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Common random numbers (CRN) is a widely-used technique for reducing variance in com- 
paring stochastic systems through simulation. Its popularity derives from its intuitive appeal and 
ease of implementation. However, though CRN has been observed to work well with a broad 
range of models, the class of systems for which it is provably advantageous has remained rather 
limited. 

This paper has two purposes: We first discuss the effectiveness and optimality of CRN in a 
general setting, stressing the roles played by monotonicity and continuity properties. We then 
present specific, new classes of systems and comparisons for which CRN is beneficial and even 
optimal. Our conclusions for these systems are largely consistent with simulation practice and 
lend further theoretical support to folklore. Our results differ from those of previous analyses 
primarily because we put conditions on the timing of events, rather than the sequence of states, 
in a discrete-event simulation. 

We formulate our results in three settings corresponding to three applications of CRN: distri- 
butional comparisons, structural comparisons, and sensitivity analysis. In each case, we make use 
of conditions that simultaneously ensure monotonicity and continuity in the timing of events. 
These properties are established through explicit recursions for event epochs in terms of increasing, 
continuous functions. 
(SIMULATION; VARIANCE REDUCTION TECHNIQUES; STOCHASTIC ORDERING; 
COMMON RANDOM NUMBERS) 

1. Introduction 

A simulator seldom evaluates just one system. More often, simulation is used to com- 
pare alternative models or designs. When comparison is the goal, the cost of a simulation 
study is measured best not by the work required to evaluate each system separately, but 
by the efficiency with which valid estimates of differences in performance may be obtained. 

Common random numbers (CRN) is the simplest and probably the most widely used 
method for increasing the efficiency of comparisons via simulation. It is intuitively ap- 
pealing and easy to implement in either a custom-made simulation or in a simulation 
package. In its simplest form, CRN just requires that the systems under study be simulated 
with the same stream of random numbers. Intuitively, this seems fair since it ensures 
that the systems are compared under the same conditions. 

More generally (and more precisely), CRN is a mechanism for introducing dependence 
to reduce variance. Suppose that the "systems" under consideration are two random 
variables, vectors or sequences X and Y. The goal is to estimate the expectation E [f( X) 
- g(Y)], where f and g are real-valued cost or performance functions associated with 
the two systems. (Analogous remarks apply if one examines ratios of expectations instead 
of differences.) The effort required to obtain a valid estimate of this difference depends 
critically on the variance off(X) - g(Y), which is given by 

Var [f(X) - g(Y)] = Var [f(X)] + Var [g(Y)] - 2 Cov [f(X), g(Y)]. 

The first two terms on the right are determined by the individual distributions of X and 
Y, which are fixed by the systems being modeled. But the last term is under the simulator's 
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control. Simulating X and Y independently makes the covariance zero; deliberately in- 
troducing dependence changes the variance on the left. CRN attempts to reduce this 
variance by introducing positive dependence between f(X) and g(Y). 

This raises two questions regarding the use of CRN: When does it work, and when is 
it optimal, in the sense that no other mechanism introduces greater positive dependence. 
For the simulator, these translate to two practical questions: If the same random numbers 
are used, will variance be reduced? Is this is the best one can do? 

The analysis in this paper has two purposes. We first investigate the questions above 
for CRN in general; we then provide specific conditions under which they can be answered 
affirmatively. Our general analysis points out that the question of optimality is, in a 
sense, ill-posed. We argue that "common random numbers" is both too broad and too 
narrow for a meaningful answer, and so split the optimality question into two subques- 
tions. In practice, it seems that one can only hope to establish optimality in a restricted 
(but useful) sense. Within this restricted notion of CRN, we also consider the role of 
inversion in generating random variables, and consider the problem of optimal synchro- 
nization-that is, the proper assignment of random "seeds" to random variables. 

Our results based on specific conditions guarantee variance reduction for a class of 
systems and performance measures. They also suggest that CRN is advantageous for a 
broader class of performance measures and for systems in which our conditions are not 
grossly violated. In addition, these results provide guidelines for the implementation of 
CRN, partly validating simulation folklore on synchronization. 

The specific conditions that lead to variance reduction are developed in three settings, 
corresponding to what we view as the most useful applications of CRN. These are as 
follows: 

I. Distributional comnparisons. Here we have in mind comparisons of essentially the 
same system driven by different stochastic inputs. As an example, consider the comparison 
of two single-server queueing systems differing only in their service time distributions. 

II. Strutctural comparisons. This refers to comparisons of, for example, queues with 
the same service and interarrival times, but different buffer sizes, number of servers, etc. 

III. Sensitivity analysis. By this we mean comparisons of systems that differ only 
through a small change in a continuous parameter. Think, for example, of a comparison 
of queues with service rates ,u and ,u + c, with e small. 

The distinctions between these categories cannot be pushed too far; they are to some 
extent subjective. Nevertheless, the division is useful for the analysis and is meaningful 
in practice. 

The benefit from CRN depends on properties of monotonicity (particularly in categories 
I and II) and continuity (particularly in III). While the importance of monotonicity is 
well known, the role of continuity seems to have been less well appreciated. Both properties 
are tied to the intuitive justification for CRN: comparing two systems by using the same 
input makes most sense if the systems respond similarly to changes in inputs (monoton- 
icity), and if their outputs are close when their inputs are close (continuity). The con- 
ditions we propose simultaneously ensure monotonicity and continuity. 

There is surprisingly little work linking the general observation that monotonicity is 
important in inducing positive correlation to specific guarantees for variance reduction. 
Some empirical results are reported in Wright and Ramsay (1979), and specific examples 
are considered in most simulation texts. Theoretical results for static systems (random 
vectors) are derived in Rubinstein and Samorodnitsky (1985) and Rubinstein, Samo- 
rodnitsky and Shaked (1985), based on notions of positive dependence. Other interesting 
methods of coupling random samples are developed in Devroye (1990), Schmeiser and 
Kachitvichyanukul (1986), and Shaked and Shanthikumar (1986). 

The only general results for stochastic processes appear to be those of Heidelberger 
and Iglehart (1979), further discussed in Glynn (1985) and in Glynn and Iglehart (1988), 
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Section 12. These apply when the system simulated is a stochastically monotone Markov 
chain in the sense of Daley ( 1968 ). Let us briefly review this setting. A Markov chain X 
= { X*, n 2 0 } on R with transition kernel P is stochastically monotone if, for all y 
E R, P(x, [y,oo)) is an increasing function of x. For any SMMC there are increasing 
functions h, : [0, 1]P1?1 -> R, n = 0, 1, 2, . . ., such that if (Ul, U2, * * * ) is an i.i.d. 
sequence, each Ui uniform on [ 0, 1 ], then { h, ( U,, . . ., U, + I ), n 2 0 } is equal in law 
to { X*, n 2 0 } . (See the proof of Theorem 3.9 of Heidelberger and Iglehart.) 

Suppose now that X and Y are SMMCs, and that f and g are increasing functions 
of X and Y. If X and Y are generated from a single sequence U, then (f(X), g(oY)) 
=St (f(U), g( U)), for some increasing functions fand g, where =St denotes equality in 
distribution. Increasing functions of independent random variables are positively cor- 
related (see, e.g., p. 31 of Barlow and Proschan 1975 for finite-dimensional U; the ex- 
tension to an infinite sequence follows from Lindqvist 1988, p. 121). Thus, Cov [f(X), 
g(Y)] = Cov [f(U), g( U)] 2 0. In other words, generating Xand Ymonotonically from 
the same U is possible and advantageous. 

Compared with the types of processes typically studied through simulation, the SMMCs 
form a restricted class. The Markov assumption itself is somewhat limiting (though the 
analysis of Heidelberger and Iglehart implicitly applies to more general monotone pro- 
cesses). While most simulated processes become Markov through an augmentation of 
the state, the inclusion of supplementary variables may destroy monotonicity. Since the 
class of processes satisfying the SMMC condition exactly is small, the result above is best 
viewed as a guideline, and suggests checking for rough monotonicity and blatant departures 
from monotonicity. 

In the same spirit, we identify a different class of problems for which CRN is guaranteed 
to work and propose these, too, as guidelines for thinking about CRN. Our results com- 
plement those for SMMCs by taking a different point of view. The principal difference 
is that we look for monotonicity in the event epochs rather than in the sequence of states. 
This perspective has several important consequences: 

* Since the "state" in many simulations is multi-dimensional and does not always 
have a meaningful ordering, monotonicity in the timing of events is often more natural. 

* While conditions for positive dependence are traditionally given in purely proba- 
bilistic terms, our conditions are stated directly in terms of the structure of the simulated 
system, and are therefore based on information readily available to the simulator. 

* Because our conditions are easy to understand, they are useful as guidelines even 
when they are not satisfied exactly. 

It seems fair to say that if events never changed order the analysis of common random 
numbers would be a trivial matter. The question of whether or not CRN works is difficult 
primarily because, in most meaningful comparisons, the sequence of events may differ 
across systems on any given run. Not surprisingly, then, our conditions for guaranteed 
variance reduction restrict the possible effects of order changes. (A precise statement is 
given in Definition 3. 1.) In a sense, the key "guideline" behind all our results is this: to 
check the benefit of CRN, look at what happens when events change order. 

In ?2 we discuss common random numbers in general; we consider the optimality of 
CRN, the role of inversion, and the problem of synchronization. ?3 reviews the generalized 
semi-Markov process model of simulation and introduces the key properties on which 
subsequent results rely. In particular, it provides conditions under which it is possible to 
give explicit recursions for event epochs purely in terms of increasing, continuous func- 
tions. In ?4 we use this structure to consider distributional comparisons (as described 
above) and verify variance reduction. ?5 is a similar analysis of structural comparisons. 
In ?6 we consider the application of common random numbers to sensitivity analysis 
and show that the special structure of ?3 leads to an order of magnitude reduction in 
variance compared to CRN for "arbitrary" systems. The appendix contains all proofs. 
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Throughout this paper, "increasing," when applied to a function of vectors or sequences 
means "nondecreasing in the componentwise ordering." Unless otherwise stated, state- 
ments about continuity refer to the "product topology:" a mapping of (x,, x2, * * ) to 
(f, f2, *) is continuous in this sense if f (']) f, for all i, whenever x(n) xi for 
all i. A right-continuous function is one which is continuous through every decreasing 
sequence of arguments. 

Finally, a caveat: Our analysis assumes the availability of an ideal random number 
generator. We make no attempt to model the serial correlation in any real sequence of 
pseudorandom numbers. Such correlation may influence the implementation and per- 
formance of CRN. 

2. General Considerations Regarding CRN 

Before we can show that CRN works or is optimal in any specific settings we must 
investigate what this means in general. Our discussion points out that, in practice, CRN 
is at best optimal within a limited class of sampling schemes. 

2.1. Optimality of CRN 

Let X and Y be random objects with distributions Px and Py, taking values in sets Sx 
and Sy. These sets are essentially arbitrary; in particular, X and Y could be scalars, 
vectors, or processes. Let f and g be real-valued functions on Sx and Sy. In comparing 
E [f(X)] and E [g(Y)] through simulation using CRN, one might ask, Does generating 
X and Y with the same random numbers make Cov [f(X), g(Y)] positive? Does CRN 
maximize this covariance? 

Without further elaboration, these questions (especially the second one) are mean- 
ingless. Of course, part of the problem is that we have not said anything about how X 
and Y are to be generated from random numbers. But the problem is deeper than that. 
A result in measure theory (see p. 327 of Royden 1968; see Whitt 1976 and Wilson 1983 
for closely related applications) states that any "reasonable" probability space can be 
represented as the image of a measurable function on the unit interval with Lebesgue 
measure. This means that, in a precise sense, virtually any random object can be sampled 
by appropriately transforming a single uniform random variable, U. In particular, any 
joint distribution of (X, Y) on Sx X Sy (with marginals Px and Py) can be realized from 
a single U. Thus, any value of Cov [f(X), g(Y)] that can arise through some joint 
distribution of (X, Y) can be realized using a common random number; the use of CRN 
in no way restricts the possible values of this covariance. In this sense, "common random 
numbers" is simply too general. 

There is another sense in which CRN, if taken literally, is too narrow. The value of 
Cov [f( X), g( Y)] is determined by the joint distribution of (X, Y), but does not otherwise 
depend on how X and Y are generated. Any sampling scheme that induces the same 
dependence between X and Y as CRN (with no additional effort) is just as good as CRN, 
even if it does not literally use common random numbers. We should not, therefore, 
restrict CRN to mean running different simulations with the same "seeds". We will 
return to this point in ?2.2. 

With these remarks in mind, let us focus the problem of CRN, defining what we see 
as the key practical and theoretical issues. Let A1(X, Y) be the set of probability measures 
on Sx X Sy with marginals Px and Py. These are the admissible joint distributions of X 
and Y. The analysis of CRN is concerned with determining which distributions in At (X, 
Y) maximize Cov [f( X), g( Y)], and with finding ways of sampling from these distri- 
butions. 
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We obtain greater generality with little additional complexity if we consider the max- 
imization problem 

sup E[4(X, Y)], (1) 
4(X, Y) 

for some function V: Sx X Sy -> R. If we choose V(x, y) = f(x)g(y), the solution to 
(1) maximizes the covariance off(X) and g(Y). 

The solution to (1) is known in significant generality when X and Y are random 
variables (i.e., real-valued). Recall that a function : R2 -> R is called supermodular if, 
whenever xl < x2 and Yl ? Y2, 

{(x,, Yi) + (x2, Y2) ? {(x,, Y2) + {(x2, y,). 

(This definition extends immediately to the case where Sx and Sy are arbitrary partially 
ordered sets. We use this generalization below.) Suppose X and Y have distribution 
functions Fx and Fy. For any distribution F on R, define the inverse of F by F-1 (u) 
- inf { x: F(x) > u }. From Cambanis, Simons, and Stout ( 1976) we have 

PROPOSITION 2. 1. Suppose that V is right-continuous and supermodular, and that U 
is uniformly distributed on [ 0, 1]. Then 

sup E [ (X, Y)] = E [x(F-'( U), F-2( U))], 
44(X,Y) 

assuming all expectations on the left exist and are finite. In other words, ( 1) is solved 
generating X and Y by inversion using a common random number. 

(Cambanis et al. use weaker conditions. Lorentz 1953 proved a slightly less general 
version of this result. He also showed that, in a precise sense, the supermodular functions 
form the largest class for which this result holds. This should not be surprising since the 
supermodular functions are just those which reward "alignment" of their arguments.) 

If f and g are increasing functions from R to R, then their product is supermodular 
on R2; hence, Proposition 2.1 shows how to maximize Cov [f(X), g(Y)] in this case. 
The element of A(X, Y) that attains the maximum in Proposition 2.1 is given by the 
distribution 

H(x, y) = P(F-2(U) < x, F-1(U) < y) = P(U < Fx(x), U < Fy(y)) 

= Fx(x) A Fy(y), (2) 

as noted in Hoeffding ( 1940); see also Lehmann ( 1966), Cambanis et al., and Whitt 
(1976). 

Thus, the solution to ( 1 ) is known when X and Y are random variables. Unfortunately, 
this is virtually the only case in which the solution is known. (See Rachev 1984 for a 
survey of existing results and related open problems.) Even if (1) could be solved when 
X and Y are stochastic processes, there would be no guarantee that sampling from the 
optimal joint distribution would be feasible. Thus, both theoretical and practical consid- 
erations lead us to narrow the problem. 

In practice, the method of sampling each of X and Y may be determined by consid- 
erations (computational efficiency, ease of implementation) other than applicability to 
CRN. Hence, it is natural to look at the simpler problem in which the sampling algorithms 
are fixed, and the simulator merely controls the assignment of seeds. Let U = ( U,, U2, 
... ) and V = (VI, V2, * * ) be sequences of independent random variables, each Ui 
and V, uniformly distributed on [0, 1]. Fix samplingfunctions Px, by for which Px( U) 
=StX and Py( V) =St Y(X and Yare now general). For example, if Xis an i.i.d. sequence, 
(x could map U to X by mapping U, to Xi, i = 1, 2 .- If X is a dependent sequence, 
it can be generated by first sampling Xl, then X2 given Xl, then X3 given Xl, X2, and so 
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on. In this case, it is natural for each Xi to be a function of U1, . . ., Ui. At this point, 
the details of Px and by do not concern us. 

With the sampling functions fixed, the problem becomes choosing the joint distribution 
of( U, V) to maximize Cov [ f Px( U), g by( V)]. Even this problem is a bit too general, 
so we add an additional constraint: we only allow dependence between corresponding 
elements of the sequences U and V. In other words, we require that for all n, all iI, . 

in, and all ui,, vi, . . , ui, vi, E [0, 1], 

P(Uij < uij, Vi < vij, j = 1,..., n) = fi P(Ui < ui, ViJ < vi). (3) 
j=1 

Denote by MO0( U, V) the set of joint distributions of ( U, V) satisfying ( 3 ). As shown in 
the Appendix, Proposition 2.1 proves 

PROPOSITION 2.2. If E [f2(X)] < 00 and E[g2(Y)] < oo, and iff, g, Pxand py are 
increasing right-continuous functions, then 

sup Cov[f-4x(U),g?4y(V)] (4) 
A0( u, v) 

is attained by setting V = U. The maximizing element of M'tO is defined by setting the jth 
factor on the right side of( 3) equal to Aij A vij P( Uij < uij, U vij). 

In practice, optimality in the sense of Proposition 2.2 seems to be the most one can 
hope for. Clearly, a joint distribution which is optimal for (4) may be only suboptimal 
for ( 1 ); the possible distributions { (Jx( U), J?y( V)), ( U, V) E AMO} form a subset of 
AM(X, Y). The practical distinction between these problems is the following: In (1), the 
simulator asks, What is the best way to sample X and Y? In (4), the question is, Given 
algorithms for sampling X and Y from random number streams, what is the best way to 
allocate random numbers to the two simulations? 

In ?3 and ?4, we define a general class of simulations for which standard choices of 
Px and by are, in fact, increasing and right-continuous. Hence, for these systems, com- 

parisons using CRN are optimal, in the sense of Proposition 2.2. 

2.2. The Role of Inversion 

It is known that inversion plays a special role in CRN; one occasionally finds the 
recommendation that only inversion be used with CRN. Here, we look more closely at 
its role in problems (1) and (4). 

Inversion is important because monotonicity and continuity are important, and in- 
version is closely related to these properties. Consider, first, monotonicity. Let X be a 
random variable with distribution Fx. Consider the set Ax of "rearrangements of X"; 
i.e., the set of functions Px: [0, 1] h-> R for which P( Px( U) < x) = Fx( x) whenever U 
is uniform on [ 0, 1 ] and x E R. Clearly, F`X1 is in Rx; in fact, F`ji is the unique increasing 
element of Ax (unique up to equality almost everywhere on [0, 1]). Since monotonicity 
of tx is needed in Proposition 2.2, this alone would distinguish F`yj among elements of 
Ax. (The monotonicity of inversion is also the key to the analysis of Heidelberger and 

Iglehart of CRN with SMMCs.) 
This observation allows us to reinterpret Proposition 2.1. Suppose we have decided a 

priori to use CRN and would like to know how best to implement it. We consider the 
optimization problem 

sup E [ t(4x( U), 4)y(U))], (5) 
4 x E fx,byCY? y 

in which U is uniform and AV is continuous and supermodular. From Proposition 2.1, 
we see that F-XY and F2y are the optimal choices. Thus, Proposition 2.1 states not only 
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that CRN is optimal if inversion is used, but also that inversion is optimal if CRN is 
used. (This interpretation is a generalization of a rearrangement inequality of Hardy, 
Littlewood, and Polya 1952, due to Lorentz. Whitt 1976 also considers maximal corre- 
lation via rearrangements.) 

The second property mentioned above is continuity. This property is especially im- 
portant when the performance functions f and g are, in fact, the same. It may happen- 
or we may imagine-that the random variables X and Y are connected through a sequence 
X() XM . . , where X(?) = X and { X((n) } converges in distribution to Y. In this case, 
the comparison of E [f(X)] and E [f( Y)] becomes the limit of a sequence of comparisons. 
(Of course, this can always be achieved by letting every X (*), n > 0, have the same 
distribution as Y, but it is more meaningful to think of a sequence of "small" steps from 
Xto Y.) In making comparisons, it seems reasonable to require that the random variables 
be generated so that as the distributions of { X (n)} draw near to that of Y, the values 
draw near as well. (We justify this in ?2.3 and ?4.4.) Inversion achieves this goal: if 
X(1) => Y ( => denotes convergence in distribution) then Fx',,)( U) - F Y ( U) with prob- 
ability one, which is what we want. However, other rearrangements of {X(?)} and Y 
may also provide continuity, so this property is not unique to inversion. 

The above remarks, properly understood, indicate the importance of inversion in spec- 
ifying joint distributions for simulation comparisons; they should not, however, be taken 
to imply that inversion itself must be used in implementation. For example, in Proposition 
2. 1, optimality is achieved by the distribution H(x, y) = Fx( x) A Fy( y). This distribution 
is conveniently represented in terms of inversion and CRN, but any other method of 
sampling from H would achieve the same covariance. 

Suppose in comparing two systems we need to generate i.i.d. sequences (e.g., service 
times) X = (XI, X2, ** * )and Y= (Y,, Y2, * * * ). Suppose we would like each pair (Xi, 
Yi) to have the distribution H. Using inversion and CRN is one option, but not the only 
one. We might generate each Xi using any sampling scheme (e.g., acceptance-rejection), 
and then generate Yi given Xi. If Fy is easily inverted (but Fx is not), we may conditionally 
sample Yi by setting Yi = FYl (Fx( Xi)). If Fx and Fy are continuous, then 

P(Xi < x, F-i7"Fx(Xi) < y) = H(x, y), 

as is easily checked. 
In some cases, inversion can be used to derive functional relations between random 

variables; the relation can then be used without inversion. This is the case when Xi and 
Yi belong to a scale or location family, as noted in Glasserman (1988a) and Glynn and 
Iglehart ( 1988 ). Suppose that Fx( * ) = F( *, Ox) and Fy( ) = F(. , Q y) for some collection 
{F(., 0), 0 E O} of distributions. This is a scale family if F(x, 02) = F(61x/02, 06), and 
a location family if F(x, 02) = F(x + 01 - 02, 06), for all x E R and all 61, 02 E 0. In 
the first case, we may set Yi = 6yXi /Ox, in the second case Yi = Xi- x + O , to achieve 
the joint distribution H without necessarily using inversion. 

Inversion has one additional property which does make it particularly convenient for 
the implementation of CRN (and which is often noted in the simulation literature): it 
requires exactly one uniform variate for each non-uniform variate generated. This makes 
programming for CRN particularly easy, and also simplifies the analysis of simulations 
driven by CRN. A method which always requires some fixed number (or at most some 
fixed number) of variates is almost as convenient. One could group the stream of random 
numbers into blocks and dedicate each block to a specified variate. Some methods, how- 
ever, require a potentially unbounded number of uniform variates for each transformation; 
this is the case with acceptance-rejection, for example. CRN may be difficult to implement 
in comparing two simulations using such a method. However, if such a method is used 
to sample from H(x, v) across simulations (e.g., as described above), then it is just as 
good as inversion and the fact that it uses a random number of variates is irrelevant. 
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In subsequent sections, we often specialize our results to the setting in which sequences 
of independent random variables are generated by inversion. This sometimes clarifies 
the results and may make them more immediately applicable. However, references to 
CRN with inversion should be understood as shorthand for sampling from a specified 
joint distribution. The results do not depend on literal use of inversion. 

2.3. Synchronization 

In the simulation literature one finds the recommendation that when CRN is used it 
should be implemented so that "corresponding" random variables across simulations 
are generated from the same random numbers. This is the issue of synchronization. 
Posing the problem this way presupposes that closely matching random numbers is ad- 
vantageous, so let us formulate the question more generally. 

Let X and Y be vectors or sequences. Once we have fixed sampling functions Ibx and 
Iby, and have made the decision to use CRN, we must still decide how to assign random 
numbers across simulations-i.e., how to synchronize. Let H be the set of one-to-one 
functions ir mapping { 1, 2, * } into itself. Think of elements of II as "permutations" 
of the positive integers. Given a sequence U = ( U1, U2, * * * ), denote by UT the sequence 
with ith element U1(i). If 4bx( U) =st X, then bx( U1) =st X as well, because UT =st U. 
Thus, we are free to compare g I by( U) with> f ?bx( Ur) for any ir E HI. The analysis of 
?2.1 provides no guidance in choosing ir; if Ib, is increasing then, as a function of U, 
(bx(U71) is increasing, too. Any ir will make the covariance of f(X) and g(Y) positive, 
but which will maximize it? We are faced with the problem 

sup E[f(tIx( U1), (by(U))]. (6) 

As an example, consider a comparison of two single-server queueing systems. Suppose 
that X is the sequence of interarrival and service times for one queue and Y is the same 
sequence for the other queue. Suppose that all components of X (and all components of 
Y) are independent, and let Xi and Yi have marginal distributions Fi and Gi. Suppose 
that the ith component of dbx(u) is given by Fl(ui ) and that of by((u) by G7 1i(u). Let 
f be an increasing, continuous function of X or Y. From Proposition 2.2, we know that 
in estimating E [f( X) - f( Y)] we obtain variance reduction (compared with independent 
samples) by setting X = Ibx( U) and Y = Iby( U). However, for any ir E H we also obtain 
variance reduction by setting X = Ibx( U") and Y = Iby( U). Intuitively, it seems best to 
match seeds so that corresponding service and interarrival times in X and Y are generated 
from the same component of U; however, the results and discussion above do not by 
themselves justify this intuition. 

Some justification is provided by the following result, which uses continuity. Suppose 
that X and Y take values in a common set S, a complete, separable metric space. Let 
X(?) = Xand let {X( (), n 2 0 } be a sequence for which X(1) =- Y. Let bx(o, U) =st X(n)) 

n = 0, 1, .. ., and by( U) =st Y, where U is a sequence of independent, uniformly 
distributed random variables. 

PROPOSITION 2.3. Suppose that, for almost every u E [0, I]f, 4(bxo(U) -- by(u) 
as n -- oo. Let f: S h-> R be continuous. Suppose there exists an e > 0 such that 
sup,>0 EIf l(X(1)) 12+E] < o0. Then Var [f - bx( U) -f-y(U)] - 0 as n oo). 
Moreover, if ir E I is nontrivial, in the sense that Var [ f -4)y( U1) - f( y ( U)] 0, then 
for all stiffciently large n, 

Var [f x(n)(U)-f o?y( U)] < Var [ fA? xn4) U1T) fA y( U)]. 
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PROOF. The conclusion is an immediate consequence of the assumptions. Continuity 
of f implies f Abx(fl)(u) --f fIby(u) for almost every u, and the moment condition on 
f(X(')) implies that { [f _ bx(')( U)-fAby( U)]2, n ? 0 } is uniformly integrable. Hence, 

lim Var [f - bx(t)( U) -f by( U)] = Var [ lim f bx(t)( U) -f b y(U)] = 0. 

Similarly, for nontrivial 7r we have lim,l Var [fto Ibx()( UX)-f o Iby( U)] = c, for some 
c > 0. For all sufficiently large n, 

Var [f 0X(t)(U) -fo4y(U)] < c/2 < Var [f oX(t)(U1) -f Oy( U)] g 

Let us interpret this result in the comparison of two single-server queues discussed 
above. Consider a sequence of single-server queueing systems through which the service 
and interarrival times of one of the two systems under comparison converge in distribution 
to those of the other: for all i = 1, 2, . .. , the sequence {F(?), n ? 0}, F() = 

converges to Gi at all continuity points of Gi. If bx(n) and Iby generate components of 
X(") and Yby inversion, then X 5'1 , Yi, for all i, for almost every u. Hence, when the 
other hypotheses of the proposition are in force, we may conclude that assigning com- 
ponents of U to corresponding components of X and Y beats any other (nontrivial) 
assignment if the distributions for the two queues are sufficiently close. The restriction 
to nontrivial permutations is needed to exclude the possibility that ir merely permutes 
elements of U that do not affect> I(y( U). 

Suppose, now, that we have two streams of random numbers UO1" and U(2). We use 
one for interarrival times and one for service times. In comparing two systems, we must 
decide whether to use the streams in the same way or, perhaps, to swap them. Proposition 
2.3 suggests that the standard synchronization (using the streams the same way for both 
systems) is best if the service and interarrival times in the two systems are closer than 
the service times in either and the interarrival times in the other. Further support for the 
standard synchronization is given in subsequent sections. 

For finite-horizon simulations-simulations of random vectors-a different approach 
to (6) and synchronization can be developed, based on arrangement orderings; see ?6.F 
of Marshall and Olkin ( 1979 ). A function f: [ 0, 1 ] ?-> R is called arrangement increasing 
if, for any ul, I . ,Un and I < i < j < n,f(ul, . . .,I Ui, ... ., Uj, ... ., Un) >f(ul,.... ., u;, 

,ui, . . ., Iut) whenever ui 2 uj. For the following, let ir be any permutation of { 1, 

PROPOSITION 2.4. Suppose f and g are arrangement increasing functions on [0, 1]". 
If the components of U = (Ul, . . ., Un) are independent and uniform on [0, 1], then 
Cov [f( U), g( U) ] 2 Cov [f( U1), g( U) ] for all ir. In other words, (6) is attained by the 
identity permutation. 

This result shows that a sufficient condition for closely "matching" random numbers 
to be optimal is that the functions applied to them be arrangement increasing. The 
relevant functions are typically compositions of sampling and performance functions, 
so the arrangement increasing property may be difficult to satisfy or verify. It is unclear 
whether Proposition 2.4 can be applied to queueing systems with any generality. A simple 
example-the single-server queue-is given in ?4.4. 

3. Specially Structured Systems 

We now turn to the investigation of a specific class of systems for which CRN is 
guaranteed to reduce variance and for which CRN is optimal in the sense of Proposition 
2.2. To define this class of systems, we need to specify a precise model for discrete-event 
simulation. 
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3.1. A Model of Simulation 

The most appropriate setting for our analysis is that of generalized semni-Markov pro- 
cesses or GSMPs. These processes are sufficiently general to model most systems studied 
through simulation, and their dynamics closely mimic those of event-driven simulations. 
(See Glynn and Iglehart for an overview of the role of GSMPs in analyzing simulation.) 

A GSMP is defined in terms of a generalized semi-Markov scheme, which may be 
thought of as the structure of a simulation algorithm. A scheme is a 4-tuple ? = (S, A, 
6, p) where S is a set of states or system configurations; A is a finite set of events; e is 
a mapping from S to subsets of A with the interpretation that 6 (s) is the set of active 
events-the event list-in state s; and p is a transition probability function: if a E 6(s), 
then p(s'; s, a) is the probability that the process moves to state s' from state s upon the 
occurrence of event a. Once the scheme is given, the stochastic description of a GSMP 
is completed by specifying an input process of clock times. This is a doubly-indexed 
sequence t = { 4(n), a E A, n = 1, 2, * } with the interpretation that U(n) is the 
length of the nth "clock" or lifetime for event a. For example, if a is an arrival or a 
service completion event, then U(,n) is the nth interarrival time or service time. Naturally, 
P(a(n) 2 0) = 1 for all a and n. 

We now describe how t drives the evolution of the system. We construct a sequence 
{ (Yn, C1,), n 2 0 } in which Y,1 is the nth state visited by the system and Cn is the vector 
of residual clock times just after the nth transition. The sequence { (Ytl, C1,), n 2 0 } is 
a general state-space Markov chain when the clock times are independent. Fix an initial 
state s0 and let Y0 = s0. Initially, clocks are set for active events: if a E& e (so) then C0 ( a) 
= U( 1), and if a T e (s0) then Co (a) = 0. Among the elements of e (s0), the event with 
the smallest clock time-call it a -is the first to occur, and it occurs at C0 (aI ). (Use an 
arbitrary rule to break ties.) Upon the occurrence of a,, the process moves to state Y, 
which is sampled from the probability mass function p(*; s0, a,). In the new state, the 
clock readings are adjusted: If a E e (EY) ni [ (YO) - { al } ], then the clock for a continues 
to run in the new state, and its clock reading is given by Ci (a) = Co (a) - Co (a). If a 
E 6(Y1) \ [e(Yo) - {aI }], then a new clock must be set for a. Thus, C1 (a) = (Jk 
+ 1), where k is the number of times a clock has previously been set for a (which, so 
far, is just 1 {a = al } ). Finally, if a E [ e (Y0) - { a } ] \ e (YI ), then a becomes inactive 
in the new state, Cl (a) = 0, and the clock for a is said to be interrupted. By repeating 
this procedure we obtain (Y2, C2) from (Y1, Cl), and so on. 

If we let T1r = n-I- min {Ci(a) : a E 6(Yi)}, then Tn is the epoch of the nth tran- 
sition. We always assume that the system is nonexplosive, in the sense that, for all s0, 
P(supn>o T1r = cxD) = 1. This is a condition on t. With this assumption, the state of a 
GSMP {Xt, t 2 0 } is defined by setting X, = Y,1 for T1, < t < Tn+I - 

From the evolution described above we also obtain a sequence T = { Ta(n), a E A, 
n = 1, 2, * * * }, where Ta(n) is the epoch of the nth occurrence of event a. Define Ta(n) 
to be infinity if a does not occur n times. By convention, for every a E A, Ta(0) = 0 
and Ta(oo ) = oo . If we define D = {Da(t), a E A, t 2 0 } by Da(t) = sup { n ? 0: Ta(n) 
< t }, then Da(t) is the number of occurrences of a in (0, t ]. 

It is important to note that we have not placed any restrictions on the dependence 
among components of (, except (implicitly) that the dependence is determined a priori 
and is not affected by the evolution of the process. In practice, one often takes the sequences 
,a and (a' to be independent for a =# a', and the elements of each sequence { U(n), n 

= 1, 2, * * } to be i.i.d. with some distribution Fa. Let us refer to this case as the standard 
independent input. 

3.2. Key Properties 
We begin by considering GSMPs based on deterministic schemes-i.e., schemes in 

which p(s'; s, ax) takes only the values 0 and 1. For such schemes, we may define 4(s, 
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a) to be the unique state reached from s upon the occurrence of a, if a E 6e(s). Call a 
finite sequence of events t1 * * feasible starting in a state so if ti,I E& e (si ) for i = 0, 
. . ., n-1, with si = 4(si-1, /3). The feasible sequences are those that can arise as the 
sequence of actual events through some choice of t. A finite sequence of events is also 
called a string and denoted o-. If o- is feasible starting in s, we write 0(s, cr) for the state 
reached from s through the occurrence of the sequence o-. For simplicity, in the sequel 
we take the initial state so to be fixed. Finally, for any string o-, let N( -) be the number 
of occurrences of a in o- and let N(o-) = (N (J), a E A). 

Our results are based on structural properties of schemes specified in 
DEFINITION 3.1. Define the following three properties for deterministic schemes: 
(i) noninterruption: for all s E S, all distinct a, 3 E A, if a, 3 E 6e(s) then 3 

E 6e(q(s, a)); 
(ii) permutability: for all feasible o- and o', N(o-) = N(o') implies 6(0(s, cr)) 

= e(C(s, C')); 
(iii) strong permutability: for all feasible o- and o', N(o-) = N(o-') implies 0(s, o) 

= O(s, C'). 
The first property states that the occurrence of one event never interrupts the clock of 

another; a clock, once set, runs out at its scheduled time regardless of the occurrence of 
other events. The property of permutability states that permuting the order of events 
(while maintaining feasibility) does not change the event list of the state reached. Strong 
permutability is indeed stronger because it requires that permuting events not change 
the state reached. 

In a queueing context, most nonpreemptive disciplines satisfy noninterruption, and 
most permutable schemes are in fact strongly permutable. For instance, the first-come- 
first-served, single-server queue is noninterruptive and strongly permutable. But per- 
mutability is incompatible with, for example, multiple job classes arriving in separate 
streams to a single queue: a change in the order of arrivals of different classes can change 
the event list reached. Examples are detailed in ?4.2. 

The conditions in Definition 3.1 have fundamental implications for the method of 
CRN; their significance derives from the following: 

THEOREM 3.2. Suppose the deterministic scheme ? is noninterruptive and permutable. 
Then for every a E A and every n = 1, 2, * * * there exists a set of( nonrandom) indices 
{xl (a, n), 3 E A, j = 1, . . ., J} , for some finite J (depending on a and n), such that 

for all t 

Ta(n) = Ujn) + min max { T3(x(a, n))}. (7) 
1'j'J OE=A 

It follows that T is an increasing, continuous function oft. 

Instances of (7) are given for specific examples in ?4.2. For the single-server queue, 
(7) is especially simple so we display it here. Let a denote arrival, let 3 denote service 
completion and let the system be empty initially. The corresponding recursions are thus: 

Ta(n) = U(n) + Ta(n - 1); (8) 

T3(n) = t(n) + max {Ta(n), T3(n - )}. (9) 

To see this, observe that the nth interarrival time starts at the (n - ) st arrival, the nth 
service time starts at either the nth arrival or the (n - 1 )st departure, whichever is later. 

That noninterruption and permutability imply (7) is established in Glasserman and 
Yao ( 1992b), so here we only sketch the argument. In a noninterruptive scheme, Ta(n) 
- U(n) is the epoch of the nth setting of a clock for a. Denote this epoch by Sa(n); we 
argue that S,( n) is given by the second term on the right side of (7). Suppose that T,( n) 

< o and consider the set of strings z leading to the nth activation of ax; i.e., o- E z if 
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and only if N,(o) = n - 1 and a E e(0(so, o-)). Let N( 2) = {N(o), o- E & }. Call an 
element x of N(l) minimal if for any other element y E N( 2) we have yF > xF for at 
least one f E A. Let each xi(a, n) = {xi(a, n), f E A} be a minimal element of N(2). 
Notice that each xi( a, n) is a deterministic vector not depending on the outcome of t. 
Permutability implies that a is activated for the nth time by time t if and only if D(t) 
dominates some element of N(2;). Hence, Sa(n) is the smallest t for which D(t) dominates 
some element of N(2;), and therefore the smallest t for which D(t) dominates some 
minimal element of N( 2). This explains the "min" in (7). For D(t) to dominate some 
N(o), every D,(t), f E A, must be greater than or equal to N,(o-); i.e., D(t) dominates 
xIo(a, n) if and only if t 2 max, { T3(xj (a, n))} . This explains the "max" in (7). 

The second part of the theorem follows from (7). Let t and 4' be two realizations of 
the clock time process. Write t < (' if, for every a and n, U(n) < ?' (n). Then the 
mapping from t to T given by (7) is increasing because t < (' implies T < T', in the 
same componentwise ordering. (Min, max and addition are increasing functions.) The 
mapping is also continuous: if (k)(n) -(, n) as k - oo for every a and n, then, for 
the resulting epochs T(k) and T, T(k)(n) -- Ta(n) as k - oo, for every a and n. This 
holds because min, max and addition are continuous. 

REMARKS. (i) If some event a can never occur n or more times, we can drop the 
"min" in (7) and set xj(a, n) = oo for all 3 #- a. (Recall our convention that T3(oo) 
= cc for all 3.) In an irreducible scheme (i.e., one in which every state can be reached 
from any other state through some sequence of events) all events can occur infinitely 
many times, so every index appearing on the right side of (7) is finite. Many commonly 
simulated systems are irreducible. 

(ii) Most of our results follow from (7), so we could simply take that representation 
as our starting point. Recursions like (7) are known for specific systems; see, e.g., Baccelli, 
Massey, and Towsley (1989), Tsoucas and Walrand (1989), and see Greenberg, Lu- 
bachevsky, and Mitrani ( 1990) for an application to parallel simulation. Our results do 
not depend on Theorem 3.2 except through (7), so they hold whenever such a recursion 
is available. But Definition 3.1 does provide a convenient set of "primitive" conditions 
that ensure the structure of (7). It also underscores the connection between monotonicity, 
continuity and changes in the order of events. 

4. Distributional Comparisons 

We now apply the structure of Theorem 3.2 to CRN. We consider two GSMPs based 
on the same scheme but driven by different clock processes. We show that if the scheme 
is permutable and non-interruptive, variance reduction is achieved using CRN. 
4.1. Guaranteed Variance Reduction 

Let (1) and t (2) be alternative inputs to the same scheme, and let T"') and T(2) be 
the resulting event epochs. Let 4b(1) and 4b (2) generate (1) and t (2) from a sequence of 
i.i.d. uniform random variables. Our first result is relevant to finite-horizon comparisons. 
It is an immediate consequence of Proposition 2.2. 

THEOREM 4.1. Suppose the deterministic scheme g is noninterruptive and permutable. 
Suppose that 4 (1) and b (2) are increasing, right-continuous functions of sequences U and 
V, and that f and g are increasing, right-continuous functions of T"1) and T(2) for which 

f( T")) and g( T(2)) have finite second moments. Then generating t ") and t (2) with U 
= V minimizes Var [f( T(1) - g( T(2)) ] among alljoint distributions of( U, V) in MO ( U, 
V). In particular, it minimizes Var [ T(l)(n) - T(2 )(n)] for all a and n. 

An important special case is that of the standard independent input described at the 
end of ?3.1. By simply relabeling, we may take U to be a doubly-indexed sequence 
{ Uc(n), ax & A, n = 1, 2, * * }. Suppose 4) transforms U to t by setting (c,n) 
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- F) ( UJ(n)) and that + (2) works analogously. These maps are monotone increasing 
and right-continuous. Call this case the standard independent input with inversion. 

COROLLARY 4.2. In the case of standard independent input with inversion, 4) (1) and 
4) (2) are automatically increasing and right-continuous. Hence, CRN is optimal, in the 
sense of Theorem 4. 1, if the other conditions of the theorem are in effect. 

We can weaken the assumption of independent inputs if we assume that ,a and tF are 
independent, for a # 3, and that, for each a E A, { U( n), n = 1, 2, * } is a conditionally 
increasing sequence; i.e., for all n, and all xn, 

PQaC(n) 2 Xn I U0(1 = XI, * *. n tn1 ) = Xn_-1) 

is increasing in (xl, . . . , xn -0). (If {,(n), n = 1, 2, * } is a stochastically monotone 
Markov chain, it is a conditionally increasing sequence.) Using the construction described 
by Rubinstein et al. ( 1985), for such a sequence it is possible to represent each ~( n) as 
an increasing, right-continuous function of Ua( 1), . . ., Ua(n). Thus, we have 

COROLLARY 4.3. The conclusion of Corollary 4.2 holds if {~ 1), a E A } and {(2), 
a E A } are sets of independent conditionally increasing sequences. 

Finally, since D = { Da(Mt) } is monotone in t whenever T is, we also have 

COROLLARY 4.4. Results 4.1-4.3 hold with TPI) and T 2) replaced by D") and D 

In order to establish analogous results for steady-state simulations, we need to make 
some assumptions about the behavior of Tcx(n) as n grows. We assume that, for all a, 
there are finite constants m (1) and m (2) such that 

1~~ 
-T(i)(n) -m(i m in probability as n - oo for i = 1, 2. (10) 
n 

Each m (i) is the asymptotic cycle time of a, the steady-state mean time between occur- 
rences of a. If m(i) > 0, then l/m(i) = limt DC,(t)/t is the asymptotic throughput 
of a. 

Denote by Al ( U, V) the set of elements of AM0( U, V) for which there exist finite 
constants ,a, a E A, such that 

n-1/2[ TI)(n) - T (2)(n) - n(m(1 ) - m(2))] 0 a>V(o, 1), ( 11) 

when (l) is generated from U and t (2) from V. (In ( 11 ), JV(0, 1 ) denotes a standard 
normal random variable.) This assumption of asymptotic normality is broadly applicable 
in practice. Finally, we also need to assume that 

[Tr()(n) - nmW)]2, n > 0 is uniformly integrable, i = 1, 2. (12) 
n 

See, e.g., p. 32 of Billingsley (1968) for the definition and implications of uniform in- 
tegrability. We now have 

THEOREM 4.5. Consider a GSMP based on a noninterruptive, permutable, determin- 
istic scheme. Suppose that t (1) and t (2) are generated monotonically and right-continuously 
from U and V. Suppose that ( 10)- (12) hold and that the joint distribution obtained by 
setting U = V is in *M I. Then CRN achieves maximal variance reduction (the smallest 

2) amnong elements of 4tl. 

It is a straightforward matter to rephrase this result in terms of functions of the 
T'( ) ('s. Conclusions along the lines of Corollaries 4.2-4.4 are also obtained from Theo- 
rem 4.5 with obvious modifications. In particular, a similar result applies to throughputs. 
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Let us now briefly indicate how the conditions of noninterruption and permutability 
extend from deterministic to probabilistic schemes; i.e., schemes in which p(s'; s, a) 
need not be zero or one. Noninterruption is easy: we simply require that if { a, 3 } c e (s), 
then 3 E & (s') for all s' such that p(s'; s, a) > 0. The generalization of permutability is 
more complicated and depends on a GSMP definition of state-independent routing for- 
mulated in Glasserman and Yao (1992a). This definition is somewhat tedious but co- 
incides with the usual sense of state-independent routing in queueing systems. Rather 
than review the concept in detail, we provide a brief description. 

A GSMP has state-independent routing if for each a E A and for every sl, S2 E S such 
that a E 6e(s1 ) and a E& (s2), the possible transitions out of s1 and S2 due to a are in 
one-to-one correspondence, with corresponding transitions having equal probabilities. 
For such a GSMP, it is possible to define a random sequence v = { va(n), a E A, n = 1, 
2, * } such that va(n) determines the state transition deterministically upon the nth 
occurrence of a. In this case, we may write 0(s, a, va(n)) for the state reached from s if 
the nth occurrence of a occurs in s. We now require that q satisfy the condition of 
permutability for all outcomes of v. When this holds, we obtain a representation like (7) 
in which the indices xi(a, n) depend on v but not t. A queueing network with probabilistic 
routing is considered in Example 4.9 below. 

4.2. Examples 

We now discuss some simple examples that do and do not satisfy noninterruption and 
permutability. In verifying the second of these, it is useful to note that if the scheme is 
noninterruptive and if, for all s, and all distinct a, / 

a, / E 6e(s) => 0(s, aO3) = 0(s, Oa), (13) 

then the scheme is strongly permutable, hence permutable. Property ( 13) is the commuting 
condition of Glasserman (1988b). 

EXAMPLE 4.6. Consider the single-server queue. The state space is S = { 0,1, 2, ** 
the set of possible queue lengths. Let A = { a, 3} where a denotes arrival and e denotes 
service completion. If s = 0 then 6(s) = {a } and (13) is satisfied vacuously. If s > 0, 
then 6(s) = {oa, /3} and 0(s, aO) = s = 0(s, /Oa). From Theorem 3.2, it follows that all 
arrival and service completion epochs are increasing, continuous functions of the inter- 
arrival and service times. Explicit recursions were given in (8-9). 

EXAMPLE 4.7. Consider k single-server queues in tandem. The first has an infinite 
buffer, all the others may be finite or infinite. The events are arrival to the first queue, 
a, and service completion at the ith queue, /i, i = 1, . .. , k. Various forms of blocking 
are possible. In manuifacturing blocking, if the buffer at i + 1 is full upon the completion 
of service at i, the completed job waits at i (preventing the next initiation of service) 
until room becomes available at i + 1. This system is noninterruptive and permutable, 
as shown in Glasserman and Yao ( 1992a). One may verify that, in fact, ( 13) holds. The 
arrival epochs follow (8). Suppose there is room for bi jobs at queue i (including the 
server); then the service-completion epochs follow these recursions: 

TF (n) = 13 (n) + max {Ta(n), T3 (n - 1), T,2(n - b2 - 1 

T3,(n) = t(n) + max {T31 l(n), T13(n - 1), T13+,(n - bi+?1 - 

TI3k(n) = $6k( n) + max { TI3k- (n), T,k(n - 1)}. 

i = 2, ...,Ik - 1; 

Several modifications of this system, including queues with commuinication or kanban 
blocking, also satisfy ( 13 ) and lead to slightly modified recursions. 
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EXAMPLE 4.8. In this example permutability is violated. Consider a queue fed by two 
classes of arrivals a 1 and a2. Let 3 1 and f2 be the corresponding service completion 
events. Changing the order of events in this system changes the event list reached. For 
example, suppose the queue is initially empty. The sequence a1a2 makes the event list 
{ a1, a2, i1 } (the class 1 job arrives first and goes into service), but the sequence a2a1 

makes the event list { a I, a2, 02 } . Intuitively, we would expect that making the interarrival 
times for class 1 jobs shorter would delay the departures, 32, of class 2 jobs. Thus, in 
comparing systems with different interarrival processes 4a> and 

ta,, 
variance reduction is 

not guaranteed if CRN is used. This is especially true if the departure times of class 1 
jobs in one system are compared with those of class 2 jobs in another. Since there is 
some negative correlation between these epochs-speeding up one class of jobs will slow 
down the other-CRN may actually increase variance. If we give one class of jobs 
preemptive priority over the other, we violate noninterruption and compound the de- 
parture from monotonicity. 

If, in the original system, the two classes ofjobs have the same service time distribution 
and if we do not distinguish between service completions of the two classes, then the 
system becomes permutable. For example, if : denotes a service completion of either 
class then the event list is { a I, a2, O} following the arrival of a class 1 and class 2 job, 
regardless of their order. For this modification, the recursions become 

Ta, (n) = ta,(n) + T.,(n - 1), i = 1, 2; 

T3(n) 
= 

3(n) 
+ mm max { Ta(J), Ta2(n -j), T(n - 

y=o,...' ,. 

with the convention that T,,(O) = 0, i = 1, 2. 
EXAMPLE 4.9. To illustrate how our results can be applied to probabilistic schemes, 

we consider a closed network of single-server, infinite-buffer queues with Markovian 
routing. Denote a typical state by n = (nl, ..., flM), where ni is the number of jobs at 
node i and M is the number of nodes. Let fi denote service completion at the ith node. 
If routing is governed by a routing matrix (Pij), then p(n - ei + ej; n, fi3) = Pij, where 
ei and ej are the ith and jth unit vectors. Let vPi(n) take the value j with probability Pjj, 
j = 1, ... , AJ. Then we may define /(n, fi, v) = n - ei + e,. It is easy to see that this 
system is noninterruptive. It is also permutable because for all vi and Vj, if Pi, > 0 and 

Pivj > 0 then k(0(n, fi, vi), fj, vj) = k(0(n, f1j, vj), f3i, vi). In other words, changing the 
order in which jobs move from nodes i and j does not change the resulting state, provided 
the same routing decisions are made in both cases. 

The examples above carry over to multiple-server queues, provided all servers at a 
particular queue are identical and we do not distinguish among departures from different 
servers at the same queue. Verifying this requires a minor modification of permutability 
tailored to clock multiplicity-an extension of the usual GSMP framework-developed 
in Glasserman and Yao (1992a). In effect, clock multiplicity forces a GSMP analog of 
the following simulation rule: let the multiple servers at each queue draw service times 
from a common stream. The details are in Glasserman and Yao (1992a). 

4.3. Other Performance Measures 

Thus far, we have only considered throughput-like performance measures-i.e., quan- 
tities defined purely in terms of event epochs. But event epochs are also building blocks 
for more general performance measures, and it is often possible to extend monotonicity 
results by examining how more general measures change with the event epochs. Our 
goal here is not to give the most general results possible, but rather to illustrate this idea 
with two examples. 

Sojourn Times. Consider the time spent by jobs in a single-server queue. (Queues in 
tandem work similarly; a single queue makes the discussion simpler.) Suppose the queue 
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starts empty: s = 0. The sojourn time W, of the nth job, including its time in service, 
is T,( n) - T,( n) (in the notation of Example 4.6). Therefore, W,, is increasing in tF (the 
service times), decreasing in t. (the interarrival times), and continuous in both. The 
same is true of WN = WI + + WN, for any N = 1, 2, .... For simplicity, consider 
the case of standard independent input. Let U(i) = { ( U(P(n), U(' (n)), n = 1, 2, 

2, and suppose 4b(') generates i i = 1, 2, by setting t W (n) = F(') (U(')(n)) 
and t($)(n) = F)-' ( 1 - U(')(n)). Suppose F(), F i = 1, 2, are all strictly increasing. 
This makes t 3 an increasing, continuous function of U and ) a decreasing, con- 
tinuous function of U('). Hence, it makes W_i) an increasing, continuous function of 
U('). Proposition 2.2 is therefore immediately applicable in comparing WIV) and W(2). 

To guarantee variance reduction for steady-state comparisons, we need analogs of 
(10)-(12). Fix i i = 1, 2, and let {W(i), n 2 0} be the associated sojourn time 
sequences. Suppose there are constants w(i), i = 1, 2, such that 

Wn ` w(" in probability, i = 1, 2. (14) 
n 

Let AM1 be the set of joint distributions of (U('), U(2)) for which (11) holds with 
T() (n) replaced by W (,), m (i) replaced by w (), and O replaced by some o, . The following 
is a consequence of Theorem 4.5. 

COROLLARY 4.10. Stuppose that i ( i = 1, 2, are generated as described above, that 
thejoint distribution obtained by setting U"1) = U(2) is in AM1 and that { n1-'[ W (i) - nw(i)i2, 

n > 0 } is uniformly integrablefor i = 1, 2. Then CRN achieves maximal variance reduction 
(minimizes o-,V) among elements of Al . 

Heidelberger and Iglehart establish variance reduction (though not optimality) for this 
example using the fact that { Wn1, n ? 0 } is an SMMC. Our analysis holds in the case of 
dependent t and sojourn times through, e.g., a serial subnetwork, where the Markov 
assumption is violated. 

Quetue Lengths. Recall that { Xt, t ? 0 } is the state of the GSMP. In the case of a 
single-server queue, X! is just the queue length at time t. In a network, by suitable choice 
of fwe can make { f( X), t ? 0 } the queue-length process at a particular node. Suppose, 
more generally, that S is partially ordered and that f: S - R is increasing with respect 
to this partial order. Often, f( X1) is an increasing function of some subset of sequences 
ta 5 a E A, and a decreasing function of others. For example, in tandem queues (using 
the notation of Example 4.5) the queue length at the ith node is an increasing function 
of tFj, j 2 i and a decreasing function of t. and tFj, j < i. Through appropriate trans- 
formations we can therefore makef(X1) an increasing function of U = { Ua(n), aX E A, 
n= 1,2, * *}forallf. 

Now consider two systems with inputs t (1) and t (2). Let { X ti), t 0 } be the corre- 
sponding state processes. Suppose we want to compare 

t f( X ())1ds, i = 1,2, (15) 

as t - oo. If we assume the existence of these limits, as in ( 10), asymptotic normality, 
as in ( 11), and uniform integrability, as in ( 12), then common random numbers is 
optimal: 

COROLLARY 4.1 1. Suppose that,for all t 2 O,f( Xt) is increasing and right-continuouls 
in U. Suppose that ( 11 ) and ( 12) hold when applied to ( 15) and that U"1) = U(2) is in 
the corresponding class A,. Then CRN achieves maximal variance reduction among 
elements of A), for comparison of ( 1 5 ). 

Corollary 4.11 applies, for example, to acyclic open queueing networks with a single 
class of jobs and infinite buffiers by applying the device described above for the single- 
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server queue. When service rates are exponential, Shanthikumar and Yao (1986) show 
that the queue lengths in a closed network are monotone in each service rate. Using 
inversion to generate service times, this makes queue lengths monotone in the U,,(n)'s. 
For more general networks, monotonicity of f(X,) may fail. Note, however, that the 
corollary remains true if monotonicity of f(X1) is replaced by the weaker assumption 
that the time-average off( X,) over [0, t] (as in ( 15)) is increasing in U. 

4.4. Synchronization 

As mentioned in ?2.3, CRN folklore recommends closely matching random numbers 
to corresponding events across simulations; see especially the discussion in Bratley, Fox, 
and Schrage (1987). The continuity of the event epochs implied by (7) allows us to 
apply Proposition 2.3 in support of the conventional wisdom. Suppose that { (k), k 
> 0 } converges in law to t as k -o o, and suppose that ? (k) generates t (k) and (D 
generates t so that t (k) __ t with probability one. 

THEOREM 4.12. Let {t(k)} and t be as above. Suppose that, for some e > 0, 
SUPk>O E [ ( n) 'n)2? ] < oo, for all a and n. If the scheme is noninterruptive and per- 
mutable, then Var [ T(k)(n) - Ta(n)] 0 as k -# oo for all a and n for which every 
xo(a, n) in (7) isfinite. 

Let us interpret this result in the setting of the standard independent input with in- 
version; i.e., (k)(n) and U(n) are generated by inversion from F(k) and Fa using Ua(n). 
Almost sure convergence of the clock times follows from convergence of the corresponding 
distributions. Under the moment conditions in Theorem 4.12, the variance of T (k) (n) 
- Ta( n) vanishes as k - oo. Moreover, Proposition 2.3 shows that this synchronization 
is asymptotically optimal; it eventually beats any assignment of seeds that permutes some 
of the Ua( n) 's. In practice, this means keeping a separate stream { Ua( n), n > 0 } of 
random numbers for each event a recommendation often encountered in the simulation 
literature. 

REMARK. A referee points out that, for fixed k, T(k)( n) typically satisfies a central 
limit theorem, as n -- oo, with variance proportional to n. This suggests that the rate at 
which the variances in Theorem 4.12 go to zero decreases with n. However, for the mean 
time between occurrences of an event, Th)( n) / n, the effectiveness of common random 
numbers does not appear to diminish as n -- oo. 

The monotonicity implied by (7) provides a different justification, in a special class 
of comparisons, for assigning a separate stream { Ua(n), n > 0 } to each event. Recall 
that one distribution F is stochastically smaller than another distribution G, if F(x) 
> G(x) for all x. Denote this relation by F <st G. 

THEOREM 4.13. Consider a noninterruptive, permutable scheme driven by standard 
independent input with inversion. Suppose that, for every a, F2 ?st '). If, for every a 
and n, t1'(n) and 2(n) are generated from the same Ua(n), then T23 (m) 

< T (m)for every U = { Ua(n), a E A, n > 0 } and every d and m. 

This result shows that if the clock distributions for the systems under comparison are 
stochastically ordered, then the standard synchronization (assigning a random number 
stream to each event type) makes T(2) < T(') on every simulation run. It also yields a 
zero-variance estimate of 1 { T (2)(m) < T(')(m) }. While these properties do not by 
themselves guarantee variance reduction for all comparisons of the two systems, they 
are intuitively appealing and they suggest that each pair of runs across systems is indicative 
of their relative performance. 

Theorem 4.13 admits extensions to more general performance measures. Consider the 
sojourn time in a queue (the sojourn time in tandem queues works similarly). Use the 
notation of ?4.3. If t(') ?st t(2) and t(2) ?st t(1), we may simulate the two systems so 
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that on every run w ? W ) for every n. It follows that we can order the average 
sojourn times on each run. Using the argument preceding Corollary 4.1 1, we may simulate 
the two systems ensuring that certain queue lengths are always ordered. 

As discussed in ?2.3, another justification for synchronization is available for functions 
that are arrangement increasing, but this condition is hard to satisfy. Here, we give one 
very simple example. Consider a single-server queue with standard independent input. 
For fixed service times { t (i), i = 1, 2, * }, it can be verified that every departure 
epoch T,( n) and arrival epoch Ta( n) is an arrangement increasing function of the inter- 
arrival times { ( i), 1 < i < ni }. If inversion is used, then they are also arrangement 
increasing functions of { UcJ( i), 1 < i < n } . Hence, there is no advantage to permuting 
the random numbers used to generate interarrival times in comparing two queues. This 
holds, more generally, for any event ae which is in the event list of every state. 

5. Structural Comparisons 

The previous section considered comparisons of essentially the same system driven 
by different clock processes. In this section, we show that the properties of noninterruption 
and permutability also guarantee benefits from CRN in comparing systems with different 
structure. Different "structure" means different schemes in the GSMP setting, and this 
translates to, e.g., different buffer sizes, different job populations, and different numbers 
of nodes in queueing systems. 

Let . (1) and g(2) be two noninterruptive, permutable schemes driven by inputs ( 

and t (2). Let b (i), i = 1, 2, be increasing, right-continuous functions generating t (i) from 
i.i.d. uniform sequences U(J). Let P'), i = 1, 2, be the event epoch sequence associated 
with 9 (') and t (i), and let f and g be increasing, right-continuous functions of Tl') and 
T(2) for which f(T')) and g(T (2)) have finite second moments. The following is an 
immediate extension of Theorem 4.1: 

THEOREM 5.1. Wlith the notation and conditions above, CRN minimizes Var [f( T(')) 
- g(T (2))] amnong alljoint distribuitions in A0(0U0', U(2)). 

Results along the lines of 4.2-4.5 follow immediately. 
Comparison of two schemes (1) and 9 (2) is most meaningful when the respective 

event sets A('), i = 1, 2, are the same set A. (There is no loss of generality in assuming 
this, in any case, because we can always set A = A(l) U A(2) and then take t(n)( ) 

if a E A(').) When this holds, we obtain analogs of Corollary 4.10. Consider queues in 
tandem, as in Example 4.7. Recall that we require that the first queue have infinite 
capacity, and let b(i) = (b('), ... , b(')), i = 1, 2, be the vectors of buffer capacities at the 
other queues for the two systems. Regardless of the values of the b(')'s, in comparing 
sojourn times in the two systems we get (maximal) variance reduction using common 
random numbers, provided only that service and interarrival times are appropriately 
generated monotonically. It is not even necessary that the number of queues in the two 
systems be the same. 

In general, we may also assume that "(1) and 9 (2) have the same state space by, if 
necessary, taking both to have state space S = S(1) U S(2) (though this may destroy 
irreducibility). We then obtain results for comparisons of queue-length-like quantities 
through the argument of Corollary 4.1 1. 

There is a special class of structural comparisons for which we can also make a statement 
about synchronization. These are comparisons of subschemes: g is a subschemne of g 
(denoted 9 c Y) if S A , A , 6(s) 6(s) for all s E S, and p (s'; s, a) p(s'; s, 
a) for all s, s' E S and all ae E d (s). As explained above, we may take A = A and S 
= S. For deterministic schemes, n^(s'; s, az) = p(s'; s, az) reduces to k(s, a) = /(s, Co). 

In the example of tandem queues discussed above, a system with buffier vector b 
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- (b2, ..., bk) is a subscheme of one with vector b = (b2, ..., bk) if and only if b < b. 
In comparing two closed queueing networks as in Example 4.9 but with different job 
populations, the one with the smaller population is a subscheme of the other. Eliminating 
a queue from a tandem network or reducing the number of servers at a multiple-server 
queue also produce subschemes; see Glasserman and Yao (1992a). 

It follows from the definition of subscheme that if ? c 9 then any sequence of events 
o- feasible for ? is also feasible for S. From this observation we can prove 

LEMMA 5.2. Suppose that ? and ? are deterministic, noninterruptive, permutable 
schemes and that ? c S. Let 4 and t be the corresponding clock processes and T and T 
the corresponding event epoch sequences when both start from the same initial state so. 
T and T have representations (7) with indices {x iJ(a, n) } and { x'(a, n) }. Every such 
vector x0a, n) dominates some x' (a, n). 

From this it follows that if t = t with probability one, then T < T with probability 
one. In fact, we have 

THEOREM 5.3. Let ? and ? be as in Lemma 5.2. Consider the case of standard 
independent input with inversion. Let {F,, a E A } and { F,, a E A } be the clock dis- 
tributions for the two systems, 4a (n) = F`( Ua(n)) and 4a (n) = F,'( Ua(n)). If, for 
every a E A, Fa st 'a,, then for every U, Ta(n) ? Ta(n), for every a and n. 

Theorem 5.3 shows that in comparing one system 9 with a subsystem 9, if both are 
noninterruptive and permutable and if their clock distributions are stochastically ordered, 
then the standard synchronization makes T < T on every simulation run. In particular, 
it yields a zero-variance estimate of every 1 { Ta( n) < T,( n) }. For example, in comparing 
two tandem networks with buffer vectors b ? b, we can simulate the two systems so that 
every service completion in the smaller system occurs after the corresponding event in 
the larger system. Using the arguments of ?4.3 we can also guarantee that the sojourn 
times for the two systems and the queue lengths at a particular node are ordered on every 
simulation run. Similar conclusions apply whenever the subscheme relation holds. 

6. Sensitivity Analysis 

We now return to the setting of ?4-a single scheme driven by different clock pro- 
cesses-but with a different emphasis. We consider comparisons based on small changes 
in a continuous parameter. In this context, we are primarily interested in the variance 
of a difference estimate as the magnitude of the parameter change goes to zero. For 
"reasonable" comparisons, the use of CRN guarantees that this variance goes to zero. 
But we show that for noninterruptive, permutable schemes the convergence to zero can 
be an order of magnitude faster. 

We begin with a simple, general result. Let the parameter set be 0, an interval of the 
real line. Let L(0) be a statistic computed from a simulation at parameter value 0. Fix 
a nominal Ho E 0; performance at other 6 values is to be compared with performance at 
60. Recall that a function 4 on 0 is Lipschitz continuous if there is a K > 0 (the modulus) 
such that I A02) - A001 < K 02 -H 01 for all 01, 02 E e. 

LEMMA 6.1. For any 6o e0 Var [L(H0 + h) -L(o)] is 
(i) 0 ( 1), if {L(H), 0 E e} are independent and sup, E[L2(6)] < oo; 
(ii) o( 1), if L is continuous at 00 with probability one and supo E [ L(0) 1 2+E] < 0 for 

some e> 0; 
(iii) O(h2), if L is Lipschitz continuous throughout 0 with probability one and its 

(random) modulus KL satisfies E[KL] < c K 

In the setting we have in mind, L(O) is computed from a simulation of a process X(O) 
- { X! (6H), t ? 0 }, X( 6 ) taking values in a complete, separable metric space. If the family 
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of processes {X(H), 6 E O} is weakljy continuous in 6 (meaning that X(H,,) X(H) 
whenever 6,, -> 6), and if L is a continuous functional of X, then E[L( * )] is continuous 
in 6, under the additional technical requirement that { L(6), 6 E 0 } be uniformly in- 
tegrable. Thus, in comparing E [L(O0 + h)] and E [L(60)], we should expect to be able 
to find a low-variance estimator when h is small. 

Part (i) of the lemma points out that sampling L(00 + h) and L(00) (or X(00 + h) 
and X( 00)) independently completely fails to take advantage of the potential continuity 
of E [ L( . ) ]. Independent sampling will not force L( 0O + h) and L (00) to be close. Part 
(ii) describes the typical performance of common random numbers. For most models, 
there is, with probability one, some neighborhood of each 6 throughout which L is con- 
tinuous if the X(0)'s are sampled using common random numbers. The size of such a 
neighborhood may vary over different simulation runs. This "local" continuity is enough 
to ensure that the variance of L(0H + h) - L(Ho) indeed becomes small as h goes to zero, 
under the additional assumption in the lemma. 

Part (iii) strengthens continuity to Lipschitz continuity, but a more important 
strengthening is the replacement of continuity at 0 with continuity throughout 0. In 
other words, in (iii) the neighborhood of 00 throughout which continuity holds is not 
allowed to depend on the simulation run. (The interval 0 could be an arbitrarily small 
neighborhood of Ho, but it must be fixed.) From this we get the faster convergence to 
zero indicated in the lemma. 

We now show that part (iii) of Lemma 6.1 often holds in comparisons of noninter- 
ruptive, permutable schemes. Let bI sample t from a law that depends on 6; we write 
t(O ) =( U, 6). From Theorem 3.2 we conclude that if every 3 j, 6) is, with probability 
one, continuous in 6, then so is every T,( n, 6). Thus, continuity of the clock times gives 
us most of what we need to apply Lemma 6.1 (iii). In practice, the clock times are made 
continuous in 6 by using common random numbers across different parameter values. 
We now have 

THEOREM 6.2. Suppose that ? is nonintesrtrptive and permntutable, and that every 
( Jn, 6) is a Lipschitz continuous fuinction of 6 with modulus Ka, satisfying E [Ka,,] 

< oo. Then Var [ Ta(n, Ho + h) - T(n, Oo)] = O(h2), for all Ho E 0 and all a and n for 
which the indices on the right side of (7) are finite. 

This result is best viewed as a building block from which results for more interesting 
comparisons can be derived. For example, consider sojourn times as in Corollary 4.10: 
Wn = TO(n) - Tay(n) and WN= - W + * * * + WN. From Theorem 6.2, each T( n, Ho 
+ h) - T3(n, 6) and T(n, Ho + h) - T,(n, 6), n = 1, . . ., Nhas variance 0(h2). By 
the Cauchy-Schwarz inequality, covariances among these terms are 0(h2). Thus, sums 
of such terms have variance 0(h2); in particular, 

Var N [ WN(Oo + h) - WN(6o)]] 0(h2) 

We can also derive a result for queue-length-like quantities, based on a stronger con- 
dition. If f: S - R and t > 0 is fixed, define 

L (H) = t ff(Xs(6))ds. (16) 

Glasserman ( 1988b) shows that for noninterruptive, strongly permutable schemes, Lj is 
continuous in 6 with probability one, if every clock time is; however, here we will not 
apply that result directly. We show that L1 is in fact Lipschitz under some assumptions 
on t. We need a generalization of the standard independent input: { i,>, a E A } are 
independent sequences, and, for each av E A, { t( n, * ), ni > 1 } are i.i.d. functions of 6. 
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We suppose that every ,( n, * ) is, with probability one, Lipschitz continuous with random 
modulus Ka,i,, and that { Kaji, a E A, n = 1, 2, . } are independent. (As a practical 
matter, this is a condition on the dependence of the t( O)'s when sampled using common 
random numbers.) For each a and n let x( a, n) be the maximum of the indices appearing 
on the right side of (7). Notice that x(a, n) ? n - 1. 

THEOREM 6.3. Consider a noninterruptive, strongly permutable scheme. Let t be as 
above and suppose that, for all a and n, E[Kia,n] < oo and P(info U(n, 6 ) = 0) < 1. 

Suppose that, for all a, x'(a, n) = 0(n). Let f be bounded. Then Var [Lf (Ho + h) - 
Lf (Ho)] = O(h2) for all 6o E 0. 

The condition that x.(a, n) = O(n) is by no means restrictive. In fact, x'(a, n) E { n 
- 1, n } is typical for queueing systems; this is the case, e.g., in Examples 4.6 and 4.7. 
The condition x( a, n) = O(n) excludes the possibility that the nth occurrence of a must 
be preceded by an order of magnitude more occurrences of some other event f. 

The next result points out that a conclusion similar to Theorem 6.3 holds for steady- 
state comparisons provided variances converge uniformly. We need to assume that there 
is a deterministic function 1( * ) such that for all 6o, Ho + h E 0 

t 1/2[f {f(Xs(6O + h)) -f(Xs(6o))}ds - t[l(0o + h) - I(6o)I] ooh(O, 1) (17) 

for some finite 0h* We also need a uniform integrability condition: as t o o, 

t-' Var [f' {f(Xs(Oo + h)) -f(Xs(6o))}ds - t[l(0o + h) - I(6o)]] 2 o. (18) 

THEOREM 6.4. In addition to the conditions of Theorem 6.3, assume( 17) and suppose 
that ( 18) holds uniformly in h in a neighborhood of h = 0. Then o- is o(h). 

Verifying uniform convergence in ( 1 8) is difficult and, in practice, generally not possible. 
This theorem primarily serves to spell out what conditions lead to the conclusion, in 
principle. However, uniform convergence would seem to be a plausible additional as- 
sumption whenever the variances in ( 18) are continuous in h in some neighborhood of 
0 not depending on t. Continuity can be expected to hold whenever the input distributions 
are reasonably smooth in 0. 

7. Concluding Remarks 

We have presented a variety of settings in which the use of common random numbers 
is effective and even optimal. To a large extent, our results support standard simulation 
practice; indeed, a principal contribution of this paper is the identification of a class of 
systems and criteria for which folklore is provably correct. The key guideline that may 
be extracted from these results is the importance of examining what happens when events 
change order. Definition 3.1 formalizes this idea and thereby helps formalize intuition 
about when CRN is effective. 

Variance reduction is guaranteed (in comparing throughputs and in some cases sojourn 
times and queue lengths) whenever changing the order of some events does not radically 
change the evolution of the system. This is the case for most standard queueing systems 
with a single class of jobs and a first-come-first-served discipline, but not for most multi- 
class networks or queues with, e.g., pre-emptive disciplines. 

Two further points deserve comment: 
(i) If one is willing to restrict the allowable comparisons, then something weaker than 

permutability would suffice. Permutability need only hold for certain changes in the 
order of events. This is best illustrated through an example. Consider a queue fed by two 
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classes of jobs, as in Example 4.8, but with an infinite buffer. This system violates our 
conditions. However, suppose we only consider changes in the service time distributions- 
we do not compare systems with different interarrival time distributions. It is not hard 
to see that the departure epochs of all jobs are, in fact, increasing and continuous in 
service times, because the order of arrivals cannot change. Hence, our results can be 
applied to this restricted class of comparisons. More generally, one needs to check only 
those changes in the order of events that can happen through the changes to be compared. 
This is made precise via a definition of relevance in Glasserman and Yao ( 1992a). 

(ii) The structural properties considered here have implications for variance reduction 
beyond CRN. Indeed, all variance reduction techniques that depend on inducing positive 
(or negative) correlation ultimately rely on (or at least benefit from) some type of mono- 
tonicity. The techniques of antithetic variates, control variates and many instances of 
indirect estimation belong to this class. Consider the second of these. Suppose, for some 
system, m, = lim,,,,, Ta(n)/n is known and lim,> Tf(n)/n is to be estimated. Strong 
correlation among the event epochs would make { Tc(n), n > 0 } a good control for 
estimation of mo.l 

' This work was carried out while Paul Glasserman was with the Operations Research Department of AT&T 
Bell Laboratories. David Yao was supported, in part, by NSF grant ECS-89-96230. The authors thank the Area 
Editor, the Associate Editor and a referee for their constructive comments. 

Appendix: Proofs 

PROOF OF PROPOSITION 2.2. All covariances in (4) exist becausef(X) and g(Y) are square-integrable, so 
we may apply Proposition 2.1. The distributions in A0( U, V) are characterized by (3), so we need to maximize 
over the joint distribution of ( Ui, V ), i = 1, 2, .... Suppose all such distributions except that of some ( Uj, Vj) 
have been fixed. For any fixed value of {(Ui, vi), i #j}, [foIx(u)] [gAby(v)] is supermodular and right- 
continuous as a function of (uj, vj), because each factor is increasing and right-continuous. Hence, its expectation 
is maximized by setting P( Uj < Uj, Vj < vj) = H( uij, vj) = Uj A vj. Since this holds regardless of the distributions 
of ( Ui, Vi ), i 1 j, this joint distribution must be optimal for all j. CG 

PROOF OF PROPOSITION 2.4. Let 7rii permute ui and uj, i < j. It is enough to show that E[f( U)g( U)] 
> E[f(U'rii)g(U)], because every permutation is a product of transpositions. Let Aijf(u) = f(u) -f(i;), 
define zijg the same way, and note that Aiif(u'rii) = -Aijf(u). Using this definition, we get E[f(U)g(U)] 
- E[f( Ui)g(U)] = E[t 4f( U)g( U)], which we may rewrite asE[A,jf(U)g(U)1 { Ui > Uj} + AJf(U)g(U)1 { Uj 
> Ui }] . However, because the Uk's are i.i.d., this expectation is unchanged if we reverse Ui and Uj in the second 
term. Thus, this expectation equals E [ { Aijf(U)g(U) + Ajif(U7ri)g(U7ri) }1 { Ui > Uj}]. This can be further 
rewritten as E [ { 4jf( U) ijg( U) } 1 { Ui > Uj} ], which is nonnegative because A,f(tu) and Aijg( u) are nonnegative 
on { u: ui > uj} if f and g are arrangement increasing. Thus, E[f( U)g( U)] - E[f( U7i)g( U)] ? 0, which is 
what we needed to show. CG 

PROOF OF THEOREM 4.1. The composition of increasing, right-continuous functions is increasing and right- 
continuous, so f ?') j, l) and g V2) . (2) are increasing, right-continuous functions of U and V. (Monotonicity 
and continuity of T(), i = 1, 2 are consequences of Theorem 3.2.) Proposition 2.2 now applies. O 

PROOF OF THEOREM 4.5. Uniform integrability implies that 

= lim n-' Var {[T(')(n) - nm(1)(n)] - [T(2)(n) - nm(2)(n)]}; 

hence, a joint distribution which minimizes the variance of [T(')(n) - T(2)(n)] for all n also minimizes the 
asymptotic variance aa. In light of Theorem 4.1, such a distribution is obtained by setting U = V. O 

PROOF OF THEOREM 4.12. If t (k) > (, then T(k) -* T. From (7) we obtain, for all k, 

T(k)(n) < (k)(n) + (k) 
f6EA j?x 

where x- = max ,j {xi#(a, n)} < oo. Thus, for any r > 0, T(k)(n) has finite rth moment if every t (j) 
does. In particular, under the hypotheses of the theorem, supk,o E[T (k)(n)2+,'] < oo for some e 2 c' > 0. 
Consequently, 

lim Var [T(k)(n) - T(n)] = Var [lim T(k)(n) - T(n)] = 0. CG 
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PROOF OF THEOREM 4.13. If F st G, then F'(u) < G-'(u) for all u E [0, 1]. Thus, t(2)(n) < ?(')(n) 
with probability one, for every a and n. T(2) and T(') inherit this ordering via (7). O 

PROOF OF LEMMA 5.2. Let x3(a, n) be a vector in the representation (7) of TP(n). Then if a is a sequence 
of events, feasible for 9, with N( a) ? P(a, n), either No( a) 2 n, or No( a) = n - I and a e E ( (so, a)). Since 

_ c 0, a is also feasible for 9, and e( (so, a)) c 6e((so, a)). Thus, either No( a) = n or No( a) = n - 1 and 
a e E (O(so, a)). But then N(a) must dominate some xi(a, n ). Since a is an arbitrary string dominating Y(a, 
n1), we conclude that ?3(a, n) must dominate some x'(a, n). CG 

PROOF OF THEOREM 5.3. The ordering of the clock distributions implies that t(n) < ~(n) with probability 
one, for every a and n. T and T inherit this ordering because they are monotone increasing and because of the 
ordering of the indices established in Lemma 5.2. CG 

PROOF OF LEMMA 6.1. (i) In the independent case, Var [L(0o + h) - L(0o)] = Var [L(0o + h)] + Var 
[L(00)], which is bounded as h -* 0 because Var [L(0)] is bounded on 0. (ii) E[I L(0)12+K ] bounded on 0 
implies 

lim Var [L(0o + h) - L(0o)] = Var [lim L(0o + h) - L(0o)] 
110 ho -0p 

which is zero if L is almost surely continuous at 00. (iii) 

Var [L(0o + h) - L(0o)] < E[{L(Oo + h) - L(0o)}2] + {E[I L(0o + h) -L(o)j] }2 

< (E[KL] + E2[KL] )h2 = 0(h2). O 

PROOF OF THEOREM 6.2. Let x be as in the proof of Theorem 4.12. Then 

T.,(n, f0 + h) - T.(n, f0) ' : 2: 1 #(j, f0 + h) - t(j, 0) l; 
#leA j?S+I 

hence, Tj( n, *) is Lipschitz with square-integrable modulus 

Kl = Kf,1. (19) 
#EA j?<-+I 

The result now follows from Lemma 6. 1. C] 

PROOF OF THEOREM 6.3. Let If || be the supremum of If I. Then 

f {f(X,(6 + h)) -f(Xs(6))}ds ? 211f 11 1 {XJ(6 + h) # X,(O)Ids 

< 2jfj f| 1 {D(6 ? + h) # DJ(I)}ds (20) 

because X, is determined by D, in a strongly permutable scheme. The total time in [0, t] over which DJ(6 + h) 
and D,(6) differ is bounded by the total change in the epochs of events in [0, t]; i.e., 

J 1 {D( + h) # DJ(I)}ds < , 1{ T(n, 00 + h) A T(n, 00) < t} I T(n, 00 + h) - T(n, 6o)I, (21) 
a,t1 

the sum running over all a E A and all n = 1, 2 .... Let 

Aa(n) = inf ta( 1, 0) + + inf (n, 0); 
0 0 

clearly, Aa( n) < T,( n, 0) for all 0. By hypothesis, the infimum of the clock times is not identically zero, so, for 
all a and t, the indicator 1 { A( n) < t } is zero for all but finitely many n. (Use renewal theory; e.g., Theorem 
5.2.1 of Prabhu 1965). It follows that all but finitely many terms in (21 ) are zero. 

Let k,,,, be the Lipschitz modulus for T,(n, *) derived in ( 19 ). Combining (20) and (21 ), we see that Lf(*) 
is Lipschitz with modulus 

2||1 ft- tz 1 {Aa(n) < tIk?,,. 
a,n 

We need to show that the sum has finite second moment. Squaring the sum, taking the expectation and applying 
the Cauchy-Schwarz inequality twice, we find that it is enough to verify that 
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is finite. For each a, since x((a, n/) = 0(n), it follows from ( 19) and the fact that {K,,,, a E A, n = 1, 2 } are 
independent and have fourth moments that E[k',,,] = 0(n4). On the other hand, since Aj(n) is a sum of i.i.d. 
random variables which are not strictly zero, each P(AO(n) < t) is 0(p") for some p < 1. Hence, the sum is 
finite. C] 

PROOF OF THEOREM 6.4. Let a (t) be the variance on the left side of ( 18). Then 

lim /lo 2 
= lim lim /h-'t 1,(t) by (18), 

= lim lim h-'t-' a2( t) by uniform convergence over hi, 

= lim 0 by Theorem 6.3, 

=0. D 
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