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Abstract

The Fixed Point Theory for nonexpansive mappings is strongly
based upon the geometry of the ambient Banach space. In Section
1 we state the role which is played by the multidimensional con-
vexity and smoothness in this theory. In Section 2 we study the
computation of the normal structure coefficient in finite dimen-
sional £,—spaces and its connection with several classic geometric
problems.

The most known and important fixed point theorem is the contractive
mapping principle, which assures that every contraction T from a com-
plete metric space X into itself has a unique fixed point. The simplicity
of its proof and the possibility of attaining the fixed point by using
succesive approximations let this theorem become a very useful tool in
Analysis and in Applied Mathematics. A translation in R™ is a simple
example showing that the Banach theorem does not hold if we replace
the condition T is contractive by the weaker condition T is nonexpan-
sive, i.e. d(Tz,Ty) < d(z,y) for every =,y in X. Even the “middle”
condition d(Tz,Ty) < d(z,y) for every z,y in X (in this case T is usu-
ally called weakly contractive) does not assure the existence of a fixed
point (consider, for instance, the mapping Tx = z + 1/z defined in the
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complete metric space [1,400)). In this situation, it is not surprising
that for almost forty years the problem of the existence fixed points
for nonexpansive mappings was relegated. However in 1965, Browder
[Brl] proved that every nonexpansive mapping 7' from a convex bounded
closed subset C of a Hilbert space X into C has a fixed point. In the
same year Browder [Br2] and Kirk [K] proved that this result could be
improved assuming the weaker condition X is a uniform convex space or
X is a reflexive Banach space with normal structure. We recall that a
bounded set A is called diametral if for every point z € A we have diam
A = sup{llz — y|| : y € A}. A Banach space X is said to have normal
structure if every bounded convex diametral subset A of X is a singleton.
It is clear that in the cartesian plane every convex set with more than
one element is not diametral. However the set co{en} in ¢o is clearly a
diametral bounded convex set. These results are noteworthy regarding
the imposed conditions on C, which look more suitable in the compact
fixed point theory (Schauder's Theorem) and the “geometric” conditions
which X must satisfy. From this point a very wide theory has been
developed in trying to find more general condition on the Banach space
X and on the subset C' which still assure the existence of fixed points.
To simplify we shall say that a Banach space X has the fixed point
property (£.p.p.) if every nonexpansive mapping T defined from a convex
bounded closed subset € of X into X has a fixed point. Since Kakutani
showed a simple example of a nonexpansive mapping from the unit ball
B of ¢p into B without fixed points, it is clear that Banach spaces exist
which do not have the f.p.p. The failure of the f.p.p. in this example is
a consequence of the weakly noncompactness of B. However it can be
proved that every nonexpansive mapping from a weakly compact convex
set C of ¢g into C has a fixed point. When such a condition is satisfied
we shall say that the Banach space X has the weak fixed point property
(w.£p.p.). Obviously, the f.p.p. and the w.f.p.p. are identical if X is
reflexive. For a long time an open question was: Does every Banach
space X have the w.f.p.p.? The answer to this question was given by
Alspach [Al] in 1981, proving that L;{0, 1] fails to have the w.f.p.p. Since
Maurey [Ma] proved that every reflexive subspace of L, has the f.p.p.,
another question becomes very important: Does any reflexive Banach
space have the f.p.p.? Until now nobody has been able to answer this
quest}on.



Some geometric properties concerning. .. 111

We shall show in this paper different geometric properties connected
with metric fixed point theory. In Section 1 we see that multidimensional
convexity and smoothness give conditions which assure the fixed point
property. In Section 2 we show the relationship between the problem
of computing the normal structure coefficient and some “classic frame”
geometric problems.

1 Convexity and smoothness in fixed point
theory

We start recalling some definitions. Let X be a Banach space, 4 and B
bounded subsets of X. The Chebyshev radius of the set A with respect
to the set B is defined by

r(A, B) = inf{sup{liz ~y|: = € A} : y € B},

that is, roughly speaking, r(A, B} is the least radius such that a ball
centered in B with this radius contains A; when B = co A, we denote
r(A) = r(A,co A); the Chebyshev center of A with respect to B is
defined by

Z(A,B)={y € B:sup{llz - y|l : = € A} = v(4, B)};

denoting Z(A) = Z(A,co A). The set Z(A, B) can be empty. However if
B is a weakly compact and convex set, the Chebyshev center Z(A, B) is
nonempty. With this notation a convex closed bounded set A is diame-
tral if diam A = r{A4) and X has normal structure if diam A/r(4) > 1
for every closed bounded convex subset 4 of X with diam A > 0. We
say that X has weak normal structure if diam A/r(A4) > 1 for every
weakly compact and convex subset A of X. We recall a “classic” result
in metric fixed point theory:

Theorem 1 [K]. Let X be a Banach space with weak normal structure,
C a weokly compact conver subset of X and T : C — C a nonezpansive
mapping. Then T' has a fized point.

One method to assure that a Banach space satisfies the fixed point
property (f.p.p.) can be to prove that this space is near (in the Banach-
Mazur distance) to another Banach space with the f.p.p. This method
needs to use a “measure” in the sense: To what degree does a Banach
space have the f.p.p.?7 A technique in this way was initiated by Bynum
[By|] with the definition of some normal structure coefficients.
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The most simple normal structure coefficient is the following:
diam{A)

~(A) tACKX

N(X)= inf{

convex closed and bounded with diam (A) > 0}

It is obvious from the definition that X has normal structure if
N(X) > 1. It can be proved that the converse result does not hold. We
shall say (ref. [Ma])} that X has uniform normal structure if N(X) > 1.
There are several geometric properties of the Banach spaces which as-
sures either the normal structure or the f.p.p. It is possible even to give
bounds from below for N(X) or some other similar coefficients.

We start by showing that every uniform convex space has uniform
normal structure and N (X} can be bounded from below using the Clark-
son modulus. We recall that a Banach space X is called uniformly convez
(U.C.) if for every € > 0 there exists § > 0 such that {lz +y[|[/2 <1 -8
for every z,y € X such that [lzf| < 1,{ly|l <1 and |z —y|| > e The
funection

5x(e) = inf{l _l=tvl :z,y € Bx,|lz—yl 2 e}
is called the (Clarkson) modulus of uniform convexity and the number
eo{X) = sup{e > 0: éx(e) = 0} .is called the characteristic of convexity
of X. It is clear that X is U.C. if and only if eg(X) = 0.

Theorem 2 [By]. If X i¢s a Banach space with modulus of convezity §,
then N{(X) > (1-8(1))"L

.Then we see that N(X) > 1 if the characteristic of convexity of X
is less than 1. A similar result can be proved now concerning the mod-
ulus of uniform smoothness. We recall that the dual notion of uniform
convexity is the concept of uniform smoothness. The space X is said to
be uniformly smooth (U.S.) if lim¢—0 %(LQ = 0 where

|z + tyll + ll= — tyll

p(t) = sup { | 3

The function p(t) is called modulus of uniform smoothness. From the
Lindenstrauss formula

—I:x,yEBx}.

te
px+(8) = sup =~ 8x(e
D<e<?
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it easily follows that X is U.C. if and only if X* is U.S.

Theorem 3 [Pr2]|. Let X be a Banach space with modulus of smoothness
px(:). Denote

= inf{px(r) — %+ 1:7 € (0,1/2]}.

Then N(X) > 1/p. In particular X has normal structure if p' (0) < 1/2.

The notion of uniform convexity and the corresponding modilus only
depends on the two dimensional subspaces of X. A natural generaliza-
tion of this concept is the k—uniform convezity. Let X be a Banach

space. The modulus of k-uniform rotundity associated of space X is
defined as

k+1

il =1i=1,.,k+1

k+1

8% (¢) = inf {

i=1

and  A(z1, ., 7hs1) > e}
where A(x1, ..., T+1) is the k-dimensional volume of co (z1, ..xx41 ), e
1 1 1
cup J det f1(9:1) f1(=€2) fl(‘r.k-i-l) fex

fa(z) Inlz) . Talorsn)

and ||f:]| €1fori=1......%.

The space is said to be k-uniform convex (k-UC) if for all € > 0,
8% (e) > 0.
The characteristic of convexity e§ of X is defined as follows:

5(X) = sup{e : 6% (e) = 0}

The dual notion of k-UC is the concept of k-uniform smoothness, A
Banach space X is said to be k-uniformly smooth if: For all € > 0,
there exists n such that for all z € X and forallt , 0 <t <n,ifV
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is a k-dimensional subspace, there exists a norm one vector y € V such
that:

1
E(Hz +iyll + |l — ty]l) < 1+ et
It can be proved:

Theorem 4 [MP|. A Benach space X is k-uniformly convez if and only
if X* is k- uniformly smooth.

Sullivan [Su] proved that every k-UC space has normal structure.
The following result is a “quantitave improvement” of this fact:

Theorem 5 [Am]. For every k and every e > 0, we have

1

max{1l — le—;f, 1— 6%}

N(X) =

so that if 6%(1) > O then X has uniform normal structure.
What is the situation for k-U.S. spaces? The following class of spaces,
usually called Bynum’s spaces, gives a first answer to this question.

Example 1 Let {x,} a vector in £,,1 < p < co. Denote z7 and
z~ the vectors whose components are z1(i) = max{z(i),0}, z7(i) =
max{—z(i),0}. For any ¢ € [1, +o0) and for = € £, set

lzlipg = (h=* g + Iz~ 1) /95 flellpoo = max{ |z lp, [l=7 |5}

It is easy to check that all norms are equivalent to the usual norm in
¢p. The corresponding spaces will be denoted by £pq,8pco. We know
that £y, is 2-UC [ST]. Thus its dual €4, is 2-US but this space fails to
have normal structure, Indeed the set co {en, : n € N} is a diametral set
because diam {e, : n € N} = 1 and for every point ¢ = ;. ; aei, o >
0, 3 @i = 1 we have |ent1 — ¢||P = sup{], ¥, af} =1

This example shows that we need a different method to prove that
k—~US spaces have the f.p.p. Garcia Falset [Ga) has recently proved
that these spaces have this property. We shall follow his approach in
a more general setting, giving a “quantitative” version of his result.
For a Banach space X, |X] will denote, as usual, the quotient space
£50(X)/co(X) endowed with the norm ||[z,]|| = lim sup ||z, ||, where {z,]
denotes the equivalent class of {z,} € £ (X). By identifying z € X
with the class [z, z, ...]| we can consider X as a subset of [X]. If K is a
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subset of X we can consider the set |K| = {[zn] € [X] : 2n € K for every
n € N}. If T is a mapping from K into K we define [T] : [K] — [K] by
[T1({zn]) = [T2a].

Definition 1 Let X be a Banach space. For any nonnegative number a
we define the coefficient

S(a, b, X) = sup{lim inf |z + 2|}

where the supremum is taken over all z € X with ||z|| < o and all
weakly null sequences in Bx such that limp s mxtm |2n — 2ml < 1 and
Lim ||zpf > b. We define

R(a,X) = inf{S(a,b,X): 0< b < 1/WCS(X}}

where WCS(X) is the Bynum’s coefficient of weak normal structure
which can be defined (see, for instance [DL]) by

WCS(X) = inf{ 00 e "“"i — =ml }
n

where the infimum is taken over all weakly null sequences in Bx such
that limy, m intm [|€n — Tmll and lim {jz,|| exist.

Theorem 6 Let X be ¢ Banach space and assume that for some a >0
we have R(a,X) < 1+ a. Then X has the weak fized point property.

Proof Assume that X fails to have the f.p.p. Then we can find a
weakly compact and convex subset K of X such that diam(K) = 1
and K is minimal invariant for a nonexpansive mapping I" which has no
fixed point and we can also find a weakly null approximated fixed point
sequence {z,} of 7" in K. We consider the set

(W] = {lzal € [K]: [zn] = [zn]ll 1t

and
lim sup lim sup ||zn — zm|| < t}
n m

where t = 1/(1 +a). It is easy to check that [W] is a closed,convex and
[T)-invariant set. Furthermore [W] is non-empty because it contains
[tzn]. Therefore, from Lin's Lemma [Li} we know that

sup{lifwn] — z|l : [wa] € W]} =1
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for every = € K. We take [z;] € (W] and choose a weakly converging
subsequence (say to y) {yn} of {zn} such that limsup {znl = Lm |y
and both and lim [y, ~ y|| exist. In this way we have
lim || yn ~ ym [|= limsuplimsup || yn — ym [I<
n m

n,mntm
limsuplimsup || Zp — Zm |< ¢
i3 m
and for every n € N
lom — yll < Bminf lyn — yml|

which implies limy, ||yn — y|| <'t.

Since R(a; X) < 1 + a there exists b € (0, 1) such that S(a,d, X) <
1 + a. We choose 7 such that 7S(a,b, X) < 1 — S(e,b,X}/(1 + a) and
n < t(1 —&)/b. Assume lim Jlyn, — y|| < d(¢t +#). Thus

lim sup [|zn — yll < Limsup [on = ynjl+lim lyn —yl| < 1-2+b(t+7) <1

which is a contradiction bearing Karlovitz’s lemma (see [GK], for in-
stance). Thus we can asume lim ||y, — y|| = 5(t + 7). For a large enough
n we have ||y, —¥l| < t+n. Furthermore |Jy|| < liminf ||y —2a| < 1-t¢.
Hence

- 1t
Yn In"Y , ¥ ” <s (——,b, X) = S(a, b, X).
t+n t+n | t+n t

Thus limsup |25/ = lim IlynH < S8(a,b, X)(t + 1) < 1 which is con-
tradiction with Lin’s Lemma. '

Definition 2 Let X be a Banach space. We define the coefficient M (X)

® 1
su { ta :a_>_0}.
R(a, X)

The following result is a direct consequence of Theorem 6

Theorem 7 Let X be o Banach space. If M(X) > 1 then X has the
w.f.p.p.

Bearing in mind the definition of k-US spaces we can define the
following modulus for this property:

1
B ()= sup sup f {=(ll= + ty] + ll= — ty]l) — 1}
z€Sx dim V=k¥ESv 2



Some geometric properties concerning. . . 117

It is clear that X is k-US if and only if lim,.,o 8(t)/t = 0.
Theorem 8 Let X be a Banach space and denote

]

ﬂ:inf{1+ﬁ§((8)—2k :se[O,l]}.

Then M(X) > (1 + 2k)/(1+ 2kB). In particular X has the fized point
property if limy..0 B(2)/t < 1/2k.

Proof. Assume a < 2k_and b € (0,1/WCS(X)). An srbitrary positive
number 7 can be chosen such that

1—5+5§((2ﬁ) <B+n.

T T

Let {zn} be a weakly null sequence in Bx and z € X such that ||z|| =
r < a, lim ||z, + z|| exists and S(a,b, X) < lim ||z + z,| + /2. We can
assume that §(a, b, X) < ||z+zy||+n for every n. Sincelim [jz,|| > b > 0,
we can assume that {z,} is a basic sequence. We choose z}, € Sx+ such
that z(z + tz,) = |jz + tzp|. Taking subsequences we can also
asume |zn(zm)| < 6 if n # m. Writing yn = (zon — zon+1)/2 we
know that the vectors yn,n = 1,..,k are linearly independent.
Therefore a normalized vector y=3F | onyn exists such
that  (1/2)(||(z + 2tky)/r]| + li(z — 2tky)/rl) < 1+ B%(2tk/r) + .
Assume lapy| = max{lan| : n = 1,...,k}. It is clear that am > 1/k.
Therefore we have

1

8(a,b,X)—n < —2—(”:1: + zom| + |z + zome1]]) <

1

5(lz + teoml + |z + tzzmea])) + (1 - 1) =
1
2T r
1 SL‘* E + t-’-’:?m + I* x + t."..'2,-n+1 n (1 _ t) <
21" 2m r r 2m+1 - P - <

1 « [z 2ty T 2ty
Er [xgm (:) * Igm (Tam) + $§m+1 (:) - $§m+1 (Tam)}

ol + tTom+t1
r

)+(1—t)=
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&

127 Eila;l|+(1 —t) < ; (—+

2tk t
(1+ﬂX (—‘y) -—)+n(2k+1 )+1<r84+1429(k+14+7).

T 2t
2|+

2
Y )+(1—t)+2nk <
paed

Fals 247

Letting n — 0, we obtain R(e, X) <1+ Ba. If a > 2k we have
2kx

_+$n

[l + zo] £ (r — 2k) +

Applying the above argument for the sequence 2kz/r + z, we have
R(a,X) < (a—2k) + 1+ 2k = a — (2k — 1) + 2kB.. For a = 2k
we obtain M(X) > (1 + 2k)/(1 + 2kB).

We see that the above technique solves a problem which was several
years open. The introduction of the coefficient M (X) raises up a new
open problem: Is there any reflexive Banach space such that M (X ) = 17
A negative answer to this question would solve the basic problem in
metric fixed point theory. Unfortunately, it is not difficult to find a
reflexive Banach space such that M(X) =1

Example 2 Denote £y, o, the Bynum’s space defined in Example 1 and
let {pn} be a sequence in (1, 00) converging to 1. Consider the reflexive
Banach space

X = {(@n) € M2 Lp 00 Z a0 < 00}

with the norm |(z,)[| = ‘/Z 21 lznll2, o0 < 00}, Since M(€poo) =
21-1/P (see {DB2)) and 4, o, C X for every n € N we have

M(X) < inf{M(ly, o;n € N} = inf{2!"/Ps . n e N} = 1.

2 Computation of N(X) and related problems

Although the coefficient N(£2) was calculated by Bynum [By]| the value
of N(¢,) and N(Ly) was a problem ten years open. In 1990 the value of
these coefficients was obtained [Prl, DB1] using some convexity inequal-
ities derived from the interpolation theory. To simplify the problem we
shall start with a lemma by D. Amir
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Lemma 1 [Am]. Let X be ¢ reflexive Banach space. Then

N(X) = inf diam (4)

tACX ﬁnite}.

A second simplification can be made. We shall prove in the following
lemma that we can be restricted to consider finite set whose points are
all equidistant from a Chebyshev center.

Lemma 2 Let X be a Banach space and A finite subset of X. Then
there exists a subset B of A such that

(i) r(B) Z r(4).

(ii) |6 — z|| = r(B) for every x € B where b is a Chebyshev center of
B.

Proof. Since A is finite, co A lies in a finite dimensional space. Thus
Z(A) # 0 and the same occurs for any subset of A. Let yo be a Cheby-
shev center of A and define the set A1 = {x € A : ||z —yo|| = r(4)}. We
shall prove that r(A4;) > r(A). Indeed, otherwise choose a positive real
number ¢ such that ||z — yo|| + ¢ < r(A) for every £ € A\ A1. Let y1
be a Chebyshev center of A; and X a real number, 0 < X < 1, such that
Alyo — w1l < €/2. For every z € A; we have

lz = yo + Alyo = v1)l € Al — w1l + (1 = M|z = yoll <

Ar(Ay) + (1= A)r(A) < r(A)
If z belongs to A \ A; one has

lz — o+ Alwo — y)ll < llz — woll + Mlyo — mll < 7(A) — ¢/2 < r(A)

Thus ||z — yo + Ayo — y1)|| < r(A) for every = € A, contradicting the
minimality of yo because yo + A(y1 — yo) belongs to co A.

Since A is a finite set, there exists B which is minimal in the family of
those non-empty subsets of A which satisfy (i). Such B must satisfy (ii)
because otherwise the above argument lets us construct B; C B, By #
B such that B; satisfies (i).

Finally we recall some convexity inequalities [WW]
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Lemma 3 Let (2, ) be a o-finite measure space, 1 < p < 4o ,
T1, L2, ..., Tn vectors in LP(Q)) and iy, tg, ..., 1, nonnegative numbers such
that Z;?:l t;i=1. Put y=max{l1—1t;:1<j <n}. Then the following
inequality holds:

k{1 n 7
BN titelley — w223 tilles— D texnli®
Gk=1 j=1 k=1

where a = p if 2 < p < 400 andaz}fTifl<p£2.

Using these lemmas it is not difficult to compute the
values of N(LP({})) (see [DB1]):

Theorem 9 Let (2, u) be a o-finite measure space, 1 < p < oo
and assume that LP(S}) is infinite dimensional. Then N(LP(Q?)) =
min{21-1/P 91/P},

Remark It is clear from lemma 1 that the normal structure coefficient of
a reflexive Banach space is determined by the finite subsets of the space.
Since P is isometrically embedded in L? and LP? is finitely represented
in £ | the coefficients N(L?) and N(£”) must be equal, as checked in
Theorem 9. 'These considerations are also useful to obtain an upper
bound for N(X):

Corollary Let X be en infinite dimensional Banach space. Then

N(X) < V2.

Proof. Since ¢2 is finitely representable in every infinite dimensional
Banach space X we obtain from lemma 1 that N(X) < N(f) = V2.

What is the situation for finite-dimensional Banach space? Is it
also v/2 the maximum value for N(X)? What is the value of £1? The
argument and techniques used to compute N(£,) can also be applied
to obtain lower bound for N(£7). The computation of N(X) for finite
dimensional space was iniciated by Jung [J] in 1901, obtaining the value
of N(£3). Bearing in mind that we only need to consider finite subsets
of X to compute N(X) and that in n-dimensional spaces every point
that is in convex hull of a set formed by m vectors z1,...2,, is also in
the convex hull of a subset formed by at most n + 1 vectors we conclude
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that we only need to consider finite sets of X formed by at most n + 1
vectors. Qur previous results imply that we can also assume that these
vectors are equidistant of their Chebyshev center. So the problem can
be formulate in the following way: What is the hyperpolyedron (with at
most n+1 vertices) inscriptible in the unit sphere, containing zero inside,
with minimal diameter? Let us study more carefully this problem.
Assume that A = {z;,..an}, N <n+11is aset in £3. By traslation
we can assume that zero is the Chebyshev center, which is in the convex.
hull of A and that ||z;]| = r(A),i = 1,...,N. Applying the convexity
inequalities (lemma 3) and noting that v > 1 — 1/N we obtain

1 a—2 N 9
(1 ~ Iv‘) diamA*(1 — _Z;tj) > 2r(A)°.
_1:

Using the Lagrange multiplier theorem it is easy to check that the funec-
tion 1 — E;I,V:I t? under the restriction Eﬁ__l t; = 1 attains a maximum
ift; =1/N,j=1,..,N. Thus we have

1= 1Y 7 (- LY diam a2 > 2r(a)®
~ v ) diem A% > 2r

. 1
diam A > gl/e (n+1)1 p
r(A) — n

For n = p = 2 this is the exact value of N(¢3) because v/3 is the
ratio between the diameter of a equilateral triangle and the radius of
the circle where the triangle is inscript. It is easy to see that the above
bound is also the exact value for £5 for every n. What happens if p # 27
Of course the lower bound only can be attained at any hyperpolyedron
if all inequalities in the computation become equality. Thus all £; must
be equal to 1/(n + 1) and all distances ||z; — zxl},j # k must be equal
to diam A. In the most simple case, for n = 2 this fact means that
the equality can only hold for equilateral triangle with vertices in the
unit sphere such that the geometric center is the origin. Now this is the
guestion:

Is there any equilateral triangle in Cg satisfying such condition? If
this triangle exists, is 22/¢131-1/& the length of its side? We shall see
an answer for special cases.

that is
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Definition 3 A Hadamard matriz H of order n is an n X n matriz of
+1’s and -1’s such that HH' = nlI, i.e. the inner product of any two
distinet rows of H is zero, and the inner product on any row with itself
is n.

It is easy to see that multiplying any row or column by -1 changes
H into another Hadamard matrix. By this means we can change the
first row and column into =1's. Such a Hadamard matrix is called
normalized. It is an open problem to determine the values of n such
that a Hadamard matrix of order n exists. It is not difficult to check
that such a n must be 1,2 or a multiple of 4. Using quadratic residues it
is possible to construct (Paley construction) a Hadamard matrix of any
order n == p+1 if p is prime and p+1 is a multiple of 4. It is conjectured
that Hadamard matrices exist whenever the order is a multiple of 4,
although this has not yet been proved. A large number of constructions
are known, and Hadamard matrix have been constructed for any order
that is multiple of 4 less than 268. Hadamard matrix are widely used, for
instance, to construct nonlinear codes, maximal determinants, weighing
designs, and in communications and physics.

" Assume that there exists a Hadamard matrix of order n + 1 and let

1w
1 vy
1 VUnt1

be this matrix, where vy, ..., vp4+1 are vectors in R™. Consider the set
A={v1, ..., ¥p41} in E;} for p < 2. It is clear that
n+ 1\ /P
o= sl =2 (=)
if ¢ # j because two distict rows of the Hadamard matrix have (n+1)/2

I'sor -1’sin the same position. Furthermore |z;|| = nl/? for
i=1,...,n+ 1. Thus

diam A _ 9l/q (n + 1)1/?
r(A) n

that is the value corresponding to the above lower bound. Hence, in this

case
9l/q (" + 1)”’

n
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is the exact value of N(£3). This is an open problem to calculate N (£7)
if p > 2 or there is not a Hadamard matrix of order n + 1.
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