Some global properties of mixed super quasi-Einstein manifolds

Dipankar Debnath and Arindam Bhattacharyya

Abstract

Within the framework of mixed super quasi-Einstein manifolds, are proved three theorems: the first one shows that the compact orientable manifolds $\operatorname{MS}(\mathrm{QE})_{n}(n \geq 3)$ without boundary do not admit non-isometric conformal vector fields, the second one provides a sufficiency condition for non-existence of nontrivial Killing vector fields, and the last one characterizes the harmonic vector fields under certain assumptions.

M.S.C. 2000: 53C25.

Key words: quasi-Einstein manifolds conformal vector fields, harmonic vector fields, Killing vector fields.

1 Introduction

The notion of quasi-Einstein manifold and generalized quasi-Einstein manifold were introduced in [7] and [9].

In [8], Chaki introduced super quasi-Einstein manifold, denoted by $S(Q E)_{n}$, where the Ricci-tensor S of type $(0,2)$ which is not identically zero satisfies the condition

$$
\begin{align*}
S(X, Y)= & a g(X, Y)+b A(X) A(Y)+ \\
& +c[A(X) B(Y)+A(Y) B(X)]+d D(X, Y) \tag{1.1}
\end{align*}
$$

where a, b, c and d are scalars such that b, c, d are nonzero, A, B are two nonzero 1 -forms

$$
\begin{equation*}
g(X, U)=A(X) \text { and } g(X, V)=B(X) \tag{1.2}
\end{equation*}
$$

U and V being unit vectors which are orthogonal, i.e.,

$$
\begin{equation*}
g(U, V)=0 . \tag{1.3}
\end{equation*}
$$

and D is a symmetric $(0,2)$ tensor with zero trace which satisfies the condition

$$
\begin{equation*}
D(X, U)=0, \quad \forall X \in \mathcal{X}(M) \tag{1.4}
\end{equation*}
$$

Here a, b, c, d are called the associated scalars, A, B are called the associated main and auxiliary 1 -forms respectively, U, V are called the main and the auxiliary generators and D is called the associated tensor of the manifold.

In [6], A. Bhattacharyya and T. De introduced the notion of mixed generalized quasi-Einstein manifold. A non-flat Riemannian manifold is called mixed generalized quasi-Einstein manifold if its Ricci tensor is non-zero and satisfies the condition

$$
\begin{align*}
S(X, Y)= & a g(X, Y)+b A(X) A(Y)+c B(X) B(Y)+ \\
& +d[A(X) B(Y)+B(X) A(Y)] \tag{1.5}
\end{align*}
$$

where a, b, c, d are non-zero scalars,

$$
\begin{gather*}
g(X, U)=A(X) \text { and } g(X, V)=B(X) \tag{1.6}\\
g(U, V)=0 \tag{1.7}
\end{gather*}
$$

A, B are two non-zero 1-forms, U and V are unit vector fields corresponding to the 1 -forms A and B respectively. If $d=0$, then the manifold reduces to a $G(Q E)_{n}$. This type of manifold is denoted by $M G(Q E)_{n}$.

Recently in [5], A. Bhattacharyya, M. Majumdar and D. Debnath introduced the notion of mixed super quasi-Einstein manifold. A non-flat Riemannian manifold $\left(M^{n}, g\right),(n \geq 3)$ is called mixed super quasi-Einstein manifold if its Ricci tensor S of type $(0,2)$ is not identically zero and satisfies the condition

$$
\begin{align*}
S(X, Y)= & a g(X, Y)+b A(X) A(Y)+c B(X) B(Y) \tag{1.8}\\
& +d[A(X) B(Y)+B(X) A(Y)]+e D(X, Y)
\end{align*}
$$

where a, b, c, d, e are scalars of which $b \neq 0, c \neq 0, d \neq 0, e \neq 0$ and A, B are two non zero 1 -forms such that

$$
\begin{equation*}
g(X, U)=A(X) \text { and } g(X, V)=B(X), \quad \forall \quad X \in \mathcal{X}(M) \tag{1.9}
\end{equation*}
$$

U, V being mutually orthogonal unit vector fields, D is a symmetric $(0,2)$ tensor with zero trace which satisfies the condition

$$
\begin{equation*}
D(X, U)=0, \quad \forall \quad X \in \mathcal{X}(M) \tag{1.10}
\end{equation*}
$$

Here a, b, c, d, e are called the associated scalars, A, B are called the associated main and auxiliary 1 -forms, U, V are called the main and the auxiliary generators and D is called the associated tensor of the manifold. We denote this type of manifold $M S(Q E)_{n}$.

2 Preliminaries

Throughout the paper we shall assume that the dimension of the considered real manifolds is $n \geq 3$. From (1.8) and (1.9), we get

$$
\begin{align*}
S(X, X)= & a|X|^{2}+b|g(X, U)|^{2}+c \mid g\left(X,\left.V\right|^{2}\right. \tag{2.1}\\
& +2 d|g(X, U) g(X, V)|+e|D(X, X)|, \quad \forall X \in \mathcal{X}(M)
\end{align*}
$$

Let θ_{1} be the angle between U and X;Let θ_{2} be the angle between V and X. Then

$$
\begin{aligned}
& \cos \theta_{1}=\frac{g(X, U)}{\sqrt{g(U, U)} \sqrt{g(X, X)}}=\frac{g(X, U)}{\sqrt{g(X, X)}}, \\
& \text { and } \quad \cos \theta_{2}=\frac{g(X, V)}{\sqrt{g(X, X)}} \\
& \text { If } b>0, c>0, d>0 \text { and } e>0, \text { we have from (2.1) }
\end{aligned}
$$

$$
\begin{align*}
(a+b+c+2 d+e)|X|^{2} & \geq a|X|^{2}+b|g(X, U)|^{2}+c|g(X, V)|^{2} \\
& +2 d|g(X, U) g(X, V)|+e|D(X, X)| \tag{2.2}\\
& =S(X, X)
\end{align*}
$$

Contracting (1.8) over X and Y , we get

$$
\begin{equation*}
r=n a+b+c \tag{2.3}
\end{equation*}
$$

where r is the scalar curvature.
Again from (1.8) we have

$$
\begin{gather*}
S(U, U)=a+b \tag{2.4}\\
S(V, V)=a+c+e D(V, V) \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
S(U, V)=d \tag{2.6}
\end{equation*}
$$

If X is a unit vector field, then $S(X, X)$ is the Ricci-curvature in the direction of X. Hence from (2.4) and (2.5) we can state that $a+b$ and $a+c+e D(V, V)$ are the Ricci curvature in the directions of U and V respectively. Let L be the symmetric endomorphism of the tangent space at each point corresponding to the Ricci-tensor S, where

$$
\begin{equation*}
g(L X, Y)=S(X, Y) \forall X, Y \in \mathcal{X}(M) \tag{2.7}
\end{equation*}
$$

We also consider

$$
\begin{equation*}
g(\ell X, Y)=D(X, Y) \tag{2.8}
\end{equation*}
$$

Further, let d_{1}^{2} and d_{2}^{2} denote the squares of the lengths of the Ricci-tensor S and the associated tensor D. Then

$$
\begin{equation*}
d_{1}^{2}=S\left(L e_{i}, e_{i}\right) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{2}^{2}=D\left(\ell e_{i}, e_{i}\right) \tag{2.10}
\end{equation*}
$$

where $\left\{e_{i}\right\}, \quad i=1,2, \ldots, n$ is an orthonormal basis of the tangent space at a point of $M S(Q E)_{n}$.

Now from (1.8) we get

$$
\begin{align*}
S\left(L e_{i}, e_{i}\right)= & (n-1) a^{2}+a^{2}+b^{2}+c^{2} \\
& +2 a b+2 b c+c e D(V, V)+e S\left(\ell e_{i}, e_{i}\right) \tag{2.11}
\end{align*}
$$

Now from (1.8), we have

$$
\begin{equation*}
S\left(\ell e_{i}, e_{i}\right)=e D\left(\ell e_{i}, e_{i}\right) \tag{2.12}
\end{equation*}
$$

From (2.11) and (2.12) it follows that

$$
\begin{align*}
S\left(L e_{i}, e_{i}\right)= & (n-1) a^{2}+a^{2}+b^{2}+c^{2} \\
& +2 a b+2 b c+c e D(V, V)+e^{2} D\left(\ell e_{i}, e_{i}\right) \tag{2.13}
\end{align*}
$$

Hence

$$
\begin{equation*}
d_{1}^{2}=(n-1) a^{2}+(a+b+c)^{2}-2 c a+c e D(V, V)+e^{2}\left(d_{2}\right)^{2} . \tag{2.14}
\end{equation*}
$$

Considering $\quad e D(V, V)=2 a, \quad$ i.e., $\quad D(V, V)=\frac{2 a}{e}=k$.(say)
From (2.14) we can write

$$
\begin{equation*}
d_{1}^{2}-e^{2}\left(d_{2}\right)^{2}=(n-1) a^{2}+(a+b+c)^{2} \tag{2.15}
\end{equation*}
$$

These result will be used in the sequel.

3 Compact orientable manifolds $\operatorname{MS}(\mathrm{QE})_{n}$

In this section we consider a compact, orientable $M S(Q E)_{n}$ without boundary having constant associated scalars a, b, c, d and e. Then from (2.3) and (2.15), it follows that the scalar curvature is constant and so also is the length of the Ricci-tensor.

We further suppose that $M S(Q E)_{n}$ under consideration admits a non-isometric conformal motion generated by a vector field X. Since $\left(d_{1}^{2}-e^{2}\left(d_{2}\right)^{2}\right)$ is constant, it follows that

$$
\begin{equation*}
£_{X}\left(d_{1}^{2}-e^{2}\left(d_{2}\right)^{2}\right)=0 \tag{3.1}
\end{equation*}
$$

where $£_{X}$ denotes Lie differentiation with respect to X .
Now, it is known ([10]p.57, Theorem(4.6)) that if a compact Riemannian manifold M of dimension $n>2$ with constant scalar curvature admits an infinitesimal non-isometric conformal transformation X such that $£_{X}\left(d_{1}^{2}-e^{2}\left(d_{2}\right)^{2}\right)=0$ then M is isometric to a sphere. But a sphere is Einstein so that b, c, d and e vanish which is a contradiction. This leads to the following theorem.

Theorem 1. A compact orientable mixed super quasi Einstein manifold $M S(Q E)_{n}$ ($n \geq 3$) without boundary does not admit non-isometric conformal vector fields. \square

4 Killing vector fields in compact orientable MS(QE) ${ }_{n}$

In this section, we consider a compact, orientable $M S(Q E)_{n}(n \geq 3)$ without boundary with a, b, c, d, e as associated scalars and U and V as the generators.

It is known [9] that in such a manifold M, the following relation holds

$$
\begin{equation*}
\int_{M}\left[S(X, X)-|\nabla X|^{2}-(\operatorname{div} X)^{2}\right] d v \leq 0 \quad \forall X \in \mathcal{X}(M) . \tag{4.1}
\end{equation*}
$$

If X is a Killing vector field, then $\operatorname{div} X=0[9]$.
Hence (4.1) takes the form

$$
\begin{equation*}
\int_{M}\left[S(X, X)-|\nabla X|^{2}\right] d v=0 \tag{4.2}
\end{equation*}
$$

Let $b>0, c>0, d>0$ and $e>0$ then by (2.2)

$$
\begin{equation*}
(a+b+c+2 d+e)|X|^{2} \geq S(X, X) \tag{4.3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
(a+b+c+2 d+e)|X|^{2}-|\nabla X|^{2} \geq S(X, X)-|\nabla X|^{2} \tag{4.4}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\int_{M}\left[(a+b+c+2 d+e)|X|^{2}-|\nabla X|^{2}\right] d v \geq \int_{M}\left[S(X, X)-|\nabla X|^{2}\right] d v \tag{4.5}
\end{equation*}
$$

and by (4.2)

$$
\begin{equation*}
\int_{M}\left[(a+b+c+2 d+e)|X|^{2}-|\nabla X|^{2}\right] d v \geq 0 \tag{4.6}
\end{equation*}
$$

If $a+b+c+2 d+e<0$, then

$$
\begin{equation*}
\int_{M}\left[(a+b+c+2 d+e)|X|^{2}-|\nabla X|^{2}\right] d v=0 \tag{4.7}
\end{equation*}
$$

Therefore, $\mathrm{X}=0$. This leads to the following.

Theorem 2. If in a compact, orientable $M S(Q E)_{n}(n \geq 3)$ without boundary the associated scalars are such that $b>0, c>0, d>0, e>0$ and $a+b+c+2 d+e<0$ then there exists no nontrivial Killing vector fields in this manifold. \square

5 Harmonic vector fields in compact orientable $M S(Q E)_{n}$

Let us assume $\theta_{2} \leq \theta_{1}$, where θ_{1} is the angle between U and any vector $X ; \theta_{2}$ is the angle between V and any vector X, then we have

$$
\cos \theta_{2} \geq \cos \theta_{1}
$$

and

$$
g(X, V) \geq g(X, U)
$$

Therefore, from (2.1), we have

$$
\begin{equation*}
S(X, X) \geq(a+b+c+2 d+e)\{g(X, U)\}^{2} \tag{5.1}
\end{equation*}
$$

when a, b, c, d, e are positive.
A vector field V_{1} in a Riemannian manifold M is said to be harmonic [10], if

$$
\begin{equation*}
d \omega=0 \quad \text { and } \quad \delta \omega=0 \tag{5.2}
\end{equation*}
$$

where

$$
\omega(X)=g\left(X, V_{1}\right) \quad \forall X \in \mathcal{X}(M)
$$

It is known [9] that in a compact orientable Riemannian manifold M, the following relation holds for any vector field X.

$$
\begin{equation*}
\int_{M}\left[S(X, X)-\frac{1}{2}|d \omega|^{2}+|\nabla X|^{2}-(\delta \omega)^{2}\right] d V_{1}=0 \tag{5.3}
\end{equation*}
$$

where $d V_{1}$ denotes the volume element of M. Now let us consider a compact, orientable $M S(Q E)_{n}(n \geq 3)$ without boundary. If in such a manifold, X is a harmonic vector field, then by (5.2), (5.3) reduces to

$$
\begin{equation*}
\int_{M}\left[S(X, X)+|\nabla X|^{2}\right] d V_{1}=0 \tag{5.4}
\end{equation*}
$$

Hence if each of the associated scalars a, b, c, d, e of $M G(Q E)_{n}$ is greater than zero, then using (5.1), it follows from (5.4) that

$$
\begin{equation*}
\int_{M}\left[(a+b+c+2 d)\{g(X, U)\}^{2}+|\nabla X|^{2}\right] d V_{1} \leq 0 \tag{5.5}
\end{equation*}
$$

Since, $a+b+c+2 d+e>0$ from (5.5) we get

$$
\begin{equation*}
g(X, U)=0 \quad \text { and } \quad \nabla X=0 \quad \forall X \in \mathcal{X}(M) \tag{5.6}
\end{equation*}
$$

From (5.6) it follows that X is orthogonal to U and from the second part it follows that the vector field X is parallel.

Similarly, if $\theta_{1} \leq \theta_{2}$ then for all X we infer $g\left(X, V_{1}\right)=0$ and $\nabla X=0$.
Hence we have the following
Theorem 3. If in a compact, orientable $M S(Q E)_{n}(n \geq 3)$ without boundary, each of the associated scalars a, b, c, d, e is greater than zero, then any harmonic vector field X in the $M S(Q E)_{n}$ is parallel and orthogonal to one of the generators of the manifold which makes largest angle with the vector field X.

6 Conclusions

In the present paper we study compact orientable manifolds of type $M S(Q E)_{n}$ $(n \geq 3)$ without boundary. It is shown that such manifolds do not admit non-isometric conformal vector fields. A sufficiency condition for non-existence of nontrivial Killing vector fields is provided, and a property of for harmonic vector fields is pointed out.

Acknowledgement. The authors are thankful to referees and editors for their valuable suggestions and cooperation.

References

[1] A. Bhattacharyya, M. Tarafdar and D. Debnath, On mixed super quasi-Einstein manifolds, Diff. Geom. - Dyn. Syst. (DGDS), 10 (2008), 44-57.
[2] A. Bhattacharyya and T. De, On mixed generalized quasi-Einstein manifold, Diff. Geom. - Dyn. Syst. (DGDS), 9 (2007), 40-46.
[3] A. Bhattacharyya, T. De and D. Debnath, Mixed generalized quasi-Einstein manifold and some properties on it, An. St. Univ. "Al.I. Cuza" Iasi, Tomul LIII, s.I, Mathematica 53 (2007), f.1, 137-148.
[4] A. Bhattacharyya and D. Debnath, On some types of quasi-Einstein manifolds and generalized quasi-Einstein manifolds, Ganita 57, 2 (2006), 185-191.
[5] A. Bhattacharyya, M. Tarafdar and D. Debnath, On mixed super quasi-Einstein manifolds, Diff. Geom. - Dyn. Syst. 10 (2008), 44-57.
[6] A. Bhattacharyya and T. De, On mixed generalized quasi-Einstein manifold, Diff. Geom. - Dyn. Syst. 9 (2007), 40-46.
[7] M.C. Chaki and R.K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen 57 (2000), 297-306.
[8] M.C. Chaki, On super quasi-Einstein manifolds, Publ. Math. Debrecen, 64/3-4 (2004), 481-488.
[9] U.C. De and G.C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Math. J. 44 (2004), 607-615.
[10] U.C. De and G.C. Ghosh, Some global properties of generalized quasi-Einstein manifold, Ganita 56, 1 (2005), 65-70.
[11] K. Yano, Integral Formulas in Riemannian Geomatry, Marcel Dekker, New York 1970.

Authors' addresses:
Dipankar Debnath
Department of Mathematics, Jadavpur University, Kolkata-700032, India.
E-mail: dipankardebnath123@yahoo.co.in
Arindam Bhattacharyya
Department of Mathematics, Jadavpur University, Kolkata-700032, India.
E-mail: arin1968@indiatimes.com

