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Abstract
The Fixed Point Theory bar nonexpansive mappings is strongly

based upan the geometry ob tite ambient Banach space. Fn Section
1 we state tite role which is played by the muitidirnensional con-
vexity and smoothness in this tbeory. Iri Section 2 we study tite
computation of the normal structure coefflcient in finite dimen-
sional tp—SpaceS and ite connection with severa! clasaje geometrie
problems.

Tite rnost known and important fixed point theorem is the contractive
rnapping principie, which asaures that every contraction T from a com-
plete metric space X hito itself has a nnique fixed poSt. The simplicity
of its praof and the possibility of attaining tite fixed point by using
succesive approximations let this theorem become a very useful tool iii
Analysis and lii Applied Matitematies. A transíation lii R” is a simple
example showing that the Banach theorem doca not hold if we replace
the condition T is contractive by the weaker condition T is nonexpan-
sive, i.e. d(Tx,Ty) =d(x,y) bar every x,y 5 X. Even tite “middle”
condition d(Tx, Ty) <d(x, y) bar every x, y in X (in titis case T is usu-
ally called vveakly coritractive) doca not assure tite existence of a fixed
poSt (consider, for instance, the mapping Tx = z + 1/x defined in tite
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complete metric space [1,+oo)). In titis situatian, it is not surprising
that bor almost borty years tite problem of the existence fixed points
bar nonexpansive mappings was relegated. However in 1965, Browder
[Brl] proved that every nonexpansive mapping T brom a convex baunded
closed subset C of a I-lilbert apace X hito C has a fixed point. In the
same year Browder [Br2] and Kirk [K] proved that this result could be
improved assuming the weaker condition X is a nniform convex space or
X is a reflexive Banach space with normal structure. We recail that a
baunded set A is called diametral ib bar every point x E A we have diam
A sup{j¡x — ~¡¡~ y E A}. A Banach space X 18 said to have viormal
atructure ifevery baunded convex diametral subset A of X isa singleton.
It is clear that in the cartesian plane every convex set with more than
ane element is not diametral. However the set co{en} in ca is clearly a
diametral bounded convex set. These results are noteworthy regarding
tite imposed conditions on C, which look more suitable in the compact
fixed point theory (Schander’s Theorem) and the “geometric” conditions
witicit X must satis&. F~om this point a ver>’ wide titear>’ itas been
developed in trying to flnd mare general condition on the Banach space
X and 011 the subset C witich still assure the existence of fixed points.
To simplifr we shall Sa>’ that a Banach space X has the fixed point
property (f.p.p.) ibever>’ nonexpansive mapping T defined from a convex
baunded closed subset G of X into X has a fixed point. Since Kakutani
showed a simple exainple of a nanexpansive mapping ftom tite unit bali
E of ca into E without fixed points, it is clear that Banach spaces exist
which do not have tite f.p.p. Tite failure of the f.p.p. in this example is
a consequence of the weakiy noncompactness of .8. I-lowever it can be
proved that every nonexpansive mappíng from a weakly compact convex
set ti of ca into C has a fixed point. When such a condition is satisfied
we sitail sa>’ that the Banach space X has the weak fixed point property
(w.f.p.p.). Obvionsly, the f.p.p. and the w.f.p.p. are identical ib X is
reflexive. For a long time an open question was: Does ever>’ Banach
apace X have thew.f.p.p.? The answer to this question was given by
Alspach [Ah in 1981, proving that L1 [0, 1] fails ta have the w.b.p.p. Since
Maure>’ [Ma] proved that ever>’ reflexive subspace of L1 has the E
another questian becomes ver>’ important: Daca any reflexive Banach
space have tite f.p.p.? Until 110W nobody has been able to answer this
quest ion.
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Wc shall show in this paper different geometrie properties connected
with metric fixed point theory. In Section 1 we see that multidhnensianal
convexity and smootitness give conditions which assure the fixed point
property. In Section 2 we sitow the relationship between the problem
of computing tite normal structure coefficient and sorne “classic brame”
geometric problema.

1 Convexity and smoothness in fixed point
theory
Wc start recalling some deflnitions. Let X be a Banacit space, A and fi
baunded snbsets of X. Tite Chebyshev radius of tite set A with respect
to tite set B la defined by

r(A,B) = inf{sup{ lix — y¡¡ : x E A} : yE B},

titat la, rauglil>’ speaking, r(A, fi) is tite least radius sucit that a bali
centered in fi witit titis radius containa A; when .8 = coA, we denote
r(A) = r(A,co A); tite Chebyshev center of A witit rcspect to .8 is
defined by

Z(A, fi) = {y Cfi : snp{j¡x — vil : x E A} = r(A, B)};

denoting Z(A) = Z(A,co A). The set Z(A, fi) can he empty. However ib
fi la a weakly compact and convex set, tite Chebyshev center Z(A,B) la
nonempty. Witit this natation a convex closed bounded set A is diame-
tral if diam A = r(A) and X has normal atructure ib diam A/r(A) > 1
for every closed bounded convex subset A of X with diam A > 0. We
say that X has weak normal atructure II diam A/r(A> > 1 bor ever>’
weakly compact and convex subset A of X. We recail a “classic” result
in metrie fixed point titear>’:

Theorem 1 [1<].Let X be a Bar¿ach apace wíth weak normal atructure,
C a weakly compact convez aubaet ofX ovni T: C —. C a v¿onezpanszve
mapping. Titen T has a f¿zed point.

One metitod to asaure titat a Banach space satisfies the fixed point
property (f.p.p.) can be to prove that titis space la near (in tite Banacit-
Mazur distance) to another Banach apace with the f.p.p. Titis method
needa to use a “measure” in the sense: To what degree does a Banach
apace have the f.p.p.? A tecitnique in titis way was initiated by Bynum
[By] witit tite definition pf sorne normal atructure coefficients.
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The most simple normal structure coefficient is the following:

N(X)zzinb{ffit~) :AcX

convex closed and bounded with diam (A)> 0}

It is obvious from the definition that X itas normal structure ib
N(X)> 1. It can be proved that tite converse result does not hold. We
shall Sa>’ (ref. [Mal)titat X has uniform normal structnre ib N(X) > 1.
Titere are several geometric properties of tite Banacit spaces which as-
sures either tite normal structúre or tite f.p.p. It is possiblé even to give
bounds from below for N(X) or some otiter similar coefficients.

We start by showing that ever>’ uniform convex space has uniborm
normal structure and N(X) can be bounded from below úsing tite Clark-
son modulus. We recalí that aBanacit space X is called unifonnly conver
(U.C.) ib for ever>’ e> O titere exists ~5> O such titat 1k + yil/2 < 1—6
for every x, y E X sucit titat Ni =1, Ii~,ii =1 and 1k — vil e. Tite
function

6x(c) = inf{1— ik+yII :x,y E Bx,ilx—yii =4
is called tite (Clarkson) modulus ob uniform convexity and the number
eo(X) = sup{e =O ÓX(e) = 0} is calla! tite characteristic of convexity
of A?. It is clear titat Xis U.C. iband oní>’ ib t0(X) = 0.

Theorem 2 IB>’]. II A? le a Banach epace witit modutus of converátv 6,
titen N(X) =(1 —6(1))’.

Titen we see titat N(X) > lib tite citaracteristic ob convexity of A?
is less titan 1. A similar result can be proved now concerning tite mod-
ulus ob uniform smoothness. We recail that the dual notion of uniform
convexity is tite concept of uniform smoothness. Tite space A? is said to
be nniformly smootit (US.) ib limu.o PJ<(t) — o witere

p(t) = 1k + ti,iI +1k — tyii í~ ~ E Bx}.

Tite function p(t) is called modulus of uniborm smootbness. From tite
Lindenstrauss formula

px*Q) = te bx(c)
00<2 2
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it easily follows that A? is UC. if and only u A?t is U.S.

Theorem 3 [Pr2]. Let A? be a Banach apoce with modulus of smootitttess

px(-). Denote

p = inf{px(r) — + 1: r E (0, 1/2]}.

Titen N(X) =l/p. Itt particular A? itas ttormal structure ifp~,%(0) < 1/2.,
Tite notion of uniform convexity and tite corresponding modúlus oní>’

depends on tite two dimensional subspaces of A?. A natural generaliza-
tion of titis concept is the k—uniform couvvexity. Let A? be a Banach
space. The modulus of k-uniborm rotnndity associated of space A? is
defined as

and A(n

where A(xi , z~~) is tite k-dimensional volume of co (x
1, ~zk+,),i. e.

1 1 --. 1
fl&r2) ... f1(xk+1)

sup {det (11x1 ) :fjEX

f~(x,) f~(x2) -. - ffl(xk+L)

andiif2il=lfori=1.. ,lv }
The space is said to be k-uniform convex (k-UC) ib for alí c > 0,

>0.
k

Tite citaracteristic of convexity ~oof A? is defined as follows:

e~(X) = sup{e 4(c) = 0}

Tite dual notion of k-UC ja the concept of k-uniform smootitness. A
Banach space A? is said to be k-uniformly smooth ib: For alí e > O
there exists ,~ sucit titat for alí x E A? and for ah t , O < t < , , ib y
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is a k-dimensional subspace, titere exists a norm ene vector y E V such
titat:

~Kik+tidi+ 1k —ty¡j) < 1 +ct.

It can be prova!:

Theorem 4 [MPI. A Bauzach space A? ja k-uttiformly convez if ami only
if A? ja k- uniformly.smooth.

Sullivan [Su] prova! titat ever>’ k-UC space itas normal strncture.
The following result is a “quantitave improvement” ob titis fact:

Theorem 5 [Am]. Por everij k avid every E > O, me itave

1
max{1—!~, 1—

so tital if6~(1) > O titen A? has uniform normal atructure.
What is tite situation bor k-U.S. spaces? The bellowing class obspaees,

usually calla! Bynum’s spaces, gives a first answer te titis question.

Example 1 Let {x,~} a vector in 4,1 =p < x. Denote x~ aud
x tite vectors whose cemponents are x+Q) = max{xQ), 0}, x}i) =

max{—xQ), 0}. For any q 6 [1,+~) and bor x E 4 set

iiXiip,q = (ik~li~ + ¡¡~§¡¡~)1!~; Ikiip,cc max{iIx~Ii~, lIa§I¡p}.

It is easy te check that all norms are equivalent te tite usual norm rn
4. Tite corresponding spaces will be deneted by I~ , 4,~. We know
that 4,i is 2-UC ¡ST]. Titus its dual ~ is 2-US bnt this space baus te
itave normal structure. Indeed tite set ce {en : vi E N} is a diametral set
because diam {e, vi E N} = 1 and for every peint c = _ ajej, a~ =
0, >3L, a~ = 1 we have iien+’ — cliP = sup{ 1, ~ c4} = 1.

Titis example sitows titat we need a different method te prove that
k—US spaces itave tite b.p.p. García Falset [Ga] itas recentí>’ preved
that titese spaces have this property. We sitail follew his appreach in
a more general setting, giving a “quantitative” version ob lis result.
For a Banacit space A?, [A?] will denote, as usual, tite qnotient space
I,4X)/co(A?) endowed with tite norm ii[zn]li = limsup ilznli, where [za]
denotes the equivalent class of {z~} E I0<,(X). By identi~’ing x E A?
with tite class [x, x, ...] we can consider A? as a subset of [A?]. Ib K is a
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subset of A? we can censider tite set ¡K] {Izn] E [Xl: z, E K bor ever>’
vi E N}. II T ja a mapping frem K into K we define [T]: [Kl —~ [K] by
[T](frvn]) = [Txn].

Definition 1 Let A? be a Banach space. Por any nonviegative nt¿mber a
me define tite coeflicient

S(a, b, A?) = sup{liminf 1k.. + xil}

mitere tite supremum is takett over alt x E A? witit IkiI < a and oíl
weakly viulí sequences i~ B~ .such that lim,.,m;..!=mlix.. — Xmli =1 ovni
limlixnIi > b. We define

R(o,A?) inf{S(a,b,X) :0< b c 1/WCS(A?)}

mitere WCS(A?) ja tite Byntm’s coefficient of meaR, normal atructure
witicit can be defined (see, for ittatance [DL])by

WCS(A?) = mf {limn~mjM%Bzjj — itmll }
mitere tite infimum is taken over alt meakly mill sequevices itt ~x such
that íixnn,m;n#m lx..— x,nli avid Hm Iixnii exist.

Theorem 6 Let A? be a Banacit apoce avid aseume titat for some a > O
me tate R(o, A?) < 1 + o. Titen A? itas tite meak ¡¡cred poivit property.

Proaf. Assume that A? bails te itave the f.p.p. Titen we can find a
weakly compact and convex subset K of A? sucit titat diam (K) = 1
and K is minimal invariant for a nenexpansive mapping T which itas no
fixed point and we can afro flnd a weakly nuil approxhnated fixed point
sequence {x,.} of T in K. We consider tite set

[W] {[zn] E [K] : luz..] — [x..]ii=1

and
limsup llin sup 1k.. — zmh =4

n vn

witere t = 1/(1 +0). It is easy te check titat [W] is a clesed,cenvex and
[T]-invariant set. Fúrtitermore [W] is non-empty becanse it contains
[ix,.]. Therefore, from Lin’s Lemna [Lii we knew titat

sup{~[wn] — xii : [tu,.] E [w]} = 1
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bor eve~ x E K. We take [z,] E [W] and citoose a weakly converging
subsequence (say to u) {u~.} of {z..} such that hm sup llz..lI = lim ¡lun II
and botit and hm lun — y~ exist. In titis way WC have

lun u un — un. 11= limsuplimsup u.. — Y... 11=
n.m;n#m n vn

hm sup limsup — Z~ B=i
vi m

and for every vi ~ N
lun — idi =liminf lii’.. — umil

vn

witicit implies lima ¡lun — uil =t.
Since R(a,A?) < 1 + a titere exists bE (0,1) such titat S(a,b,A?) <

1 + a. We choose i~ such that nS(a, b, A?) < 1— S(a, b, A?)/(1 + a) and
q < t(1 — b)/b. Assume lim lun — idi < bQ + 4 Titus

limsuplix..—yil =limsupI¡x~—u,.I¡+llinijyn—uii =1—t+b(t±n) <1

witich is a contradiction bearing Karlovitz’s lemma (see [OK], bor in-
stance). Titus we can asume hm lun — idi =b(t + r,). For a large enough
viwehave hin—vil =t±vy.Furtitermorelluil =liminfilun—xnii=1t.
Hence

t+,1 t±q

~ + u =s(’tb,x~ ~tS(a,b,A?).
Titus hm sup liznil = hm htMl =S(o, b, X)(t + ~)< 1 which is con-

tradiction witit Lin’s Lemma.

Definition 2 Let A? be a Banach space. We define tite coefficient M(A?)
os

snP{R(X):o=0}.

Tite follomittg result is a direct covisequevice of Titeorem 6

Theorem 7 Let A? be a Battach apace. If M(A?) > 1 thevi A? itas tite
m.f.p.p.

Bearing in miad the definition ob k-US spaces we can define the
following modulus for tbk property:

4(t) = sup sup mb {~(ilx+tu 1< + 1k — tyli) — 14
XESX div» V—k vCSv
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It is clear that A? is k-US ji and only ib limí.,o 13(t)/t = O.

Theorem 8 Let A? be a Battach apoce ami denote

fi = mb {1 + /4(s) — -: s E [0,1]}.

Titen M(A?) > (1 + 2k)/(1 + 2ki3). Itt particular A? has tite fized poivit
property ifllinv,ofi(t)/t < 1/2k.

Proaf. Assume a <2k and b E (O, 1/WCS(A?)). An arbitrar>’ positive
number i~ can be citosen such titat

t Lf2kt\
<.0+77.

Let {x,,} be a weakly nuil sequence iii 8x and x E A? such titat lxii =

r <a hm ilx.. + xil exists and S(a, b, A?) .c hm lix + x..il + i~/2. We can
assume that S(a, b, A?) < ilx+xn ID-u for eva>’ vi. Since Hin ikni¡ =b> 0,
we can assume titat {x,,} is a basic sequence. We citoose 4 E Sx* sucit
titat 4(x + tx~) = lx + tx,.ii. Taking subsequences we can also
asume i4(xm)l =6 ji vi vn. Writing u~ = (x~,. — X2n+l)/2 we
lcnow tbat tite vectors u.., ~ = 1, ..., k are linearí>’ independent.
Therefore a normalized vector y = ~ exists such
that (1/2)(ii(x + 2tky)/r¡¡ + li(x — 2tky)Iril) =1 + fi~}2tk/r) + v~.
Assume lamí = max{ia,.i vi = 1,...,k}. It is clear that a,» =1/k.
Titerefore we itave

S(a, b, A?) —1> =«1k + x2,»il + lix + x2...+ili) <

~}ilx + tx~,,,il + lix + tx
2rn+ili) + (1 t) =

1[*(xtx2m)*(x tx2m+i)1(l)

1 [~/x\~¡2ty\ * x ¡2ty Y—r X2 11+X2 I~l ~ i ji
2 L”Ár/rnXrarn/ \rav»/J
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le Ia..I 1/ x2ty x 2ty
+277>3 —+(1—t)=—rí —+——— + — — )+(l—t)+277k =

..,,, kmí 2\ rra,»

r(1+&(~Y) ~±)+n(2k+l)+1 =rfi+1+277(k+1+r).

Letting ~ —* O, we obtain R(o,X) =1 -I-13a. If o >2k we have

ilx+xnil =(r—2k)+ 2kxr

Applying the aboye argument for the sequence 2kx/r + x.. we have
R(o,A?) =(a—2k)+1+2k/3=a—(2k—1)+2k/3. Foro=2k
we obtain M(A?) =(1 + 2k)/(1 + 2kfi).

We see titat the aboye techniqne solves a problem which was several
>‘ears open. Tite introduction of tite coefficient M(X) raises up a new
open proklem Ls there any reflexive Banach space sucit titat M(A?) = 1?
A negative answer to this question would solve tite basic problem in
metric fixed point theory. Unfortunatel>’, it is not difficult to flnd a
reflexive Banach space sucit that M(X) = 1

Exarnple 2 Denote 4,~ tite Bynum’s space defined in Example 1 and
let {p..} be a sequence in (1, oc) converging to 1. Consider tite reflexive
Banach space

00

A? = {(x..) E ~ >3 iixnII~~,00 < oo}
n=L

with tite norm ii(x,jii = Z~’L, lix,.li~«, < oc}. Since M(I~,00) =

21~1/P (see [DB2]) and ~ c A? for ever>’ u E 1V we have

M(A?) = inb{M(4~,00;vi E N} = inb{2’”~~ : nC N} = 1.

2 Computation of N(X) and related problems

Altitougit the coefficient N(12) was calculated it>’ Bynum [By] tite value
ob N(4) and N(L~) was a problem ten years open. Fn 1990 tite value ob
titese coefficients was obtained [Prí, DB1] using sorne convexity inequal-
ities derived brom tite interpolation theory. To shnplifr tite problem we
sitalí start with a lemma it>’ D. Amir
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Lemma 1 [Am]. Let A? be a reflexive Banach space. Thevi

N(X)=inb {diam(A) AGA?flnite}.

A second simplification can be made. We shall prove in the following
lemma titat we can be restricta! to consider finite set witose points are
all equidistant from a Chebysliev center.

Lemma 2 Let A? be a Banach space and A ¡¡mute subset of A?. Titen
there exists a subset B ofA such that

(i) i«B) =r(A).

(u) lib — xii = r(B) for every x E .8 mitere b is a Chebyshev ceviter of
.8.

Proof. Since A is limite, Co A lies in a finite dimensional space. Titus
Z(A) ~ 0 and tite same occurs for an>’ subset of A. Let yo be a Cheby-
shev center of A and define tite set A~ {x E A lix — uoii r(A)}. We
sitalí prove that r(A,) =r(A). Indeed, otiterwise citoose a positive real
number e such that ix — uoii + e < r(A) bor ever>’ x E A \ Ai. Let yj
be a Chebysitev center of A, and A a real number, O < A < 1, snch titat
Aiiuo — uill < e/2. For ever>’ x E A, we itave

iix—uo+A(uo—u,)ii=Aiixu,il+(1—A)ikY0l1=

Ar(Ai) + (1— A)r(A) < ~«A)

If x belongs to A \ Ai one itas

lix — yo + A(uo — ui)li =lix — uoil + Aiiyo — ini < r(A) — e/2 < r(A)

Titus lix — yo + A(yo — uOii < r(A) for ever>’ x E A, contradicting tite
minimality of yo because yo + A(u, — yo) belongs to co A.

Since A is a finite set, titere exists .8 which is minimal in tite famil>’ of
titose non-empty snbsets of A whicit satisíS’ (i). Sucit E must satis~’ (u)
because otiterwise tite aboye argument lets us construct Bi C .8, .8,

.8 sucit titat R~ satisfles (i).
Finail>’ we recail some convexity inequalities [WW]
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Lemma 3 Let (51,g) be a a-finite measure space, 1 < p < +00

xl,x2, ...,x~ vectors inL~(fl)) andt
1,t2 t, novinegative numbers .sucit

that Ej7—~ t¡ = 1. Pta -y = max{l — t~: 1 =j =vi}. Titen the followivig
inequality itolds:

n n n.~a—
2>3 titkilxi — Xkli =2>3tjiixi — >3tkxk ¡a

jk—1 .1=1 k=1

mitere a = p if 2=p < +x ovni a = ;tf if 1 <~ =2.

Using these lemmas it is not difficult to compute tite
values of N(L~(Q)) (see [Dii]):

Theorem 9 Let ((1, y) be a a-finite measure space, 1 =p < ±00
ami assume titot LP(fl) is infinite dimensional. Titen N(LP(fl)) =

Remark It is clear from lemma 1 that the normal structure coefficient of
a reflexive Banacit space is determina! by the finite subsets of the space.
Since 9 is isometricail>’ embedded lii L~ and L~ is finitel>’ representa!
in 9 , the coefficients N(LP) and N&~) must be equal, as checked in
Theorem 9. Titese considerations are afro useful to obtain an upper
bound for N(X):

Corollar>’ Let A? be an infinite dimensional Baviacit apace. Titen

Proof. Since 12 is finitel>’ representable in ever>’ infinite dimensional
Banach space A? we obtain from lemma 1 titat N(A?) =N(I

2) = 0.
What fr tite situation for finite-dimensional Banach space? Is it

also vi the maximum value for N(A?)? Witat is tite value of Tite
argument and tecituiques usa! to compute N (4) can also be applied
to obtain lower bound for N(1fl. Tite computation of N(A?) bor finite
dimensional space was iniciated by Jung [3] in 1901, obtaining tite value
ob N(fl). Bearing in mmd tliat we only need to consider finite subsets
of A? to compute N(X) and that in vi-dimensional spaees ever>’ point
that is in convex ituil of a set forma! by m vectors xi, ...xv» is also in
tite convex ituil of a subset forma! by at most vi + 1 vectors we conclude
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titat we oní>’ need to consider limite sets of A? forma! by at most vi + 1
vectors. Qur previous results impí>’ that we can also assume titat titese
vectors are equidistant of their Citebysitev center. So tite problem can
be formulate in tite following way: Witat is tite hyperpolyedron (with at
most vi + 1 vertices) inscriptible in the unit spitere, containing zero inside,
witit minlinal diameter? Let us study more carefulí>’ titis problem.

Assumetitat ¿4= {xi, ...xN},N =vi+1 isasetint. 13>’ traslation
we can assume that zero is the Citebysitev center, witich is in tite convex
huil of A and that lxiii = r(A),i = 1,...,N. Appl>’ing tite convexity
inequalities (lemma 3) and noting titat -y =1 — 1/N we obtain

N

(1— diamA0(l — ZtY) =2r(A)ú.

Using tite Lagrange multiplier theorem it is easy to check titat tlie func-
tion 1 — ~ under tite restriction z7-~ ~¡ = 1 attains a maximum
ibtizzsl/N,j=1,...,N. Thnsweitave

— 1)02 (i — +) diamA0 =2r(A)0

that is
diamA >21/a
r(A)

For vi = p = 2 titis is tite exact value of NQ~) because V’~ is tite
ratio between the diameter of a equilateral triangle and the radius of
the circle where tite triangle is inscript. It is easy to see titat the aboye
bound is afro tite exact value for 1~ bor every vi. Witat happens if p # 2?
Of course the lower bound only can be attaina! at an>’ ityperpolyedron
if all inequalities in the computation become equality. Titus all tj must
be equal to 1/(vi + 1) mid alí djatances iixi — Xkil ,j # Iv must be equal
to diamA. In tite most simple case, for vi = 2 tlds fact means that
tite equality can oní>’ itoid for equilateral triangle witit vertices in tite
nnit spitere sucit that the geometric center ja the origin. Now tbis is tite
quest ion:

Is there mi>’ equilateral triangle in 1~ satisfying sucli condition? If
this triangle exists, is 22/0—13171/0 the length of its side? We shall see
an answer bor special cases.
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Definition 3 ¿4 Hadamard matriz H of order vi la att vi x vi matriz of
+1’s avid -Ps such that HHt — nf, i.e. tite inner product of aviy two
distinct roma of H is zero, attd tite iviner product ovi any row mitit itself
u vi.

It is easy to see that multiplying an>’ row or column by -1 citanges
H hito another Hadamard matrix. ~>‘ titis means we can citange the
first row and column into =1’s. Sucit a Hadamard matrix is calla!
normalized. It is an open problem to determine tite values of vi such
that a Hadamard matrix of order vi exists. It is not difficult to check
titat sucit a vi must be 1,2 or a multiple of 4. tlsing quadratic residues it
is possible tú construct (Pale>’. construction) a Hadamard matrix of an>’
order vi = p+l ifp is prime and p+l isa multiple of 4. It is conjectured
titat Hadamard matrices exist whenever the order is a multiple of 4,
altitougit titis itas not yet been proved. A large number (4 constrnctions
are known, and Hadamard matrix have been constructed for an>’ order
that is multiple of 4 less titan 268. Hadamard matrix are widel>’ usa!, for
instance, tú construct nonlinear codes, maxiinal determinants, weigiting
designs, and in communications and pit>’sics.

Assume titat titere exists a Hadamard matrix of order vi + 1 and let

(1 ~it1)
be titis matrix, witere y1,..., ~ are vectors in ¡?~. Consider the set
A = {v1, ..., v..~q} int for p < 2. It ja clear titat

if 1 ~ j because two distict rows of the Hadamard matrix have (vi +1)12
Vs or -1’s in tite same position. Furthermore lxii — vi”” for
1= 1,...,n+1. Titus

r(A)
that is the value corresponding to the aboye lower bound. Hence, in this
case

21/q (vi: 1)11V
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is the exact value of N(1». Titis is an open problem to calculate N(1)
if p> 2 or titere is not a Hadamard matrix ob order vi + 1.
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