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ABSTRACT 

We investigate opportunistic routing, centering on the 
recommendation of ideal diversions on trips to a primary 
destination when an unplanned waypoint, such as a rest stop 
or a refueling station, is desired.  In the general case, an 
automated routing assistant may not know the driver’s final 
destination and may need to consider probabilities over 
destinations in identifying the ideal waypoint along with the 
revised route that includes the waypoint. We consider 
general principles of opportunistic routing and present the 
results of several studies with a corpus of real-world trips. 
Then, we describe how we can compute the expected value 
of asking a user about the primary destination so as to 
remove uncertainty about the goal and show how this 
measure can guide an automated system’s engagements 
with users when making recommendations for navigation 
and analogous settings in ubiquitous computing. 
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INTRODUCTION 

We explore the challenge of providing drivers of cars with 
efficient diversions to waypoints that may address an acute 
or standing interest or need on the way to a primary 
destination. As examples, a driver may issue a voice search 
in pursuit of an entity or service, such as a rest stop or a 
refueling or recharging station while driving to a target 
destination. Alternatively, an automated recommender 
system, embedded in an onboard device or communicating 
through a cloud service, might know or speculate about a 

driver’s or passenger’s rising needs or background interests, 
understand about a user’s time availability, and recognize 
when opportunities for modifying a trip in progress might 
be desired. The system could then alert the driver about the 
possibilities, and share information about the ideal routing 
and time required for the divergence. We investigate such 
opportunistic routing. We extend prior work on 
opportunistic routing by considering methods for selecting 
among candidate unplanned waypoints and formulating 
efficient revised routes given uncertainty about the primary 

destination.  In the general case, an automated routing 
assistant may not know a final destination and may need to 
consider the uncertainty in the destination of the driver in 
identifying the best waypoint and revised route to the 
primary destination. In fact, drivers specify their destination 
to their vehicle’s navigation system for only about 1% of 
their trips, making uncertainty almost inevitable [1]. We 
shall first consider principles of opportunistic routing under 
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Figure 1: Candidate destinations are at road intersections 

(light dots). Trips are represented as a sequence of 

intersections (black dots). 



 

uncertainty.  Then we introduce methods for computing the 
expected value of gaining additional information about the 
primary destination.  We discuss how this computation can 
be harnessed to guide decisions about the value of asking 
drivers to resolve a system’s uncertainty about the ultimate 
destinations—versus providing recommendations on 
waypoint candidates in an autonomous manner. 

RELATED WORK 

The problem of mobile opportunistic routing was 
introduced by Horvitz, Koch, and Subramani in [2].  The 
work presents methods for opportunistic routing and 
describes a prototype named Mobile Commodities. The 
system receives queries or automatically identifies needs 
for accessing goods or services during a trip to primary 
destination.  Standing goals, such as “search for a gas 
station when fuel tank is less than 10 percent full,” can be 
encoded in the system.  The prototype continues to perform 
cost-benefit analyses as it speculates about potentially 
valuable waypoints and the time associated with investing 
time in a diversion. While the project mentions the 
challenge of handling uncertainty in destinations, the effort 
focuses largely on cases where a known destination is input 
to the system, and considers detailed modeling of the 
uncertainty in the availability of a driver and the cost of 
taking additional time to divert to and engage in an 
opportunistic task, using Bayesian user models of the 
context-sensitive cost of time (drawing upon information 
from an online calendar and traffic).  Inferences about the 
cost of elapsed time are used in considerations of 
introducing new waypoints or finding ideal solutions to 
needs such as refueling a car based on a consideration of 
the pricing and distance of fueling stations. Later related 
work by Kamar, Horvitz, and Meek [3] explored multiple 
challenges with electronic commerce in an opportunistic 
routing setting and introduced an auction-centric system 
named MC-Market.  The prototype provides decisions 
about offers and pricing for various goods and services 
based on drivers’ locations, destination, and preferences, 
and can initiate context-sensitive auctions on pricing of 
services.  Like the work before it, efforts on MC-Market 
center largely on opportunistic routing in situations where 
the primary destinations of drivers are known. 

In this paper, we focus on opportunistic routing under 
uncertain destinations.  The work leverages prior work on 
probabilistic predictions of a driver’s destination. The 
problem of predicting destinations has been addressed by 
other researchers. Marmasse and Schmandt [4] presented 
experiments with a Bayes classifier, histogram matching, 
and a hidden Markov model to match a partial route with 
stored routes. Ashbrook and Starner [5] clustered GPS data 
to find a person’s significant locations like home and work, 
and then trained a Markov model to predict transitions 
between these locations. Hariharan and Toyama present a 
means of clustering GPS points and then use a Markov 
model to characterize transitions [6]. Liao et al. [7] and 
Patterson et al.  [8] describe probabilistic models for route 

prediction, trained from observations on individuals. 
Besides routes, their techniques can infer the person’s mode 
of transportation. The Predestination algorithm by Krumm 
and Horvitz predicts destinations based partially on past 
behavior, but also allows for predictions at previously 
unvisited locations [9]. Ziebart et al. train a location 
prediction algorithm from GPS observations of 25 taxi 
drivers [10]. Their algorithm reasons about route decisions 
in context and gives predictions for the driver’s next turn, 
their route to a given destination, and their next destination 
given a partially observed trip. The NextPlace system not 
only predicts destinations, but arrival times [11]. Filev et al. 
present a fuzzy Markov model for predicting previously 
visited destinations based on the previous destination, the 
day of the week, and the time of day [12]. 

While our technique recommends slight modifications to a 
driver’s existing route, other work has concentrated on 
recommending entire routes, such as the T-Drive system by 
Yuan et al. [13]. The same group has looked at helping taxi 
drivers find their next passenger [14] and travel 
recommendations based on GPS traces [15]. Also related is 
the work of Zhang et al. who learn a user’s important 
locations and routes [16]. 

DESTINATION PREDICTION 

Identifying the optimal waypoint, and associated diversion 
introduced to a trip, requires knowledge of the driver’s 
destination. Although a driver may sometimes provide a 
destination to a vehicle’s navigation system, this happens 
rarely. Thus, we take as a central focus the identification of 
ideal waypoints under uncertainty in a driver’s destination. 
To compute probabilities over destinations, we employ a 
destination prediction algorithm derived as a modification 
of the methodology described in [17]. The technique is 
based on the observation and expectation that drivers drive 
efficiently toward their destination. The method computes 
destination probabilities  ( ) for destinations   contained 
in a set of candidate destinations   , i.e.     . In the 
version of the algorithm we shall use in studies, the 
candidate destinations consist of all road intersections 
within 60 minutes driving time from the start of the trip. 

Figure 2: Distribution of trip durations. Durations of trips 

from U.S. National Household Travel Survey used to limit 

geographic extent of destination predictions and serve as a 

prior probability on candidate destinations. 



 

Figure 1 shows some candidate destinations on a map. 

We represent the driver’s current partial trip as a sequence 
of intersections, as shown in Figure 1. The sequence is 
derived from GPS data via a map matching algorithm 
described in [18]. As the driver moves to new intersections, 
we compute the driving time to all candidate destinations 
using the RPHAST route computation algorithm described 
in [19]. RPHAST is an algorithm for efficiently solving the 
one-to-many shortest path problem. When the driver 
reaches a new intersection, we identify, for each candidate 
destination, whether the driving time to that candidate has 
increased or decreased as compared to the state at the 
previous intersection. Decreased times are evidence that the 
driver may be driving to the candidate destination, and we 
multiply its probability by        . Looking at 
transitions between pairs of intersections along a trip, this 
number gives the fraction of times that a driver will 
decrease the apparent driving time to his or her ultimate 
destination. This value of   is derived from training on 20 
recorded driving trips. If the driving time to the candidate 
has increased, we multiply its probability by    . Then, 
we normalize the probabilities, so ∑  ( )       . Since   

is relatively large, the     term tends to quickly reduce 
the probability of destinations that the vehicle is driving 
away from. 

In order to bound the geographic extent of the candidate 
destinations and to increase accuracy, we consider prior 
probabilities of each destination and update the likelihoods 
of candidates based on the likelihoods of the durations of 
trips, where times are marked from the trips’ beginnings. 
We use a distribution of driving times drawn from the U.S. 
2009 National Household Travel Survey 
(http://nhts.ornl.gov/). The distribution of trip times is 
shown in Figure 2, and details of how this was derived from 
the NHTS data are provided in [20]. 

Figure 5 shows how  ( ) changes over the course of an 
example trip. As the trip progresses, the candidate 
destinations with the largest probabilities tend to cluster 
near the trip’s end. 

IDEAL OPPORTUNISTIC DIVERSION 

We now explore methods for identifying the optimal 
waypoint of a set of candidate waypoints (e.g., fueling 
stations) and associated diversion in light of uncertainty 
about the driver’s destination. Let us assume that a 
predictive system continues to compute destination 
probabilities,  ( ) ,      during a trip.  At some time 
during the trip, assume that the driver requests a 
recommendation for the best stop to make for refueling. In 
the general case, we need to consider waypoints and the 
diversion that each introduces in terms of adding distance 
and travel time to the route to the primary destination.  As 
the destinations are uncertain to the system, it must consider 
expected diversions under uncertainty.  We refer to Figure 3 
as a simple example to motivate expected diversion 
analyses. In this case, the driver is currently located at point 

L. Assume that the inferred destinations are either points   
and  , and that each destination has equal likelihood,  ( )   ( )     . We also consider location X, which is 
not a destination of the driver, i.e.   ( )   . We assume 
that the driver has an urgent need to stop for fuel 
somewhere soon, and there are fueling stations at points   
and  . Our task is to identify the best fueling stop to 
recommend to the driver. 

If we recommend to the driver to choose the fueling station 
at A, but the driver is actually driving to point B, the 
diversion cost will be one unit. This is because driving 
directly to B is a distance of one, but the distance from L to 
A to B is a distance of two. We use the more general notion 
of a driving cost function, which could be distance or time, 
and compute the divergence as the extra driving cost 
introduced by the waypoint.  Referring to Figure 3, the 
divergence for point A is  (     )   (   )       . Similarly, if we tell the driver to choose the gas 
station at X when the driver is actually going to point B, the 
cost of the diversion is  (     )   (   )       , where r is the shortest distance between X and B,            (   )  √   √    . 

Since our onboard predictive system has access to 
destination probabilities, we can compute the expected costs 
of choosing the fueling station at   versus at  . The 
expected cost for any waypoint sums the products of the 
probability of incurring a diversion cost based on the 
likelihood of each destination and the cost (diversion cost) 
associated with that destination. Turning back to the 

 

Figure 3: Illustrative diversion analysis. Driver’s current 
location and points A and B form an equilateral triangle, 

with fueling stations at points A and X. Assume predictions 

show equal probability of driver heading to destinations A 

or B. If waypoint X is close enough, it may be preferred for 

fueling as that stop minimizes the expected total driving 

distance under current uncertainty in the final destination. 

http://nhts.ornl.gov/


 

illustrative example, the expected cost of choosing the gas 
station at   is thus,     ( )[ (     )   (   )]   ( )[ (     )   (   )]   ( )[ (     )   (   )]    [   ]     [   ]     [     ]    

 

We can compute the expected cost of choosing the gas 
station at   in a similar way:     ( )[ (     )   (   )]   ( )[ (     )   (   )]   ( )[ (     )   (   )]    [     ]     [     ]     [   ]      

 

We would recommend the fueling stop that associated with 
the smallest expected cost of diversion. In the example, the 
expected cost of diverting to the gas station at  ,   , varies 
with  .  The expected cost of choosing   is invariant with  . The plot in Figure 4 shows the values of     and    as a 
function of  , where we see that the gas station at   

becomes a worse choice when        , which is 
approximately where we have drawn   in Figure 3.   

We note that, in the general case, the ideal waypoints are 
sensitive to the probabilities of destinations, the locations of 
candidate waypoints, and the topology of the road network, 
which rarely provides cases with the simplicity represented 
in the illustrative example.  Also, we typically have many 
candidate destinations to consider in the real world. From 
the previous section, each candidate destination   is part of 
a set of destinations,   . The expected cost of diverting to 
point   when the driver is currently at point   is 

   ∑  ( )[ (     )   (   )]     
(1) 

The destination probabilities  ( )  come from the 
inferences about destinations as described above. These 
probabilities are recomputed as the trip progresses. In 
practice, we use Equation (1) to compute the best waypoint   associated with the minimum expected cost of diversion, 
by substituting in each waypoint candidate  , computing 
the expected cost of divergence for each, and seeking the 
ideal waypoint as follows,                ∑  ( )[ (     )   (   )]     (2) 

 

Equation (2) represents computations at the heart of the 
opportunistic routing procedure.    

Although we used Euclidian distance in the example, it is 
more realistic to express cost as driving time. This is 
convenient, because we are already computing driving 
times to each candidate destination for the purposes of 
destination prediction. Also, we can employ real-time and 
forecasted traffic flows in computing expected divergences 
that are measured in additional expected driving times. We 
further note that Equation (2) could be modified to consider 
both the cost of transportation and the cost of goods or 
services in a broader cost-benefit analysis that might trade 
off the distance of travel for gaining access to less 
expensive goods, e.g., traveling to a more distant fueling 
station that provides less expensive gasoline.  Such a cost-
benefit analysis is considered in prior work on the Mobile 
Commodities prototype, which performed waypoint 
analysis for known destinations [2].  For now, however, we 
use simple driving time as the cost function, ignoring 
traffic. 

In the analysis in this study, we move each candidate 
diversion to the nearest road intersection. Thus, all locations 
in the algorithm are at intersections. In addition to the raw 
driving times, we also impose a U-turn penalty of 120 
seconds, which matches the value used by a major Web-
based provider of driving directions.  

We implemented and tested an algorithm for computing 
Equation 2. We note that this analysis is typically costly for 
real-world opportunistic routing: For each waypoint and for 
each destination under consideration the algorithm calls for 
the generation of an ideal route from the current location to 
the destination that passes through the candidate waypoint. 
Thus, the complexity of the analysis scales the cost of 
generating routes with the product of the number of 
waypoints and the number of destinations. Thus, realistic 
implementations of the methodology require very efficient 
methods for rapid route generation.  We employed a fast 
routing methodology call RPHAST as described by Delling 
et al. [19, 21]. RPHAST is in a class of fast routing 
algorithms called “contraction hierarchies”. In such an 

 

Figure 4: Exercising example (from Figure 3). Expected 

cost of diverting to X grows with x and eventually exceeds 

expected cost of diverting to A. 



 

algorithm, the graph representing the road network is 
augmented by short, precomputed shortest paths that the 
online part of the algorithm can use to more quickly 
compute long shortest paths. RPHAST is particularly aimed 
at the one-to-many shortest paths problem that computes 
driving times and routes from a single location (i.e. 
intersection) to many other locations (i.e. candidate 
destinations). RPHAST is orders of magnitude faster than 
the Dijkstra algorithm, and it runs in a few tens of 
milliseconds for each one-to-many problem on our regular 
PC (four cores at 2.67 GHz with 12 GB RAM). 

Figure 5 shows an example run of the algorithm for one 
trip. The figure shows a separate map for each of three 
points along the trip. The white line shows the full trip, and 
the black dots show the progression of the trip from its start 
in the lower right. The small dots show the candidate 
destinations, where the dots with small destination 
probabilities are more faded. The white circles show 
candidate diversions, which are fueling stations in this case. 
At each intersection encountered along the trip, the 
opportunistic routing algorithm computes the diversion with 
the minimum expected diversion cost. In Figure 5, these 
optimal diversions are shown as filled white dots with a 
rectangular label. In the three instances shown, the optimal 
diversion is ahead of the vehicle’s current location and 
close to the future route. 

TEST DATA 

We tested our algorithm using recorded GPS data and a 
database of candidate diversions maintained by our 
organization for business applications. Candidate diversions 
could be convenience stores, coffee shops, restaurants, or 
any type of business. For testing, we considered fueling 
stations as candidate waypoints, envisioning the common 
scenario where a driver attempts to refuel at a gas station 
that will not add significant driving time to a trip. Some of 

the fueling stations are shown on a map as white circles in 
Figure 5. 

The GPS test in our study consists of 100 trips recorded in a 
region around Seattle, WA, USA. These trips were 
carefully recorded by turning on the GPS logger at the trip’s 
start, waiting for a lock with the GPS satellites, and then 
turning off the GPS at the end of the trip. This approach to 
collecting trip information is more tedious than recording 
continuously, but it helps to ensure complete coverage and 
proper segmentation of the trips. The GPS data was 
sampled at 1 Hz. The 100 test trips did not include any of 
the 20 trips we had used earlier to compute   for the 
destination prediction procedure. A map of the 100 test trips 
is shown in Figure 6. We considered destinations within 60 
minutes of the trip’s start as candidates, averaging 205,594 

   
(a) (b) (c) 

Figure 5: Predictions and diversions at three points along a trip. White line shows the actual trip, from beginning to end, 

starting at the lower right. Black dots show the intersections up to the current point of the trip. Cloud of small dots in the 

background shows the destination predictions, which tend to cluster more tightly together as trip progresses. White circles are 

candidate diversions (actual fueling stations), and filled white circle shows the optimal diversion with the name of the station. 

 

Figure 6: Corpus of trips for testing. 100 recorded trips we 

used for testing are displayed as separately colored paths. 



 

over the 100 trips in the test set. We evaluated our 
algorithm at each intersection encountered along each test 
trip, resulting in a total of 10,726 evaluations. In the next 
section, we describe the results of our evaluations with the 
opportunistic routing algorithm and some alternative 
procedures. 

TEST RESULTS 

For all 100 of the test trips, we computed the best diversion 
whenever the vehicle reached a new intersection along its 
trip. Prior to picking the best diversion, we recomputed and 
updated the destination probabilities for use in selection of 
an ideal waypoint. (For the first intersection, before we 
could do any predictions, we simply chose the nearest 
diversion by driving time.) As shown in Figure 7, the 
median extra diversion time is 73 seconds. This is an 
estimate of the extra time it would take to drive to the 
selected diversion and then on to the original destination 
over driving directly to the destination. It does not include 
the time stopped at the diversion, as this would be 
approximately the same for all diversions. 

We compared our algorithm to five other algorithms whose 
results are also given in Figure 7 (times are reported as 
medians): 

Nearest Drive Time. Select the diversion that is nearest to 
the driver in terms of driving time: 121 seconds. 

Nearest Drive Time Half-Space. Same as above, but limit 
diversion candidates to the half-space ahead of the driver’s 
current heading. This helps eliminate U-turns: 107 seconds. 

Nearest Distance. Select the diversion that is nearest to the 
driver in terms of Euclidian distance. This is what most 
current local search engines recommend: 210 seconds. 

Nearest Distance Half-Space. Same as Nearest Distance, 
but limit diversion candidates to the forward half-space: 
188 seconds. 

Known Destination. Assume driver explicitly tells the 
system their destination. This requires the possibly tedious 
and distracting entry of a destination: 0 seconds (mean was 
44 seconds). 

Except for the “Known Destination” case, our algorithm 
gives the smallest median diversion times. The median for 
“Known Destination” was zero, due to the fact that most 
routes in our test set passed at least one fueling station. 

We note that fueling stations in our test area are relatively 
dense. Other types of diversion candidates, like coffee 
shops or electric charging stations, may be less common. 
We evaluated our algorithm on reduced sets of gas stations, 
where we randomly deleted gas stations to achieve lower 
densities. The results of this experiment are shown in 
Figure 8. Here we compare our algorithm to the two best 
alternatives, Nearest Drive Time and Nearest Drive Time 
Half-Space. In all cases, our algorithm performs better than 
its competitors, and its relative savings improve as the 
diversion candidates become less dense. (Note the log scale 
on the vertical axis in Figure 8.) 

In looking for a diversion, drivers may prefer to specify 
approximately when they would want to stop. For instance, 
the driver may want to stop in the next 20-30 minutes for 
fuel while on a highway trip. The diversion suggested by 
the opportunistic routing algorithm may be immediately 
ahead or much farther away. The four alternative 
algorithms we tested (not including Known Destination) 
cannot make an intelligent suggestion for a diversion that is, 
say, 20 minutes away, because they have little or no idea of 
where the driver is going. Since our algorithm uses 

 

Figure 7: Given uncertainty about the destination, the 

opportunistic routing algorithm chooses diversions that 

minimize extra driving time, compared to other 

algorithms. The bars show the median extra driving time. 

  

Figure 8: Exploration of varying density. When candidate 

waypoins are less dense, the relative performance of 

opportunistic routing improves. Note that vertical axis is 

on a log scale. 



 

reasonable predictions of where the driver is going, it works 
much better for suggesting diversions at some given time 
ahead. We tested our algorithm against the two best 
alternatives, Nearest Drive Time and Nearest Drive Time 
Half-Space. For these two alternatives, given a pre-
specified future time interval, we chose the diversion that 
was closest to the middle of the interval, in the absence of 
other criteria for making the choice. For the opportunistic 
routing algorithm, we chose the diversion with the 
minimum expected diversion cost anywhere within the pre-
specified interval. 

The results of imposing a pre-specified look-ahead are 
displayed in Figure 10. In contrast to the previous results, 
the vertical axis is reported in minutes rather than seconds. 
Our algorithm does much better than the best alternatives. 
For instance, when the look-ahead time is 10-20 minutes, 
our algorithm saves over 12 minutes when comparing the 
medians. This savings is made more explicit in Figure 9, 
where we show the amount of time the opportunistic 
routing algorithm saves over the next best algorithm when 
comparing the medians from each experiment. 

EXPECTED VALUE OF ASKING 

As we saw in Figure 7, we can pick the best diversion if we 
know the driver destination, which we can get by explicitly 
asking. However, asking is at best bothersome and, at 
worst, a dangerous distraction. The expected value of 
asking incurs a definite cost of interruption for the uncertain 
benefit of providing a better waypoint.  However, the net 
value of asking may be low as the system may already be 
confident of the driver’s destination or because there are 
few choices of candidate waypoints to recommend. We 
explore the value of asking from a decision-theoretic 
perspective similar to prior work on the use of decision 

theory to guide decisions about engaging users in human-
computer interaction [22]. We consider specifically the 
expected value of asking a driver about the current 
destination.  The expected value of asking (VOA) is 
computed as the following:              ∑  ( )[ (     )   (   )]     

           ∑  ( )          [ (     )   (   )]     

     -  ( )             (3) 

 

The first term is just the expected cost of diverting to the 
waypoint  (   )  with minimal expected cost under 
uncertainty in the destination, as computed by Equation (2). 
The second term is the expected minimal cost of divergence 
with learning the destination. The core idea is that we will 
know the true destination after asking, but we are currently 
uncertain about the answer we will hear.  We can assume 
that the likelihood of hearing each answer is just the current 
inferred probability of each destination. For computing the 
current value of knowing the destination after asking, we 
select the minimal cost waypoint for each destination, and 
sum the costs of diverting to each of these waypoints as 
weighted by the probability that each destination is indeed 
the actual destination.  Finally, we must consider the cost of 
asking,  ( ), which is scaled to be measured in units of 
additional driving time that a user is willing to incur so as to 
avoid a distracting or annoying inquiry from the system. In 
summary, the VOA is the difference in the cost of the best 
waypoint to select under uncertainty, as computed by 
Equation (2), and the reduced cost associated with picking 
the best waypoint for each destination and weighting these 
costs by the likelihood of each destination, with 
consideration of the additional cost incurred with asking.  
When VOA is positive, it is worth asking the user about the 
destination.  Else, it is better to identify the single waypoint 
with lowest expected cost. 

 

Figure 9: For identifying desired waypoint at some time 

interval in the future, the opportunistic routing algorithm 

significantly reduces total driving time. 

 

 

Figure 10: Opportunistic routing algorithm performs 

significantly better than other procedures in a 

comparative analysis in situations where waypoint is 

desired at some pre-specified time interval in the future. 



 

We note that over a trip the point-wise VOA can be 
changing as the value of each term can shift based on 
changes in the probabilities inferred about different ultimate 
destinations, and the changing details of the geospatial 
structure of waypoints and the topology of the road network 
relative to the current location of the car.  Also, beyond a 
driver’s preferences about being asked about destinations, 
the cost of such an interaction can change based on several 
contextual factors, including whether a driver is currently 
speaking with a passenger and the complexity of driving.   
Studies in driving simulators have demonstrated the 
existence of a task-dependent microstructure of the 
interaction of human cognition and driving complexity, and 
the influence of different mixes of road complexity and 
cognitive tasks (e.g., introduced in phone conversations) on 
driving safety [23]. In practice a proactive system might 
monitor the value of asking and if positive defer engaging 
the user until a better time.  Other studies of bounded 
deferral of notifications and engagement are relevant to this 
task [24]. 

We performed a study with the same test corpus of 100 
recorded GPS trips aimed at exploring the expected value 
of asking using Equation (3) to compute the value of 
asking. We set  ( )    here for simplicity. We found that 
the median cost saved by asking is 16 seconds.  The 75th 
percentile of savings is 99 seconds, and maximum savings 
is about 23 minutes. The relatively low median shows that 
our algorithm is doing a good job recommending a 
waypoint, based on predictions. However, the value of 
asking can be high, so it can be valuable to ask about the 
destination.  

The VOA over the course of the trip from Figure 5 trip is 
displayed in Figure 11.  We display both the expected value 
of asking and the actual value of asking, computed by 
taking the difference of the driving time for the best 
waypoint under uncertainty and the driving time for a 
waypoint optimized for the actual destination. We also set  ( )    here. We note how well the VOA tracks the 
actual value of knowing the destination.  Also, we note that 
both the expected value and the actual value of knowing the 
destination vary over the trip, rising and falling. In use, a 
threshold could be set on the value of asking, and a question 
about the destination could be asked of the driver should a 
need for a waypoint (e.g., for fueling) arise or requested and 

a threshold in the expected value of asking exceeded. 

CONCLUSION AND FUTURE WORK 

We presented principles and studies of opportunistic 
routing for the general case where there is uncertainty about 
a driver’s destination. The methods are aimed at identifying 
ideal waypoints on the way to primary destinations, as 
candidates associated with minimal expected additional cost 
of driving. We introduced an opportunistic routing 
algorithm and demonstrated its performance in comparative 
studies with other methods with a test corpus of GPS data 
of 100 trips. Finally, we presented a formulation of the 
expected value of asking and discuss how this measure can 
be used to guide a system’s pursuit of additional knowledge 
about the primary destination. The methods and studies 
extend prior work on opportunistic routing to the case of 
uncertain destinations, and highlight the value of harnessing 
ongoing predictions about destinations to help with routing, 
and to guide decisions about resolving uncertainty by 
engaging people about their goals. 

In ongoing research, we seek to better understand how 
methods for opportunistic routing under uncertainty might 
be leveraged in different settings and applications.  For 
example, we are interested in the application of the methods 
for enhancing the quality of results provided in mobile 
search in cases where people search for goods and services 
by location. Given a search in a mobile setting, it may be 
most appropriate to rank results with a function that takes as 
arguments the relevance of results and the location of goods 
and services linked to those results.  However, there are 
questions about the best results to provide in mobile 
settings.  For example, if someone searches on “coffee 
shop” or “movie theater,” is it most appropriate to rank 
results by how near they are to the user’s current location, 
or how close they are to the predicted destinations?  As a 
third alternative, the results might best be ranked by the 
expected divergence associated with going to each of the 
locations of the goods or services and then on to a likely 
destination, per the focus of this paper. The most 
appropriate ordering over recommended locations depends 
on the transportation context. Using methods of 
opportunistic routing as an input to ranking search results is 
most applicable when the user is headed to a specific 
destination, and would wish to see relevant results that 
would make for efficient waypoints on the way to that 

 

Figure 11: Computation of expected value of asking driver about destination.  For a trip, we graph the expected value of 

asking the user and compare this with the actual value of resolving uncertainty about the destination. 



 

destination. Proximity-based ranking may be best for the 
transportation contexts where driver and passengers are 
either casually exploring a city or are leaving or planning to 
leave their homes and offices to head directly to the specific 
location before returning back.  Inferences about users’ 
transportation contexts may be feasible based on such rich 
attributes as location and velocity data, and streams of 
queries over time.   
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