifold of pinched negative curvature. Any discrete and finite
covolume subgroup of Isom(M) has property RD. In particular, all lattices
in rank one Lie groups have property RD.

(b) Suppose G acts properly discontinuously, cocompactly, by isome-
tries on a CAT(0) space with the isolated flats property. Then G has
property RD.

Due to the work of Lafforgue in [L2], the following is then straightfor-
ward.

Corollary 0.3. (a) Let M be a complete and simply connected Rie-
mannian manifold of pinched negative curvature and bounded curvature
tensor. Any discrete and finite covolume subgroup of Isom(M) satisfies
the Baum–Connes conjecture. In particular, all lattices in rank one Lie
groups satisfy the Baum–Connes conjecture.

(b) SupposeG acts properly discontinuously, cocompactly, by isometries
on a CAT(0) space with the isolated flats property. Then G satisfies the
Baum–Connes conjecture.

Closed subgroups (and in particular lattices) in SO(n, 1) and SU(n, 1)
were known to satisfy the Baum–Connes conjecture due to the work of Julg
and Kasparov in [JuK] on the Baum–Connes conjecture with coefficients.
The case of cocompact lattices in rank one Lie groups follows from the work
of Lafforgue in [L2] (see Skandalis’ exposition [Sk]) and was a break-through
in the subject because it provided the first examples of property (T) groups
satisfying the Baum–Connes conjecture. Closed subgroups of Sp(n, 1) and
of the exceptional Lie group F4(−20) are due to a recent work of Julg in [Ju2]
and [Ju3] where he proves the Baum–Connes conjecture with coefficients
for those groups. General word hyperbolic groups were shown to satisfy
Baum–Connes in [MY]. The role of property RD in Lafforgue’s work will
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briefly be recalled in section 3. Combining the computations used to prove
Theorem 0.1 with further geometrical considerations, we also prove the
following.
Theorem 0.4. Groups acting properly with uniformly bounded stabi-
lizers and cellularly on a CAT(0) cube complex of finite dimension have
property RD.

The particular case where the CAT(0) cube complex is an arbitrary
finite product of trees was treated independently in [C1] and by M. Talbi
in [T1] and [T2]. The latter also discusses the case (for which property RD
is still open in general) of groups acting cocompactly on euclidean buildings.
Here, he obtains interesting geometric information leading to partial results.
The Baum–Connes conjecture was already known for groups acting on a
CAT(0) cube complex using the work of [NRo] combined with the work of
Higson and Kasparov [HiK] on a-(T)-menable groups satisfying the Baum–
Connes conjecture (see also the exposition of P. Julg in [Ju1] and [Ch et al.]
for a-(T)-menable groups). However, we mention the following consequence
which follows immediately from Jolissaint’s work (see Corollary 3.1.8 in
[Jo1] or Theorem 1.5 below).
Corollary 0.5. Groups acting properly with uniformly bounded stabiliz-
ers on a CAT(0) cube complex of finite dimension cannot contain amenable
subgroups of super-polynomial growth.

Recently D. Wise and M. Sageev in [SW] proved a version of the Tits
alternative which is stronger than the above.

The paper is organized as follows. In section 1 we recall some basics
regarding property RD and give a crucial geometric condition which is suf-
ficient to imply property RD (Proposition 1.7). Section 2 is devoted to
relatively hyperbolic groups and the proof of Theorem 0.1. We establish
property RD by showing that the groups of Theorem 0.1 satisfy the as-
sumptions of Proposition 1.7. In section 3, we discuss Corollary 0.2 as well
as the Baum–Connes conjecture and the applications of our results in this
context, explaining Corollary 0.3. Finally, section 4 deals with CAT(0)
cube complexes and the proof of Theorem 0.4. Again we establish property
RD by showing that the groups of Theorem 0.4 satisfy the assumptions of
Proposition 1.7.

1 Rapid Decay and Techniques

We will explain the basic notions related to property RD for discrete groups.
Except for Proposition 1.7, the results given in this section are either simple
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remarks or results contained in Jolissaint’s paper [Jo1]. There is also a
theory of property RD for locally compact groups, first studied in [Jo1]
and developed further in [JS] and [CPS], but we restrict here to discrete
groups.
Definition 1.1. Let G be a group, a length function on G is a map
� : G→ R+ satisfying:

• �(e) = 0, where e denotes the neutral element in G;
• �(γ) = �(γ−1) for any γ ∈ G;
• �(γµ) ≤ �(γ) + �(µ) for any γ, µ ∈ G.
If G is generated by some finite subset S, then the algebraic word length

LS : G → N is a length function on G, where, for γ ∈ G, LS(γ) is the
minimal length of γ as a word on the alphabet S ∪ S−1, namely,

LS(γ) = min{n ∈ N | γ = s1 . . . sn, si ∈ S ∪ S−1} .
For a length function �, the map d�(γ, µ) = �(γ−1µ) is a left G-invariant
pseudo-distance on G. We will write B�(γ, r) for the ball of center γ ∈ G
and radius r with respect to the pseudo-distance d�, and simply B(γ, r)
when the context is clear.
Definition 1.2. Denote by CG the complex group algebra of G, that we
view as the set of functions f : G→ C with finite support, denoted supp(f).
The ring structure is given by pointwise addition and convolution:

f ∗ g(γ) =
∑

µ∈G

f(µ)g(µ−1γ) ,

(for f, g ∈ CG and γ ∈ G). We denote by R+G the subset of CG consisting
of functions with target in R+. We shall consider the following completions
of CG:

(a) The reduced C*-algebra of G, given by C∗
r (G) = CG

‖ ‖∗ , where ‖f‖∗ =
sup{‖f ∗ g‖2 | ‖g‖2 = 1} is the operator norm of f ∈ CG,

(b) For s ≥ 0, the s-Sobolev space Hs
� (G) = CG

‖ ‖�,s , where ‖f‖�,s =√∑
γ∈G |f(γ)|2(1 + �(γ))2s is a weighted �2 norm. For s = 0, this is

�2(G), the Hilbert space of square summable functions on G.
Definition 1.3 (Jolissaint [Jo1]). Let � be a length function on G. We
say that G has the property of Rapid Decay with respect to �, if there exists
C, s > 0 such that, for each f ∈ CG one has

‖f‖∗ ≤ C‖f‖�,s .

(Some authors refer to those groups as satisfying the Haagerup inequality.
That sometimes leads non-experts to confusion with the Haagerup property
or a-(T)-menability, something very different, see [Ch et al.].)
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The functions in the intersection of all Sobolev spaces
H∞

� (G) =
⋂

s≥0

Hs
� (G)

are called rapidly decaying functions, as their decay at infinity is faster than
any inverse of a polynomial in �. Property RD with respect to � is equivalent
to having H∞

� (G) ⊆ C∗
r (G) (see Remark 1.2.2 in [Jo1] or section 2 of [CPS]

for a more detailed proof), which explains the terminology. In case where
G = Z, one checks that under Fourier transform C∗

r (Z) is isomorphic to the
C*-algebra of continuous functions over the circle, and H∞

� (G) corresponds
to smooth functions. The following will give us more flexibility in the
computations.
Proposition 1.4. Let G be a discrete group, endowed with a length
function �. Then the following are equivalent:

(1) The group G has property RD with respect to �.
(2) There exists a polynomial P such that, for any r > 0 and any

f ∈ R+G so that supp(f) is contained in B�(e, r),
‖f‖∗ ≤ P (r)‖f‖2 .

(3) There exists a polynomial P such that, for any r > 0 and any
f, g, h ∈ R+G so that supp(f) is contained in B�(e, r),

f ∗ g ∗ h(e) ≤ P (r)‖f‖2‖g‖2‖h‖2 .

(4) Any subgroup H in G has property RD with respect to the induced
length.

Proof. We start with the equivalence between (1) and (2). Take f ∈ CG
with support contained in B�(e, r), we have

‖f‖∗ ≤ C‖f‖�,s ≤ C

√ ∑

γ∈B(e,r)

|f(γ)|2(r + 1)2s = C(r + 1)s‖f‖2 ,

and thus (2) is satisfied, for the polynomial P (r) = C(r + 1)s. Conversely,
if we denote by Sn = {γ ∈ G | n ≤ �(γ) < n + 1}, for n ∈ N we compute,
for f ∈ R+G,

‖f‖∗ =
∥∥∥∥

∞∑

n=0

f |Sn

∥∥∥∥
∗
≤

∞∑

n=0

‖f |Sn‖∗ ≤
∞∑

n=0

P (n + 1)‖f |Sn‖2

≤
∞∑

n=0

C(n+ 1)k‖f |Sn‖2 = C

∞∑

n=0

(n+ 1)−1(n+ 1)k+1‖f |Sn‖2

≤ C

√√√√
∞∑

n=0

(n+ 1)−2

√√√√
∞∑

n=0

(n+ 1)2k+2‖f |Sn‖2
2 = C

π√
6
‖f‖�,k+1 .



316 I. CHATTERJI AND K. RUANE GAFA

We finish by noticing that for f ∈ CG, if one writes f = f1−f2 + i(f3−f4)
with fi ∈ R+G and the supports of fi and fi+1 are disjoint for i = 1, 3,
then ‖f‖2

2 =
∑4

i=1 ‖fi‖2
2 and thus

‖f‖∗ ≤
4∑

i=1

‖fi‖∗ ≤ P (r)
4∑

i=1

‖fi‖2 ≤ P (r)
√

4‖f‖2 .

Let us turn to the equivalence between (2) and (3). To see that (3)
implies (2) it is enough to define, for γ ∈ G,

h(γ) =
f ∗ g(γ−1)
‖f ∗ g‖2

,

and notice that, in that case, f ∗ g ∗ h(e) = ‖f ∗ g‖2 and ‖h‖2 = 1. We
deduce (2) decomposing g = g1 − g2 + i(g3 − g4) as above. That (2) implies
(3) follows from the Cauchy–Schwartz inequality,

f ∗ g ∗ h(e) =
∑

γ∈G

(f ∗ g)(γ)ȟ(γ) ≤ ‖f ∗ g‖2‖h‖2 ≤ P (r)‖f‖2‖g‖2‖h‖2 ,

where ȟ(γ) = h(γ−1).
Finally, (4) implies (1) trivially since G is a subgroup of itself (and

the induced length is the original one), and (2) implies (4) since if H is a
subgroup of G, f ∈ R+H supported in a ball of radius r can be viewed in
R+G, supported in a ball of radius r as well, thus

‖f‖∗,H ≤ ‖f‖∗,G ≤ P (r)‖f‖�2G = P (r)‖f‖�2H . �
Recall that a discrete group G has polynomial growth with respect to

a length � if there exists a polynomial P such that the cardinality of the
ball of radius r (denoted by |B�(e, r)|) is bounded by P (r). Combined with
point (4) of the previous proposition, the following result gives the only
known obstruction to property RD, namely the presence of an amenable
subgroup of superpolynomial growth.
Theorem 1.5 (P. Jolissaint, Corollary 3.1.8 in [Jo1]). Let G be a dis-
crete amenable group and � a length function on G, then the following are
equivalent:

(i) G has property RD with respect to �;
(ii) G is of polynomial growth with respect to �.

Moreover, the growth will be bounded by P 2, if P is the polynomial of
Proposition 1.4 (2).

Proof (taken from [V]). We use a variation of Kesten’s characterization
of amenability (see [Le]), stating that a group G is amenable if and only if
‖f‖1 = ‖f‖∗ for any f ∈ R+G.
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(i) ⇒ (ii): Let f be the characteristic function of B�(e, r) and assume
property RD. We use Proposition 1.4 (2):

P (r)‖f‖2 ≥ ‖f‖∗ = ‖f‖1 =
∣∣B�(e, r)

∣∣ =
√∣∣B�(e, r)

∣∣‖f‖2 .

(ii) ⇒ (i): Take f ∈ CG such that supp(f) ⊂ B�(e, r), then

‖f‖∗ ≤ ‖f‖1 =
∑

γ∈B�(e,r)

|f(γ)| ≤
√∣∣B�(e, r)

∣∣
√ ∑

γ∈B�(e,r)

|f(γ)|2 ≤ P (r)‖f‖2 ,

the second inequality being just the Cauchy–Schwartz inequality, and the
last inequality is polynomial growth. �

According to A. Lubotzky, S. Mozes and M.S. Raghunathan in [LuMR]
there exists an infinite cyclic subgroup growing exponentially with respect
to the word length in any non-cocompact lattice in higher rank (exponen-
tially distorted copy of Z), and hence Theorem 1.5 combined with Propo-
sition 1.4 (4) shows that non-cocompact lattices in higher rank Lie groups
cannot have property RD. An important point of the present paper is to
show that it is not the case for non-cocompact lattices in rank one Lie
groups. It is part of a conjecture due to A. Valette (see [V, Conjecture 7])
that cocompact lattices in semisimple Lie groups should have property RD.

Remark 1.6. It is well known and easy (see Lemma 1.1.4 in [Jo1]) that a
finitely generated group G has property RD with respect to the word length
as soon as it has property RD for any other length, and thus explains why
we will be sloppy regarding the length functions involved as soon as we deal
with finitely generated groups.

The following proposition is a reformulation of Proposition 2.3 in [L1]
and it will be our main tool to prove property RD in this paper.

Proposition 1.7. Let G be a group acting freely and by isometries on a
metric space (X, d) such that there is a G-equivariant map

C : X ×X → P(X)
(x, y) �→ C(x, y)

(where P(X) are the subsets ofX) satisfying the following (for any x, y, z ∈ X
and γ ∈ G):

(i) C(x, y) ∩ C(y, z) ∩C(z, x) �= ∅;
(ii) There is a polynomial P such that for any r ≥ 0, then the cardinality

of C(x, y) ∩B(x, r) is bounded above by P (r);
(iii) There is a polynomial Q such that if d(x, y) ≤ r, then the diameter

of C(x, y) is bounded by Q(r).
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Then G has property RD (with respect to the length �(γ) = d(x, γx), x ∈ X
any base point).

Proof. Let us consider the groupoid G given as follows:
G = X ×X/ ∼

where (x, y) ∼ (s, t) if there exists γ ∈ G with x = γs, y = γt. We write
[x, y] for the class of the pair (x, y) in G, and

G0 =
{
[x, y] ∈ G ∣∣ x = γy for some γ ∈ G

}
,

with source and range given by
s, r : G → G0

[x, y] �→ s[x, y] = [y, y] , r[x, y] = [x, x] ,
so that the composable elements are

G2 =
{
([x, y], [s, t]) ∈ G × G ∣∣ y = γs for a γ ∈ G

}
,

and [x, y] · [s, t] = [x, y] · [γs, γt] = [x, γt] if y = γs. For f, g ∈ R+G, the
convolution is given by

f ∗G g[x, y] =
∑

z∈X

f [x, z]g[z, y]

(for [x, y] ∈ G). It is enough to prove that there exists a polynomial P such
that, for every r ∈ R+ and every f, g, h ∈ R+G such that supp(f) ⊂ Gr =
{[x, y] ∈ G|d(x, y) ≤ r}, the following inequality holds:

f ∗G g ∗G h[x, x] ≤ P (r)‖f‖2‖g‖2‖h‖2 (1)
for every x ∈ X, where ‖f‖2

2 =
∑

[x,y]∈G f [x, y]2. Indeed, from (1) we
conclude that G has property RD by using Proposition 1.4 (4) and defining
for a fixed x0 ∈ X, a linear map T : CG→ CG by

T (f)[x, y] =

{
f(γ) , if [x, y] = [x0, γx0] ,
0 , otherwise ,

so that T (f)[x0, x0] = f(e). One checks that ‖T (f)‖2 = ‖f‖2 and that
T (f ∗ g) = T (f) ∗G T (g) for any f, g ∈ CG; and hence T is an isometric
embedding of algebras. We now turn to the proof of inequality (1) above.
For x0 ∈ X,

f ∗G g ∗G h[x0, x0] =
∑

y,z∈X2

f [x0, y]g[y, z]h[z, x0 ]

≤
∑

x∈G\X

∑

y,z∈X2

f [x, y]g[y, z]h[z, x] =
∑

x,y,z∈G\X3

f [x, y]g[y, z]h[z, x]

and because of assumption (i), we have that∑

x,y,z∈G\X3

f [x, y]g[y, z]h[z, x] ≤
∑

x,y,z,t∈G\X4

t∈C(x,y)∩C(y,z)∩C(z,x)

f [x, y]g[y, z]h[z, x] .
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For t ∈ C(x, y) and d(x, y) ≤ r, then d(x, t) ≤ Q(r) and d(t, y) ≤ Q(r)
by assumption (iii). Let H1 = �2G, H2 = �2GQ(r) = H3 and denote by
{[t, x]|[t, x] ∈ G} (respectively {[t, x]|[t, x] ∈ GQ(r)}) the canonical basis
for H1 (respectively H2 and H3). Now we define Tf ∈ L(H2,H3) given on
the basis vectors of H2 and H3 by

〈
Tf ([t, x]), [v, y]

〉
H3

=






f [x, y] , if t is in the orbit of v (so we assume
t=v) and if t ∈ C(x, y)

0 , otherwise .
We then extend Tf by linearity to an element of L(H2,H3). In the same

way we define Tg ∈ L(H1,H3) and Th ∈ L(H2,H1). For [t, x] ∈ GQ(r) we
have〈

Tf ◦ Tg ◦ Th([t, x]), [t, x]
〉

H2
=

∑

y,z∈X2

t∈C(x,y)∩C(y,z)∩C(z,x)

f [x, y]g[y, z]h[z, x]

(note that this equality uses condition (iii) and the fact that f is supported
on a ball of radius r), thus

Trace(Tf ◦ Tg ◦ Th) =
∑

[x,t]∈GQ(r)

〈
Tf ◦ Tg ◦ Th([t, x]), [t, x]

〉
H2

=
∑

x,t∈G\X2

d(x,t)≤Q(r)

∑

y,z∈X2

t∈C(x,y)∩C(y,z)∩C(z,x)

f [x, y]g[y, z]h[z, x]

=
∑

x,y,z,t∈G\X4

t∈C(x,y)∩C(y,z)∩C(z,x)

f [x, y]g[y, z]h[z, x]

(the last equality again uses condition (iii) and the fact that f is sup-
ported on a ball of radius r). Now we use that Trace(Tf ◦ Tg ◦ Th) ≤
‖Tf‖HS‖Tg‖HS‖Th‖HS (this holds for Hilbert–Schmidt operators in gen-
eral) and evaluate those Hilbert–Schmidt norms:

‖Tf‖2
HS =

∑

([t,x],[v,y])∈G2
Q(r)

∣∣〈Tf ([t, x]), [v, y]〉H3

∣∣2 =
∑

x,y,t∈G\X3,d(x,t)≤Q(r)
t∈C(x,y)

∣∣f [x, y]
∣∣2

≤ P (Q(r))
∑

x,y∈G\X2

∣∣f [x, y]
∣∣2 = P (Q(r))‖f‖2

2 ,

the last inequality holding because of assumption (ii). Similarly, one shows
that ‖Tg‖2

HS ≤ P (Q(r))‖g‖2
2 and ‖Th‖2

HS ≤ P (Q(r))‖h‖2
2. �

Remark 1.8. If a group G has polynomial growth, one checks that taking
X = G and defining C(x, y) = B(x, d) ∪ B(y, d), where d = d(x, y) is the
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word length associated to any generating set for G, fulfills the assumptions
of Proposition 1.7 above. This reproves the fact, due to Jolissaint in [Jo1],
that polynomial growth groups have property RD.

If a group G is Gromov hyperbolic, then any Cayley graph is δ-hyper-
bolic for some δ ≥ 0, meaning that for any geodesic triangle with vertices
x, y, z in the Cayley graph, the geodesic between two of the vertices is
contained in the δ-neighborhood of the union of the two other geodesics
(see [GH, Chapitre 1, Définition 27]). Let us take X = G with a distance
induced by the length associated to a finite generating set S and define
C(x, y) to be the set of elements g ∈ G that are in the δ-neighborhood of
all geodesics between x and y, where δ ≥ 0 is the hyperbolicity constant
for the length associated to the generating set S. One then checks that the
assumptions of Proposition 1.7 above are fulfilled, reproving the fact, due
to de la Harpe and Jolissaint in [Ha], that Gromov hyperbolic groups have
property RD.

A combination of those two cases will give a proof for Theorem 0.1.

2 Relatively Hyperbolic Groups

This section will be devoted to the proof of Theorem 0.1. Let us first notice
that a lattice G in a rank one Lie group acts properly discontinuously by
isometries on a rank one symmetric space X. The space X is negatively
curved as a Riemannian manifold, but also δ-hyperbolic in the sense of
Gromov (indeed, the classical notion of curvature is stronger than Gromov’s
δ-hyperbolicity). If G is cocompact, then it is a Gromov hyperbolic group
and has property RD, but a non-cocompact lattice G will not necessarily
be Gromov hyperbolic as the parabolic subgroups will sometimes be free
abelian. However, G will be hyperbolic relative to the family of parabolic
subgroups.

The notion of a group G being hyperbolic relative to a collection of sub-
groups {H1, . . . ,Hk} was first introduced by Gromov in [Gr, Section 8.6].
Recall that a Gromov hyperbolic group can be defined as a group which
acts properly discontinuously by isometries and cocompactly on a proper
(closed metric balls are compact), geodesic, δ-hyperbolic metric space. One
could loosely define a group G to be hyperbolic relative to a collection of
subgroups {H1, . . . ,Hk} by dropping the cocompactness assumption and
replacing it by the requirement that the quotient be quasi-isometric to the
union of k copies of rays [0,∞) joined at 0. The subgroups {H1, . . . ,Hk}
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are the isotropy groups of the end of each ray (see details below). This is
the view point taken in Gromov’s original definition.

One can also define a groupG to be Gromov hyperbolic if one (and hence
any) Cayley graph of G is a δ-hyperbolic metric space. In [F], Farb gives
an alternative definition of relative hyperbolicity in terms of properties of a
coned-off Cayley graph (see below for formal definitions). The Gromov and
Farb definitions are not equivalent as is shown in [Sz]. However, according
to Bowditch’s work in [Bo], Farb’s definition together with the bounded
coset penetration property (see Definition 2.7 below) is equivalent to the
Gromov definition. More on relatively hyperbolic groups can be found in
[D] or [DrS1].

We shall use both the Gromov and Farb definitions and start here by
describing Gromov’s viewpoint more precisely. Let X be a proper, geodesic,
δ-hyperbolic metric space, recall (from Section III.3 of [BrH]) that one
defines ∂X, the boundary of X, as equivalence classes of geodesic rays
in X . For c : [0,∞) → X a geodesic ray, the Busemann function of c is the
map

bc : X → R , x �→ bc(x) := lim sup
t→∞

d
(
x, c(t)

) − t .

According to Remark 3.4 in Section III.3 of [BrH], one can construct ∂X,
the boundary of X, as equivalence classes of Busemann functions.
Definition 2.1. For c a geodesic ray and r ≥ 0, the sublevel sets
b−1
c (−∞, r] ⊂ X are called (closed) horoballs of radius r and the sets b−1

c (r)
are called horospheres centered at ξ = c(∞) ∈ ∂X.

Now suppose that a group G acts properly discontinuously by isometries
on X so that the quotient of X by G is quasi-isometric to the union of k
copies of [0,∞) joined at zero. For simplicity, assume the action is free.
Lift the rays in the quotient to obtain k points p1, p2, . . . , pk in ∂X. Choose
geodesic rays ci : [0,∞) → X such that ci(∞) = pi for i = 1, 2, . . . , k. Let
Hi be the isotropy subgroup for the action of G on ∂X of ci(∞) = pi and
assume that Hi preserves the Busemann function bci . If there exists a G-
invariant system of horoballs B centered at the points p1, . . . , pk in X, so
that the action of G on X \ (∪B∈BB) is cocompact, then we say the action
of G on X is geometrically finite with parabolic subgroups {H1, . . . ,Hk}.
Note that, since each Hi stabilizes a distinct point of the boundary, the
intersection Hi ∩Hj is finite if i �= j, and hence, up to taking finite index
subgroups, we can assume that {H1, . . . ,Hk} pairwise intersect trivially.
Definition 2.2 (Gromov). A group G is called hyperbolic relative to
the family {H1, . . . ,Hk} of finitely generated subgroups, if G admits a
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geometrically finite action on a proper, geodesic δ-hyperbolic metric space
X with parabolic subgroups {H1, . . . ,Hk}.
Example 2.3. To understand the Gromov definition, one should think
of a non-cocompact lattice G in SO(n, 1), the isometry group of H

n. In
this case, the group G acts properly discontinuously by isometries on H

n

but not cocompactly; the quotient is a manifold (or orbifold if the action
is not free) with finitely many cusps. However, G does act cocompactly
on a subset of H

n. Indeed, one can remove a G-invariant set of disjoint
open horoballs about the parabolic fixed points of G in ∂H

n, and G acts
cocompactly on the complement of this in H

n. It is this viewpoint that the
Gromov definition generalizes.

Recall that a subset Z of X is called quasi-convex (or K-quasi-convex)
if there exists a constant K > 0 such that for any points x, y ∈ Z, any
geodesic in X from x to y is in the K-neighborhood of Z. In the case of
a δ-hyperbolic space X, the horoballs are quasi-convex subsets of X and
thus the horospheres are quasi-convex in the complement of the union of
the horoballs.

Definition 2.4. For r ≥ 0, a system of quasi-convex subsets of a metric
space X is called r-separated if d(Q1, Q2) > r for any pair of sets Q1, Q2 in
the collection.

The following result, due to Bowditch, says that if G is hyperbolic rel-
ative to the family {H1, . . . ,Hk}, then one can make a careful choice of
horoballs so that the action of each Hi on the corresponding horosphere is
cocompact.

Lemma 2.5 (Lemma 6.3 and 6.12 in [Bo]). If pi ∈ ∂X is the parabolic point
stabilized byHi, then there is aG-invariant, r-separated system of horoballs
B such that G acts cocompactly on X ′ = X\∪B∈BB. Furthermore, suppose
that Bi ∈ B is a horoball stabilized by the subgroup Hi, then Hi acts
cocompactly on the bounding horosphere Si in X.

The analogous lemma in the case of H
n says that one can equivari-

antly shrink the horoballs in H
n so that they are sufficiently far apart, to

guarantee the action of a parabolic group on the corresponding horosphere
is cocompact. In the classical case, the horoballs are convex subsets of H

n

and thus the horospheres are convex in the complement of the union of the
horoballs.

For Farb’s definition, we begin with a finitely generated group G with
a fixed generating set S and a finite set of infinite, finitely generated
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subgroups H1, . . . ,Hk of G that pairwise intersect trivially. Consider the
Cayley graph Γ = Γ(G,S) of G with respect to S and the usual right action
of G on Γ by multiplication. Add a vertex cgHi , i = 1, 2, . . . , k for each left
coset gHi of Hi in G, and connect cgHi with each x ∈ gHi by an edge of
length 1/2. The new graph is denoted by Γ̂ = Γ̂(H1,H2, . . . ,Hk) and is
called the coned-off Cayley graph of G with respect to {H1,H2, . . . ,Hk}.
We denote by d̂ the path metric on Γ̂. It is easy to see that Γ̂ is quasi-
isometric to the graph obtained from Γ by identifying each left coset to a
point.

Definition 2.6. We call the group G weakly hyperbolic relative to
{H1,H2, . . . ,Hk} if Γ̂ is a δ-hyperbolic metric space.

This is Farb’s original definition for G being hyperbolic relative to the
collection {H1 . . . ,Hk}, however here we use the terminology suggested by
Bowditch in [Bo]. We will now describe the bounded coset penetration
property (see also Section 3.3 in [F]).

To simplify matters, we first restrict ourselves to the case of having only
one parabolic subgroup H in G. This is similar to considering a hyperbolic
manifold with one cusp versus several. The statements and proofs are easier
to read in this setting and we explain, at the end of the section, how to
handle more than one subgroup in the collection. We also assume that the
generating set S for G contains a generating set SH for H. For a word z
in the letters of S, denote by z the group element obtained as the endpoint
of the path in Γ whose initial point is the identity of G and follows the
edge labels given in the word z. A path w in Γ is a word z in the letters
of S, together with an initial point x0, so that the endpoint of the path is
the element zx0 ∈ G. Given a path w in Γ, we obtain a path ŵ in Γ̂ as
follows: read w from right to left and identify maximal subwords z in the
generators SH . If z is a maximal SH subword from a vertex g to gz in Γ,
we can replace the subpath z by an edge path with two edges each of length
1/2 in Γ̂ – namely, one edge from the vertex g to the cone point cgH and
another edge from cgH to the vertex gz. Following Farb, these subpaths
z of a word w are called coset subwords. The correspondence w �→ ŵ is
clearly a surjective map. If ŵ passes through some cone point cgH , then we
say that w penetrates the coset gH.

Recall that for P ≥ 1, a P -quasi-geodesic in a geodesic metric space
(X, d) is a P -quasi-isometric embedding ϕ : [a, b] → X, i.e. ϕ is a map
satisfying

1
P |t− t′| ≤ d

(
ϕ(t), ϕ(t′)

) ≤ P |t− t′|
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(where a < t ≤ t′ < b). We call the image of ϕ a P -quasi-geodesic between
ϕ(a) and ϕ(b). If ŵ is a geodesic (or P -quasi-geodesic) in Γ̂, then we call
any preimage w of ŵ a relative geodesic (or relative P -quasi-geodesic). A
path w in Γ (or ŵ in Γ̂) is called a path without backtracking if, for every
coset gH which ŵ penetrates, ŵ never returns to that coset after leaving.

Definition 2.7 (B. Farb). The pair (G,H) is said to satisfy the Bounded
Coset Penetration Property (BCP for short) if, for every P ≥ 1, there is a
constant K = K(P ) ≥ 0 so that if u and v are relative P -quasi-geodesics in
Γ̂ without backtracking that start at the same point and end in the same
coset, then the following are true:

1. If u penetrates a coset and v does not penetrate that coset, then u
traveled a Γ-distance of at most K in that coset.

2. If they both penetrate a coset, then the Γ-distance between their
entry and exit points is at most K (but they can travel a long time
in that coset).

To generalize Farb’s definition to the case of G hyperbolic relative to a
finite family of subgroups {H1, . . . ,Hk}, we can assume that the subgroups
pairwise intersect trivially and we take a generating set S for G that con-
tains SH1 ∪ · · · ∪SHk

, where SHi is a generating set for Hi. Since the SHi ’s
are pairwise disjoint, decomposing a word in coset subwords makes sense
and Definition 2.7 has a straightforward generalization. We now have both
definitions of relative hyperbolicity. According to Theorem 7.10 of [Bo],
Gromov’s definition (here Definition 2.2) is equivalent to Farb’s definition
(here Definition 2.6) with the bounded coset penetration property.

The following shows how the subgroups {H1, . . . ,Hk} sit in a relatively
hyperbolic group G.

Lemma 2.8. For G hyperbolic relative to {H1, . . . ,Hk}, there is M ≥ 0
such that the image of the inclusion map from Hi (with its induced word
metric) to G is M -quasi-convex (for any i = 1, . . . , k). As a consequence,
each Hi is quasi-isometrically embedded in G.

Proof. The idea is to think of Gromov’s Definition 2.2 first and use Lem-
ma 2.5 to identify Hi with a horosphere Si in X ′ = X \ ∪B∈BB, as well
as the fact that Si is quasi-convex inside of X ′. Then, since the Cayley
graph Γ = Γ(G,S) is quasi-isometric to X ′ we can carry the information
about Hi back to Γ. More precisely, the Cayley graph Γ sits inside X ′ via
f : Γ → X ′, g �→ g ·x0, where x0 ∈ Si ⊂ X ′ is a fixed base-point. For s ∈ S,
the element s · x0 lies in s · Si which is a horosphere disjoint from Si if s is
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not in SHi . If s ∈ SHi, then s · x0 lies in Si. Extend the map equivariantly
and we see that each coset gHi lies in its own horosphere g · Si. The map
f is a quasi-isometry.

The first observation is that there is a constant L ≥ 0 such that for any
h1, h2 ∈ Hi, we can find an L-quasi-geodesic path β in Γ from h1 to h2

that is contained in the subgroup Hi. Indeed, in the space X ′, the points
x1 = h1 · x0 and x2 = h2 · x0 are both in Si which is quasi-convex in X ′.
Hence there exists a constant L ≥ 0 such that any X ′-geodesic γ from x1

to x2 lies in the L-neighborhood of Si. We also know from Lemma 2.5
that Hi acts cocompactly on Si. Thus there exists N ≥ 0 such that every
point of Si is within N of an Hi-orbit point. Now move along γ at unit
speed, and at each integer t between 0 and d(h1 · x0, h2 · x0), we can pick
an Hi-orbit point that is (N + L)-close to γ(t). This sequence of Hi-orbit
points will give a path in Γ from h1 to h2 using only vertices from Hi. Let
us call β this path, which is a quasi-geodesic because f is a quasi-isometry
between Γ and X ′.

We want to show that there exists a constant M ≥ 0 such that any
Γ-geodesic α = [h1, h2] between elements h1, h2 of Hi is in the M -neighbor-
hood of the subgroup Hi. Suppose that α does not penetrate the coset Hi.
Then by the BCP, Definition 2.7 point 1, the length of β would be at most
K = K(L). But the length of α is certainly less than the length of β since
α is geodesic. Thus α has length no more than K. This means every point
of α is within K/2 of Hi. If α does penetrate Hi, then we decompose α into
successive pieces that do and do not penetrate Hi. Each piece lying outside
Hi has length at most K/2 by the above argument. Thus M = K/2 is the
desired constant. �

We proceed with proving that a group G which is hyperbolic relative
to {H1, . . . ,Hk} satisfies the hypotheses of Proposition 1.7, where the met-
ric space X is just G with the Cayley graph metric. We start with the
construction of a map

C : G×G→ P(G)
that satisfies the conditions of Proposition 1.7. To simplify matters, we
again first restrict ourselves to having only one parabolic subgroup H in G.
The following is the first step.

Definition 2.9. Let G be a finitely generated group and H a finitely
generated subgroup of G. For δ ≥ 0 and x, y in G, we define

Vδ(x, y) =
{
t ∈ G

∣∣ d(x, t) + d(t, y) ≤ d(x, y) + δ
} ⊆ G ,

and V̂δ(x, y) = {cgH | such that Vδ(x, y) ∩ gH �= ∅}.
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In other words, Vδ(x, y) is a δ-thickening of the convex hull of x, y (i.e.
of the set of all geodesics between x and y), and V̂δ(x, y) consists of the cone
points of Γ̂ which are in the δ-neighborhood of a Γ-geodesic from x to y.
The crucial property of those sets V̂δ(x, y) in our context is the following.

Lemma 2.10. If G is hyperbolic relative to a subgroup H, then there is a
δ big enough so that for any x, y, z ∈ G,

V̂δ(x, y) ∩ V̂δ(y, z) ∩ V̂δ(z, x)�=∅ .
Proof. According to Theorem 1.12 (3) of [DrS1], quasi-geodesics in the
Cayley graph of G are at bounded Hausdorff distance from any geodesic
in the coned-off graph Γ̂. The lemma now follows from the fact that the
coned-off graph Γ̂ is hyperbolic. �

Definition 2.11. Let G be a finitely generated group and H be a finitely
generated subgroup of G. For r ≥ 0 and x in the coset xH, we denote by
BH(x, r) = B(x, r) ∩ xH (this is the intersection of the xH points of the
ball of radius r centered at x). For x, y ∈ G we define

CH(x, y) =

{
BH(x, r) ∪BH(y, r) , if xH = yH with r = d(x, y) +K ,

{x} ∪ {y} , otherwise .

and K is a constant (that we will later choose to be the BCP constant of
Definition 2.7).

Obviously for three points x, y, z in the same H-coset, then CH(x, y) ∩
CH(y, z)∩CH (z, x) �= ∅. Keeping Lemma 2.8 in mind, the crucial property
of the sets CH(x, y) in our context is the following.

Lemma 2.12. Let G be a finitely generated group and H be polyno-
mial growth subgroup of G that is quasi-isometrically embedded. For any
x, y ∈ G, then the cardinality of B(x, r)∩CH(x, y) is bounded by the growth
polynomial of H.

Proof. In the case where x and y are not in the same H-coset, there is
nothing to prove. Otherwise, observe that B(x, r)∩CH(x, y) ⊆ BH(x, r) =
x(B(1, r)∩H). Since H has polynomial growth and the growth polynomial
is a quasi-isometry invariant in the class of discrete groups the lemma now
follows. �

Now we can define the sets C(x, y) for x and y arbitrary elements of G:
Take any quasi-geodesic γ = γ(x, y) in Γ between x and y such that all
its vertices belong to Vδ(x, y) (we then say that γ ⊂ Vδ(x, y)). Looking at
maximal H-coset subwords as explained just before Definition 2.7, we can
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determine the coset penetration points of γ. We write them as follows (this
includes entrance and exit points):

x = xγ
0 , x

γ
1 , . . . , x

γ
n = y .

We finally define
C(x, y) =

⋃

γ⊂Vδ(x,y)

⋃

1≤i,j≤n

CH(xγ
i , x

γ
j ) ⊆ G .

These sets are G-invariant by construction.
Proof of Theorem 0.1. We shall prove that the above defined map

C : G×G→ P(G)
satisfies the conditions of Proposition 1.7. Let us start by proving point (i).
Suppose x, y, z ∈ G and assume that d(x, y) ≥ max{d(y, z), d(z, x)}. If
x, y, z belong to the same coset, then z ∈ C(x, y) since d(x, z) ≤ d(y, x)
and hence z ∈ C(x, y)∩C(y, z)∩C(z, x) �= ∅. If they all belong to different
cosets, then according to Lemma 2.10, there are 3 relative δ-quasi-geodesics
γ(x, y), γ(y, z) and γ(z, x) in Γ entering a common coset gH. Assume
that γ(x, y), γ(y, z) and γ(z, x) enter and leave the coset gH at respective
points axy, bxy, ayz, byz and azx, bzx. Note, that the points bxy and ayz

(respectively byz and azx as well as bzx and axy) are at most distance K
apart by Definition 2.7 point 2, hence the intersection

CH(axy, bxy) ∩CH(ayz, byz) ∩ CH(azx, bzx) �= ∅
and is contained in the intersection of C(x, y), C(y, z) and C(z, x), showing
that the latter is nonempty as well. If only two out of the three points
belong to the same coset, then we can assume that xH = yH �= zH. There
are quasi-geodesics γ(x, z) and γ(y, z) in Γ entering the coset xH = yH at
respective points a and b which lie at a bounded distanceK by Definition 2.7
point 2. If d(x, y) ≥ max{d(a, x), d(b, y)}, then both a and b are in CH(x, y),
hence C(x, y)∩C(y, z)∩C(z, x) �= ∅. If d(a, x) ≥ max{d(x, y), d(b, y)}, then
y ∈ CH(x, a) so that again C(x, y) ∩ C(y, z) ∩ C(z, x) �= ∅.

We now turn to point (ii) and take x, y ∈ G. To start with, since
G is finitely generated, |V̂δ(x, y) ∩ B(x, r)| ≤ Cr, where C is the number
of cosets points in Γ̂ contained in a ball of radius δ centered at a coset
in Γ̂. We know that H has polynomial growth (both with its own word
length or with the length induced by G as H is quasi-isometrically em-
bedded in G, see Lemma 2.8) and that according to Lemma 2.12 all the
intersections CH(xγ

i , x
γ
j ) ∩B(x, r) have cardinality bounded by a polyno-

mial in r. The BCP property implies there are at most B(e,K) of the sets
CH(xγ

i , x
γ
j ) ∩B(x, r), which proves that C(x, y) has cardinality bounded

by a polynomial as well.
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For point (iii), it is enough to show that there is a constant C such
that for any x, y at distance less than r and for any z ∈ C(x, y) then
d(z, x) ≤ Cr + δ. Take z ∈ C(x, y), then either z ∈ Vδ(x, y) or z is in a
CH(a, b) for some a, b on γ ⊂ Vδ(x, y). For z ∈ V̂δ(x, y), then d(z, x) ≤ r+δ
by definition. For a z ∈ CH(a, b) we have d(z, x) ≤ d(z, a)+d(a, x) ≤ 2r+δ
because for any a, b ∈ γ, then d(a, b) ≤ r + δ.

For the general case, few things need to be changed. For each sub-
group Hi, one can define the sets Ci(x, y) as done above. Then one defines

C(x, y) =
n⋃

i=1

Ci(x, y) .

That condition (i) is satisfied follows from the fact that the coned off graph
is hyperbolic, and hence if the 3 points x, y, z lie in different cosets, there
are 3 relative δ-quasi-geodesics entering a common coset gHi (analogue to
Lemma 2.10) and the discussion is the same as above otherwise. That
conditions (ii) and (iii) hold follows from the fact that they hold in each
coned off graph (relative to an Hi), independently of relative hyperbolicity
but only dependent on the BCP. �

Remark 2.13. Intuitively, for x, y ∈ G the set C(x, y) is constructed as
follows. One fixes δ big enough and takes a G-orbit G ·x0 in the hyperbolic
space. One then considers a geodesic between x · x0 and y · x0. When
this geodesic intersects a horoball, one modifies it by replacing the segment
in the horoball by a ball in the horosphere, with diameter the distance
between the entry and exit points. The set C(x, y) consists of all elements
in G whose image in the G-orbit G · x0 is within distance δ of a modified
geodesic between x · x0 and y · x0.

3 Applications

In this section, we explain Corollaries 0.2 and 0.3 stated in the introduction.

Proof of Corollary 0.2 (a). Fundamental groups of finite volume quo-
tients of Riemannian manifolds with pinched negative sectional curvature
are known to have finitely many cusps (see [E, Lemma 3.1d]), and the cusps
are quasi-isometric to a ray. This, according to Gromov’s Definition 2.2,
shows that such groups are hyperbolic relative to their (finitely many) cusp
subgroups. According to [E, Corollary 3.3], the cusp subgroups are virtu-
ally nilpotent and thus have polynomial growth. This includes discrete sub-
groups of Isom(M) with finite volume quotient, where M is a non-compact,
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simply connected, real rank one symmetric space. These are exactly the
lattices in rank one Lie groups. �

The proof of Corollary 0.2 (b) only require the relevant definitions. The
following notion was first evident in the work of [KL] on 3-manifolds and
was expanded upon in C. Hruska’s thesis [Hr1], in the setting of CAT(0)
2-complexes. Recently, Hruska and Kleiner in [HrK] extended the work in
[Hr1] to all higher dimensions. We recall that a flat in a metric space is an
isometrically embedded copy of R

n.

Definition 3.1 (Isolated flats property). A CAT(0) metric space X has
the Isolated Flats Property (or IFP for short) if it contains a family of flats
F with the following two properties.

1. There is a constant C so that every flat inX lies in the C-neighborhood
of some flat F ∈ F .

2. There is a function ψ : R+ → R+ such that for any two distinct flats
F1, F2 ∈ F and for any positive number r, the intersection

Nr(F1) ∩ Nr(F2)
of Hausdorff neighborhoods of F1 and F2 has diameter at most ψ(r).

If we consider two maximal flats to be equivalent when their Hausdorff
distance is finite, then the family F in the preceding definition consists of
one maximal flat from each equivalence class. Intuitively, X has the isolated
flats property if given any two maximal flats in X which are not parallel,
the two flats diverge from each other in all directions. In particular, two
maximal flats are either parallel, or disjoint at infinity, meaning that their
corresponding boundary spheres are disjoint.

Proof of Corollary 0.2 (b). According to Hruska and Kleiner [HrK], groups
acting properly by isometries and cocompactly on CAT(0) spaces with the
isolated flats property are hyperbolic relative to the stabilizers of the maxi-
mal flats. These subgroups are virtually abelian hence of polynomial growth
so that Theorem 0.1 applies. In the particular where X is a CAT(0) 2-
complex with IFP, that follows from earlier work of Hruska in [Hr1]. �

Corollary 0.3 is straightforward from Lafforgue’s work [L2] and Corol-
lary 0.2. In order to explain that, we recall a few facts relating property
RD and the Baum–Connes conjecture. We will not attempt to describe
what the Baum–Connes conjecture is but we just state it. To do so, we
denote by EG the classifying space for proper actions of a discrete group G
and by KG

i (EG) its equivariant K-homology (for i = 0, 1). P. Baum and
A. Connes in [BC] defined an assembly map µi : KΓ

i (EG) → Ki(C∗
r (G))
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(i = 0, 1), where Ki(C∗
r (G)) is the topological K-theory of the C*-algebra

C∗
r (G), and formulated the following.

Conjecture (Baum–Connes). Let Γ be a discrete group. The assembly
map

µΓ
i : KG

i (EG) → Ki

(
C∗

r (G)
)

is an isomorphism.

We refer to [V] or [MiV] for an introduction to the Baum–Connes conjec-
ture, and to [Ju1] or [Sk] for expositions of Higson–Kasparov or Lafforgue
crucial advances on this conjecture. The first evidence of the relevance
of property RD in the context of the Baum–Connes conjecture was given
by the work of Connes and Moscovici [CoM] on the very closely related
Novikov conjecture that we won’t discuss here. The following observa-
tion is due to Lafforgue, Proposition 1.2 of [L1], generalizing a theorem by
Connes, explained by Jolissaint in [Jo2, Theorem A].

Proposition 3.2 (V. Lafforgue). Assume that G has property RD with
respect to �. Then Hs

� (G) is a Banach algebra for s large enough and the
inclusion Hs

� (G) ↪→ C∗
r (G) induces an isomorphism in K-theory.

Definition 3.3 (V. Lafforgue). A Banach algebra AG is an uncondi-
tional completion of CG if it contains CG as a dense subalgebra and if, for
f1, f2 ∈ CG such that |f1(γ)| ≤ |f2(γ)| for all γ ∈ G, we have

‖f1‖AG ≤ ‖f2‖AG .

The reduced C*-algebra is in general not an unconditional completion,
even for G = Z. If G has property RD with respect to a length function �,
then for s large enough, Hs

� (G) is a convolution algebra and an uncondi-
tional completion. For any unconditional completion AG of CG, Lafforgue
constructs a map

µA : KG
∗ (EG) → K∗(AG) ,

compatible with the assembly map µ∗. He then defines a class C′ of groups,
closed by products, containing (among others) discrete groups acting prop-
erly discontinuously and isometrically, either on a simply connected Rie-
mannian manifold with non-positive curvature bounded from below and
whose curvature tensor has bounded derivatives, or properly discontinu-
ously, isometrically and cocompactly on a CAT(0) metric space (more pre-
cisely, properly discontinuously and isometrically on a weakly geodesic and
strongly bolic metric space, see [L2] for the definition of strong bolicity)
and proves the following.
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Theorem 3.4 (V. Lafforgue [L2]). For any group belonging to the class
C′ and for any unconditional completion AG of CG the map µA is an
isomorphism.

In view of Proposition 3.2 above, this gives the following.

Theorem 3.5 (V. Lafforgue [L2]). The Baum–Connes conjecture holds
for any property RD group belonging to the class C′.

We refer to Skandalis’ nice exposition in [Sk] for more on Lafforgue’s con-
tribution to the Baum–Connes conjecture. Since the groups of Corollary 0.3
are contained in Lafforgue’s class C′, this finishes the proof of Corollary 0.3.
We end this section by giving several examples of CAT(0) spaces with the
isolated flats property.

Example 3.6. Suppose that M is a Haken 3-manifold obtained by gluing
hyperbolic components along torus boundary components. Then according
to Kapovich and Leeb in [KL], the universal cover M̃ of M has the isolated
flats property.

Example 3.7. Any finite covolume discrete subgroup of Isom(Hn) acts ge-
ometrically on a CAT(0) space with the isolated flats property (see Propo-
sition 9.1 in [Hr2]).

Example 3.8. Wise has shown that a proper, cocompact piecewise Eu-
clidean CAT(0) 2-complex X has the isolated flats property if and only if
X does not contain an isometrically embedded triplane. In particular, this
includes any CAT(0) 2-complex built out of hexagons. A triplane is a space
formed by isometrically gluing three Euclidean half planes together along
their boundary lines. For a proof, see [Hr1].

Remark 3.9. It has been shown in [MY] that Gromov hyperbolic groups
belong to Lafforgue’s class C′. However, it is an an open question which
relatively hyperbolic groups can be given a metric which is strongly bolic,
and hence the Baum–Connes conjecture for the groups of Theorem 0.1 is
still open.

4 CAT(0) Cube Complexes

In this section we give the proofs of Theorem 0.4 and Corollary 0.5. We shall
prove that the zero-skeleton of a cubical CAT(0) complex, endowed with
the distance of the one-skeleton, satisfies the hypothesis of Proposition 1.7.
We start by recalling some definitions.
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Definition 4.1. Let (X, d) be a metric space and δ ≥ 0. For any finite
sequence of points x1, . . . , xn ∈ X, we say that x1 . . . xn is a δ-path if

d(x1, x2) + · · · + d(xn−1, xn) ≤ d(x1, xn) + δ

and that three points x, y, z ∈ X form a δ-retractable triple if there exists
t ∈ X such that the paths xty, ytz and ztx are δ-paths. In this case we
will say that the triple x, y, z δ-retracts on t, and that t is a δ-midpoint or
an approximate midpoint. We will say that X satisfies property Lδ, or is
an Lδ-space if there exists a δ ≥ 0 such that any triple has a δ-midpoint.
Notice that if a triple is δ-retractable, then it is δ′-retractable for any δ′ ≥ δ.
Remark 4.2. Hyperbolic metric spaces are Lδ-spaces, and “to be an Lδ-
space” is closed under direct product (with an �1-combination of the dis-
tances) but not under quasi-isometries. Some considerations of these spaces
can be found in [C2] and they will be the object of an independent study
in [CR]. Groups admitting a Cayley graph which is an Lδ-space have sub-
cubic isoperimetric inequality as shown by Elder in [El].
Definition 4.3. A cube complex X is a metric polyhedral complex in
which each cell is isometric to the Euclidean cube [−1/2, 1/2]n and the
gluing maps are isometries. A cube complex X is called CAT(0) if the
metric induced by the Euclidean metric on the cubes gives X a CAT(0)
metric. We shall denote by Xi the set of i-dimensional cells of X, and say
that X is finite dimensional if there is n < ∞ such that Xm is empty for
any m > n.

We shall use the following fundamental work developed by Sageev in [S],
that we now recall. A combinatorial hyperplane is an equivalence class of
unoriented edges, where two edges e and f are called equivalent if there
exists a finite sequence of edges e = e1, . . . , en = f , such that for each
i = 1, . . . , n−1, ei and ei+1 are opposite sides of some 2-cube in X. A hyper-
plane is a subcomplex formed by cells (=subcubes) in the first barycentric
subdivision and which are orthogonal (when viewed in the non-subdivided
cube as a subset of R

n) to the edges of a combinatorial hyperplane. The
crucial result we shall need is the following.
Theorem 4.4 (Sageev, [S, Theorem 4.6]). Given two vertices p and q in
X0 that are at distance n in the 1-skeleton, any geodesic path crosses n
distinct hyperplanes. Moreover, each of those hyperplanes separates p and
q, and any edge path between p and q must cross these hyperplanes.

In other words the distance between two points in the 1-skeleton only
depends on the number of hyperplanes separating them. This already yields
the following useful fact.
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Lemma 4.5. Any closed loop in the 1-skeleton has even length.

Proof. Follows from Theorem 4.4 above, since in a closed loop, every hy-
perplane has to be crossed an even number of times. �

Definition 4.6. For a given closed loop in the 1-skeleton we define its
combinatorial area by the minimal number of two cells (squares) needed
to fill the loop. This number exists because we assumed X to be CAT(0),
hence contractible.

We now proceed with a result that, as pointed out by G. Niblo, was
already known by M. Roller in [Ro] in the context of median graphs. We
give a proof here for completeness.

Proposition 4.7. The zero-skeleton X0 of a CAT(0) cube complex X,
endowed with the distance of the one-skeleton, is an L0-space.

Proof. The first step is to show that a triple x, y, z ∈ X0 with d(x, y) = 2
and d(x, z) = d(y, z) = n retracts.

There are two cases to be considered, the first one is the case where x
and y belong to a common two-dimensional cube, case in which they have
to be opposite vertices. We call a and b the two remaining vertices (opposite
as well in this common two-dimensional cube). By Lemma 4.5, d(a, z) and
d(b, z) cannot be n – e.g. a, z, y lie on a closed loop – so it is either n+1 or
n− 1 since both a and b are adjacent to x and y. If d(a, z) = n− 1 we are
done, xaz, yaz and xay are 0-paths, so let us assume that d(a, z) = n+ 1.
This means that the hyperplane spanned by the equivalence class of the
oriented edge from x to a separates a from z but not b from z. Similarly
for the hyperplane spanned by the equivalence class of the oriented edge
from y to a, so that between b and z there are two hyperplanes less than
between a and z, and we deduce that d(b, z) ≤ d(a, z) − 2 = n − 1, hence
xbz, ybz and xby are 0-paths.

The second case to consider is where d(x, y) = 2 and x and y do not
share a common 2-dimensional cube, so that there is a unique element t at
distance one from both x and y. Again because of Lemma 4.5, the distance
between t and z is either n+ 1 or n − 1. If it is n − 1 we are done, and it
cannot be n+1 because then no geodesic from x to z and from y to z would
go through t, which means that x, t, y, z, x would form a non-contractible
closed loop.

To finish the proof we proceed by contradiction and assume that there
is a triple that doesn’t retract. Among all those triples let x, y, z be one
with smallest possible minimum of the three side lengths, say d(x, y) = n
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(n is bigger than 2 by the preceding discussion), and consider the geodesics
between x, y and z realizing the smallest possible combinatorial area (and
keep them for the rest of the proof). On the geodesic between x and y
pick a at a distance one from x, so that d(a, y) = n − 1 and hence the
triple a, y, z retracts, on a point t. It is easy to see that actually t = y;
indeed, if t �= y, then x, t, z would give a non-retractable triple with strictly
smaller minimum side length than the triple x, y, z (indeed, if the triple
x, t, z was to retract, then so would the triple x, y, z). Since the triple
a, y, z retracts on y, it means that the path ayz is a geodesic. We know
that d(a, z) = d(x, z) ± 1 (because a is at distance 1 to x and closed loops
have even length), and it cannot be that d(a, z) = d(x, z)− 1, because then
a would lie on a geodesic between x and z, and hence the triple x, y, z would
retract on y as well. Hence d(a, z) = d(x, z) + 1, and we now are almost
reduced to the first step of the proof: Take b on the chosen geodesic from
x to y at distance 1 to y, by assumption on the minimality of the triple
x, y, z, the triple x, b, z has to retract, on a point t which is easily seen to be
at distance 1 from b. We get a contradiction because now the triple t, y, z
falls in the first step of the proof (t = y is not possible because we assumed
b on a geodesic to x), hence is contractible, which allows us to contract the
triple x, y, z as well. �

In order to proceed with the proof of Theorem 0.4 we will need the
following result of [S], which says that a collection of pairwise intersecting
hyperplanes have to share a common cube:
Theorem 4.8 (Sageev [S, Theorem 4.14]). For X a CAT(0) cube complex,
if h1, . . . , hk is a collection of hyperplanes such that hi ∩ hj �= 0, then⋂k

i=1 hi �= 0.
We now proceed with the proof of Theorem 0.4.

Proof of Theorem 0.4. We will first show that X0 satisfies the hypothesis
of Proposition 1.7, and this will settle the case where G acts freely on the
CAT(0) cube complex. We will treat the general case at the end of the
proof. The map C : X0 ×X0 → P(X0) is simply defined as follows:

C(x, y) =
{
t ∈ X0 such that d(x, t) + d(t, y) = d(x, y)

}
.

This map is G-equivariant follows from the G-invariance of the distance d.
That this map satisfies (i) follows from Lemma 4.7, point (iii) is obvious
(since C(x, y) consists of points on geodesics) so let us prove point (ii). We
have to show that for any x, y in X0, the number of points t in X0 on a
geodesic from x to y and lying in a ball of radius r centered at x is at most
polynomial, and the polynomial is actually of degree n, the dimension of



Vol. 15, 2005 SOME GEOMETRIC GROUPS WITH RAPID DECAY 335

the cube complex. The idea is to show that the largest number of points
occurs when x and y are opposite vertices of an n-cube in R

n with side
length r/2. This number is clearly bounded by a polynomial of degree n
in r.

Let H be the set of hyperplanes separating x from y. We call two
hyperplanes h and h′ parallel if they don’t intersect, and write H as a
disjoint union of subsets P1, . . . , Pk where all hyperplanes in a given Pi are
parallel. A partition is called minimal if for each i and each h ∈ Pi there
exists j and h′ ∈ Pj intersecting h. On one extreme, if a minimal partition
has just one piece, then there is a unique geodesic between x and y. On
the other extreme, if there are n pieces each containing one wall, then x
and y are opposite vertices in an n-cube in R

n.
We now claim that a minimal partition has at most n pieces: Take a

geodesic from x to y and define P1 as follows; put in P1 the first hyperplane
crossed, say h1. Put h2 in P1 if and only if it doesn’t intersect h1, so that
at the i-th step one puts hi in P1 if and only if hi intersects none of the
hyperplanes already in P1. Then define Pi similarly, starting with the first
hyperplane not already in Pi−1 and skipping all the hyperplanes already
sitting in Pi−1. Doing so there is a sequence {hi} with hi ∈ Pi of pairwise
intersecting hyperplanes and hence, according to Sageev (Theorem 4.8 cited
above), this partition (which is not unique as it depends on the geodesic
we started with) has at most n pieces.

Let us now treat the general case and produce a metric space Y on
which G acts freely and satisfying the assumptions of Proposition 1.7. The
metric space is

Y = X0
∐

x∈X0

Gx ,

where Gx < G is the stabilizer of x ∈ X0, and the metric is given as follows:
two distinct points in the same stabilizer Gx are at distance one, and two
points in distinct stabilizers Ga and Gb (for a, b ∈ X0) are at distance
d(a, b). Let π : Y → X denote the canonical projection. For two points
x, y ∈ Y , the sets CY (x, y) are given by π−1 (C (π(x), π(y))) (where C is
defined on X0 as in the beginning of the proof). Condition (i) is obviously
satisfied, for (ii) the polynomial is cP (n), where c is the uniform bound
on the cardinality of the stabilizers and (iii) is satisfied as well because
the diameter of CY (x, y) differs by at most one from that of C(π(x), π(y)).
Intuitively, we blow up the stabilizers to get a free action, and the uniform
bound on stabilizers allows this to be done through a quasi-isometry of
multiplicative constant 1, which does not affect conditions (i), (ii) and (iii)
of Proposition 1.7. �
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In particular, since Coxeter groups are known to act properly discon-
tinuously by isometries on CAT(0) cube complexes of finite dimension
[NR], we have the following (already proved in [C2] after the suggestion
of N. Higson).
Corollary 4.9. Coxeter groups have property RD.

Corollary 0.5 is a straight consequence of Theorem 0.4 and Theorem 1.5.
Note that even though Wise and Sageev have a stronger result [SW], the
techniques are completely different. It was previously known that virtually
soluble subgroups of such groups have to be virtually abelian (see II.7.8 in
[BrH]).
Remark 4.10. The following example has been provided by S. Mozes and
shows that the assumption regarding uniform bound on stabilizers cannot
be removed. Let p be a prime and Fp be a finite field of cardinality p. The
group Γ = PGL2(Fp[t, t−1]) (the quotient, by the center, of invertible 2
by 2 matrices with coefficients Laurent polynomials in one variable on the
finite field Fp) is generated by the elements(

t 0
0 1

)
,

(
1 1
0 1

)
and

(
1 0
1 1

)
.

Consider the group G = PGL2(Fp((t)))×PGL2(Fp((t−1))) with its associ-
ated affine Bruhat–Tits’ building X, a product of two (p+1)-regular trees.
The group Γ acts properly on the vertices of X via the diagonal embedding
of Γ into G, under which Γ is an irreducible lattice. The stabilizers of this
action are the finite subgroups

Ln =
{(

1 P (t)
0 1

) ∣∣∣ P (t) is a polynomial of degree at most n
}

which are of cardinality |Ln| = pn+1. Now, since the element(
1 tn

0 1

)
=

(
tn 0
0 1

)(
1 1
0 1

)(
t−n 0
0 1

)

has length 2n + 1, there is a positive constant C such that for each n,
Ln ⊂ B(Cn), and G cannot have RD because the elements χn given by the
characteristic functions of the subgroups Ln have operator norm as follows

‖χn‖op ≥ ‖χn ∗ χn‖2

‖χn‖2
=

‖|Ln|χn‖2√|Ln|
=

√
pn+1 |χn‖2 ,

which contradicts inequality (2) of Proposition 1.4.
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Sp(n, 1), C.R. Math. Acad. Sci. Paris 334:7 (2002), 533–538.

[Ju3] P. Julg, The Baum–Connes conjecture with coefficients for the groups
Sp(n, 1) and F4(−20), in preparation.

[JuK] P. Julg, G. Kasparov, Operator K-theory for the group SU(n, 1), J.
reine angew. Math. 463 (1995), 99–152.

[L1] V. Lafforgue, A proof of property RD for discrete cocompact subgroups
of SL3(R) and SL3(C), Journal of Lie Theory 10:2 (2000), 255–277.
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