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SOME GEOMETRIC PROPERTIES OF CONVEX BODIES. II

V. V. MAKEEV

Abstract. Topological means are used for the study of approximation of 2-dimen-
sional sections of a 3-dimensional convex body by affine-regular pentagons and ap-
proximation of a centrally symmetric convex body by a prism. Also, the problem of
estimating the relative surface area of the sphere in a normed 3-space, the problem
on universal covers for sets of unit diameter in Euclidean space, and some related
questions are considered.

Throughout, by a convex body K ⊂ R
n (a figure for n = 2) we mean a compact convex

subset of R
n with nonempty interior.

We denote by Gk(Rn) (respectively, G+
k (Rn)) the Grassmann manifold of nonoriented

(respectively, oriented) k-planes in R
n passing through O ∈ R

n. We let

γn
k : Ek(Rn) → Gk(Rn) and (γn

k )+ : E+
k (Rn) → G+

k (Rn)

be the tautological fiber bundles, where the fiber over an (oriented) k-plane α ∈ Gk(Rn)
is α itself regarded as a k-dimensional vector space.

We say that a field of convex bodies (or figures ; a CB - or a CF-field) is given in a vector
bundle γ if in each fiber α of γ we mark a convex body K(α) depending continuously
on α. A CB-field is pointed if for each α we also mark a point x(α) ∈ K(α) depending
continuously on α. (In other words, x(α) is a section of γ.)

If λ ∈ R and P is an affine-regular polygon (e.g., a pentagon or a parallelogram) with
center O(P ), then λP denotes the polygon homothetic to P with homothety ratio λ and
homothety center O(P ).

We denote by S(K) the area of a figure K ⊂ R
2.

§1. Fields of convex figures in γ3
2 and (γ3

2)+,

and 2-dimensional sections of convex bodies in R
3

First, we prove two corollaries to the following known result.

Theorem [2]. Each CF-field in γ3
2 contains a figure circumscribed about an affine-regular

octagon.

Corollary 1. Suppose C is the bounded component of a cubic surface in R
3. Then each

inner point O of C lies in a plane intersecting C along an ellipse.

Proof. Indeed, C is convex automatically, because otherwise C intersects some line at
4 points. Consequently, the section of C by some 2-plane through O is circumscribed
about an affine-regular octagon. Then this section is a component of a cubic, intersects
an ellipse at 8 points, and, consequently, is an ellipse by the Bézout theorem. �
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868 V. V. MAKEEV

Remark. Certainly, this follows from standard facts of algebraic geometry: any plane
that passes through a point inside C and a real line lying on the cubic surface intersects
C along an ellipse. But actually we have proved more: each field of bounded components
of cubics in γ3

2 contains an ellipse.

Corollary 2. Each CF-field in γ3
2 contains a figure K containing a parallelogram P such

that

P ⊂ K ⊂
(
1 +

√
2

2

)
P.

Proof. Indeed, the figure K circumscribed about an affine-regular octagon Ω = A1 . . . A8

possesses the required property. In this case, K is contained in the octagonal star Σ
bounded by segments of the rays that extend the sides of Ω. Letting P be the parallelo-
gram A2A4A6A8, we easily see that P ⊂ K ⊂ Σ ⊂ (1 +

√
2

2 )P . �

Remark. Considering fields of disks, we see that 1+
√

2
2 cannot be replaced by a constant

smaller than
√

2.

Theorem 1. Each pointed CF-field (K(α), x(α)) in (γ3
2)+ contains a figure K(α) cir-

cumscribed about an affine-regular pentagon with center at the marked point x(α).

Corollary 3. Each field of centrally symmetric convex figures in (γ3
2)+ or γ3

2 contains
a figure circumscribed about an affine-regular decagon. �
Corollary 4. If a field of centrally symmetric convex figures in (γ3

2)+ consists of bounded
components of curves of degree at most 4, then the field contains an ellipse.

Indeed, by the Bézout theorem, the figure circumscribed about an affine-regular
decagon is an ellipse. �
Corollary 5. Each convex bounded centrally symmetric quartic in R

3 has a planar cen-
tral section that is an ellipse. �

The proof of Theorem 1 uses two topological lemmas.

Lemma 1. Suppose n ∈ N, W is a compact oriented 2n-manifold, the cyclic group Z2n+1

freely acts on W , and the boundary ∂W of W with standard orientation is the union of
two closed Z2n+1-invariant manifolds M and M ′. We let Z2n+1 act on R

2n+1 by cyclic
permutations of coordinates of points and denote by l ⊂ R

2n+1 the line determined by the
equations x1 = x2 = · · · = x2n+1.

Suppose that F : W → R
2n+1 is a continuous Z2n+1-equivariant mapping such that

F(M) and F(M ′) do not intersect l. Then

deg(F| : M → R
2n+1 \ l) + deg(F| : M ′ → R

2n+1 \ l) ≡ 0 mod 2n + 1.

Proof. After a slight perturbation, we can assume that F is smooth and transversal to
l. Then, F−1(l) consists of a finite number of orbits of points of W . We surround the
points by small balls D1, . . . , DN such that they are mutually disjoint and disjoint from
M and M ′ and, furthermore, the balls with centers in one Z2n+1-orbit are mapped to
one another under the action of Z2n+1.

The mapping F takes the 2n-manifold Ŵ := W\
⋃N

i=1

◦
Di with boundary to R

2n+1 \ l �
S2n−1. Consequently, deg(F| : ∂Ŵ → R

2n+1 \ l) = 0. We have

∂Ŵ = M ∪ M ′ ∪
N⋃

i=1

∂Di.

By construction, the Z2n+1-equivariance of F implies that deg(F| :
⋃N

i=1 ∂Di → R
2n+1\l)

is divisible by 2n + 1, which completes the proof. �
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Remark. For prime 2n + 1, Stiefel manifolds yield interesting examples in which the
degree under consideration is nonzero (see [1] and below). The author does not know
whether this is possible in the case where 2n + 1 is composite.

We denote by SO(3) the group of orientation-preserving rotations of R
3 about some

point.

Lemma 2. Suppose W is a compact 4-manifold, the cyclic group Z5 acts freely on W ,
and the boundary ∂W of W with standard orientation is the union of two closed Z5-
invariant 3-manifolds M and M ′, where M ′ is SO(3) with standard action of Z5. We
let Z5 act on R

5 by cyclic permutations of the coordinates of points.
Suppose that F : W → R

5 is a continuous Z5-equivariant mapping. Then F(M)
contains a point of the form (x, x, x, x, y), where y ≤ x (or, optionally, y ≥ x).

Proof. Let l ⊂ R
5 be the line determined by the equations x1 = x2 = · · · = x5. If

F (M) ∩ l �= ∅, then we are done. Otherwise, it suffices to prove the following assertion
(see [1]).

Assertion. If F (M) ∩ l = ∅, then the degree of the mapping

F | : M → R
5 \ l � S3

is not divisible by 5.

Proof. After a slight perturbation, we can assume that the mapping F ′ : M ′ → R
5

is a Z5-equivariant mapping with image in R
5 \ l. It is well known that in this case

deg(F ′| : M ′ → R
5 \ l) is not divisible by 5 (see [1]; actually, deg(F ′|) = −1). Now, the

required result follows from Lemma 1. �

Proof of Theorem 1. We consider positively oriented affine-regular pentagons inscribed
in the figures K(α). If K(α) is a generic smooth field of smooth convex figures in (γ3

2 )+,
then the pentagons constitute a compact oriented smooth 3-manifold M , on which the
cyclic group Z5 acts by cyclic permutations of the vertices of the pentagons.

If all figures K(α) are (C1-close to) disks, then, obviously, M ∼= SO(3).
We define a continuous mapping

F : M → R
5

as follows. If P ⊂ α is a pentagon A1 . . . A5 inscribed in K(α) and with center O(P ),
then the ith coordinate of F (P ) is the orthogonal projection of x(α) to the oriented axis
O(P )Ai with origin at O(P ), i = 1, . . . , 5.

By construction, F is Z5-equivariant if Z5 acts on R
5 by cyclic permutations of the

coordinates of points.
Using a smooth generic deformation Kt(α), t ∈ [0, 1], we deform the initial field

K0(α) := K(α) into a field of figures K1(α) close to disks. Then the oriented affine-
regular pentagons inscribed in the figures Kt(α) form a cobordism between M and M ′ ∼=
SO(3). By Lemma 2, F (M) contains a point F (P ) = (x, x, x, x, y). Simple geometric
arguments show that x = 0, whence O(P ) = x(α). �

Theorem 2. Each CF-field K(α) in (γ3
2)+ contains a convex figure K circumscribed

about an affine-regular pentagon P and such that

(∗) P ⊂ K ⊂
(
1 +

1
2 sin 54◦

)
P ⊂ 1.6181 P.

This estimate is sharp for the field consisting of the sections of a tetrahedron T that pass
through an inner point of T .
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Figure 1.

Proof. If P is a pentagon A1 . . . A5 inscribed in K(α), then we draw the support lines
of K(α) parallel to A1A2, A2A3, . . . , A5A1 and denote by B1, . . . , B5 the points where
these support lines touch K(α). We define

F (P ) := (S(�A1A2B1), . . . , S(�A5A1B5)).

As in the proof of Theorem 1, we see that there is a 2-plane α such that for a certain
pentagon P inscribed in K(α) we have

f(P ) = (x, x, x, x, y),

where y ≤ x. We show that P is the required pentagon.
After an affine transformation, we may assume that P = A1 . . . A5 is a regular pen-

tagon. Obviously, the altitude of the triangles �A1A2B1, . . . ,�A4A5B4 is maximal
possible if S(�A5A1B5) = 0, and the figure K(α) circumscribed about P is the isosceles
trapezoid shown in Figure 1.

Simple calculations show that in this case we have (∗).

Remark. From [11] it follows that each CF-field in (γ3
2)+ contains a figure K circum-

scribed about a regular pentagon P , in which case we have

P ⊂ K ⊂ (1 +
√

5)P.

(Certainly, the same is true for any affine-regular pentagon inscribed in K.) In the
general case, the constant 1+

√
5 = 1+tan(π/5) cot(π/10) here cannot be made smaller.

Indeed, suppose that the point O lies near the apex of a regular triangular pyramid T the
lateral edge of which is many times longer than the edge of the base. We consider the CF-
field in (γ3

2)+ consisting of sections of T by planes through O. In this case, the sections
intersecting the base of T are very prolate, while for the other triangular sections the
above constant, obviously, cannot be improved, because two sides of a pentagon inscribed
into a triangle lie on the sides of the triangle.

If in Theorem 2 and in the situation considered above we lift the condition that the
pentagon P is inscribed, then the sharp values of the constants are not known to the
author.

§2. The relative surface area of the sphere in a normed 3-space

Definition. Suppose P is a polyhedron in a finite-dimensional normed space with unit
ball K. For each hyperface F of P , we take the ratio of the area of F and the area of
the central section of K parallel to F . The sum of these ratios over all hyperfaces of P
is the relative surface area of P .

In [10], the author constructed a one-parameter family of affine images of a cube-
octahedron which are inscribed in the unit ball of a normed 3-space and have relative
surface area of at least 5/2.
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Figure 2.

To obtain an upper estimate, we approximate the ball of unit diameter in a normed
3-space by a circumscribed hexagonal prism.

We need the following result.

Theorem [10]. Suppose Π = A1 . . . A12 is a regular hexagonal prism, and A13 and A14

are points that lie outside Π on the symmetry axis and are symmetric to each other with
respect to the center. Each centrally symmetric convex body K ⊂ R

3 centered at O is
circumscribed about an affine image of the 14-tope P14 = A1 . . . A14 with the same center
and such that the parallel support planes of K at the images of A13 and A14 are parallel
to the images of the base planes of Π.

Corollary 6. Each centrally symmetric convex body K ⊂ R
3 is circumscribed about

an affine-regular hexagonal bipyramid A1 . . . A8 with the same center and such that the
support planes of K at A7 and A8 are parallel to the plane of the base A1 . . . A6, while
the support planes of K at A1, . . . , A6 are parallel to the axis A7A8 of the bipyramid.

Proof. We apply the above theorem. As the lateral edge of Π in P14 tends to zero while
the length of A13A14 remains constant, in the limit we obtain the required bipyramid. �

Theorem 3. The unit ball K in a normed 3-space is inscribed in a centrally symmetric
hexagonal prism with relative surface area not exceeding 32

3 .

Corollary 7. The relative surface area of K is at most 32/3. �

Remark. If K is a Euclidean ball, then the regular prism is a hexagonal prism circum-
scribed about K with minimal relative surface area, which is equal to 12

√
3/π.

The proof involves the following lemma.

Lemma 2. Suppose that the unit disk in a 2-dimensional normed space is an affine-
regular hexagon H. Then the area of any centrally symmetric convex figure K circum-
scribed about H is at most 4

3S(H), and the perimeter of K (with respect to the norm) is
at most 8. Both estimates are sharp.

Proof. Drawing the support lines of K at the vertices of H , we reduce the proof to the
case where K is a centrally symmetric hexagon.

1) Simple variational arguments show that the area of K is maximal if the vertices of
H are the midpoints of the sides of K, or K is a parallelogram. In both cases, we have
S(K) = 4

3S(H).
2) Let ED and E′D′ be a pair of parallel sides of K, and let CC′ be the diameter of H

parallel to them (see Figure 2). Continuing the opposite sides AB and A′B′ that contain
(respectively) C and C′, to the intersection with the lines ED and E′D′, we obtain a
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parallelogram FGF ′G′ circumscribed about H . Obviously,

ED + E′D′

OC
= 8

S(OED) + S(OE′D′)
S(FGF ′G′)

≤ 8
S(OED) + S(OE′D′)

S(K)
.

Writing this inequality for each pair of parallel sides of K and summing up, we obtain
the assertion of the lemma concerning the perimeter of K. �

Remark. If in the lemma we do not assume the central symmetry of K, then it is well
known that S(K) ≤ 3

2S(H), and arguments similar to ours show that the perimeter of
K is at most 9.

Proof of Theorem 3. We assume that K is smooth. In the general case, the result is
obtained by passage to the limit.

Let A1 . . . A8 be the affine-regular hexagonal bipyramid constructed in Corollary 6.
Obviously, the support planes of K at A1, . . . , A8 bound a hexagonal prism Π with
centrally symmetric base.

1) The relative areas of the bases of Π are at most 4/3 by Lemma 2, because they
are circumscribed about the affine-regular hexagon A1 . . . A6 with unit side, which is
inscribed in the central section of K parallel to the bases.

2) Suppose P is one of the lateral faces of Π. Then the area of the parallelogram P
does not exceed the length of the base of P . (Indeed, the area of the central section of K
parallel to P cannot be smaller than the area of the parallelogram P ′ having the same
directions of sides and such that the lateral side of P ′ is equal to that of P , while the
base of P is a unit radius of the central section.)

Thus, by Lemma 2, the relative area of the lateral surface of Π is at most 8, and,
consequently, the complete relative surface area of Π is at most 8 + 2 · 4

3 = 32
3 . �

Theorem 4. Each convex body K ⊂ R
3 is circumscribed about an affine-regular hexag-

onal bipyramid A1 . . . A8 such that the support planes of K at A7 and A8 are parallel to
the plane of the base A1 . . . A6.

Proof. We prove this theorem for strictly convex smooth bodies K; in the general case,
the theorem is obtained by passage to the limit.

For α ∈ G2(R3), we draw the support planes α1 and α2 of K parallel to α, and also
the secant plane α3 equidistant from α1 and α2 and parallel to them. We join the points
of tangency of α1 and α2 with K by a segment I and denote by A(α) the orthogonal
projection of the point I ∩ α3 to the plane α. Let B(α) be the orthogonal projection to
α of the set of the centers of the affine-regular hexagons inscribed in α3 ∩ K.

It suffices to prove that for some α ∈ G2(R3) we have A(α) ∈ B(α). By construction,

C1 := {A(α) | α ∈ G2(R3)}
is the image of a section of γ3

2 that realizes the generator of H2(E2(R3); Z2).
We denote by Ω the 8-manifold of affine-regular hexagons lying in the planes α3. If

K is generic, then the affine-regular hexagons inscribed into all possible sections α3 ∩K
constitute a compact smooth 2-manifold H in Ω. Then

C2 :=
⋃

{B(α) | α ∈ G2(R3)}

is a continuous image of H that intersects a generic fiber α ∈ E2(R3) at an odd number
of points, because a generic convex figure is circumscribed about an odd number of
affine-regular hexagons (see [2]). Thus, C2 also realizes the generator of H2(E2(R3); Z2).
Consequently, the Z2 intersection number of C1 and C2 is equal to 1, whence C1 ∩C2 �=
∅. �
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Remark. It is easily seen that the volume of any inscribed affine-regular bipyramid in
Theorem 4 is at least Vol(K)/6.

§3. Universal covers for sets of unit diameter in Euclidean space

Definitions and examples. A subset A ⊂ R
n is a universal cover for sets of unit

diameter if each subset of R
n of diameter not exceeding 1 is contained in a congruent

image of A.
A universal cover A is rigid if the set of bodies of constant unit width and such that

each of them is contained in finitely many congruent images of A is dense in the Hausdorff
metric.

Rigid covers are well known in dimensions 2 and 3. Each centrally symmetric hexagon
of unit width is a rigid cover in dimension 2. Borsuk’s solution of the Borsuk problem in
the plane involved the cover having the form of a regular hexagon of unit width (see [3]).

A regular rhombo-dodecahedron of unit width is a rigid cover in 3-space (see [4–
7]). The one-parameter families of rigid covers constructed in [7, 8] consist of centrally
symmetric dodecahedra circumscribed about a ball of unit diameter. Is it true that each
universal cover contains a rigid universal cover?

A universal cover A is an s-cover if there is a C1 open and dense set of smooth bodies
having constant unit width and such that each of them is contained in an odd number
of congruent images of A.

By definition, all s-covers are rigid. All rigid covers mentioned above are s-covers. For
n ≥ 3, the author knows no examples of rigid covers that are not s-covers.

The following theorem yields infinite series of s-covers in Euclidean spaces.

Theorem 5. Suppose that An ⊂ R
n is a centrally and mirror-symmetric s-cover bounded

by a finite number of regular hypersurfaces. Let Π be the right prism in R
n+1 with base

An and unit hight, and let An+1 denote the intersection of Π with two unit balls centered
at the centers of the bases of Π. Then An+1 is an s-cover in R

n+1.

Proof. Suppose that K ⊂ R
n+1 is a generic smooth body of constant unit width. In

the total space En(Rn+1) of γn+1
n , we construct two n-dimensional cycles C1 and C2

intersecting the generic fiber at an odd number of points.
For α ∈ Gn(Rn+1), we denote by s(α) the point of intersection of α with the line

containing the diameter of K perpendicular to α. Obviously, s is a section of γn+1
n , and

its image C1 = s(Gn(Rn+1)) intersects each fiber at a unique point.
Consider the fiber bundle ξ : E(ξ) → Gn(Rn+1) such that the fiber over a hyperplane

α ∈ Gn(Rn+1) is the set of the congruent images of An that lie in α. (By the mirror
symmetry of An, no problems with orientation arise.) For α ∈ Gn(Rn+1), let Bα be the
set of the congruent images of An that contain the orthogonal projection of K to α, and
let B =

⋃
α Bα ⊂ E(ξ). If K is a generic smooth body, then B is a smooth compact

n-manifold in E(ξ) intersecting the generic fiber at an odd number of points.
We consider the fiberwise mapping p : E(ξ) → En(Rn+1) that takes the congruent

image of A lying in α to its center in α. Then C2 = p(B) is an n-dimensional cycle in
En(Rn+1) intersecting the generic fiber at an odd number of points. Consequently, C2 is
Z2-homologous to C1.

As before, the Z2 intersection number of C1 and C2 in En(Rn+1) is nonzero, i.e., in
the generic situation they intersect at an odd number of points, which precisely means
that the initial body K is contained in an odd number of congruent images of An+1. �

Corollary 8 (to the proof). Suppose An ⊂ R
n is a centrally and mirror-symmetric

s-cover bounded by a finite number of regular hypersurfaces. Then each pointed CB-
field (K(α), x(α)) of constant unit width in γn+1

n contains a body K(α) that is contained
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in a congruent image of An centered at x(α). If K(α) is a generic field consisting of
smooth convex bodies of constant unit width, then the number of such fibers (and covers)
is odd. �
Remarks. 1. The s-cover An+1 itself satisfies the assumptions of Theorem 5, which allows
us to use it for constructing an s-cover An+2 ⊂ R

n+2, etc.
2. If we take one of the 1-, 2-, or 3-dimensional covers mentioned above as a “basis”

cover, then Theorem 5 yields an infinite series of s-covers that are intersections of half-
spaces, cylinders, and spheres of unit diameter.

3. In the text above, we presented polygonal and polyhedral s-covers in dimensions
≤ 3. The author does not know of any polyhedral s-covers in dimensions 4, 5, . . . .

In [9], it was proved that each centrally symmetric 14-hedron P circumscribed about
a ball of unit diameter is a universal cover. However, these covers are certainly not rigid,
because for each P and each body K of constant unit width in R

4 there is a 3-parametric
family of congruent images of P each of which is circumscribed about K.
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