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Let R be a simply connected region in E N wi th smooth bounding surface S. For " suffl­
ciently different iable set of fun ctions we derive a class of quadrat ic in tegral identities r elat in g; 
surface integrals of derivatives to integrals over R. These identit ies are a genera li zal io ll of 
a first order iden tity given by L. I-liirmander (Compt. Rend . D ouzieme Congr. des Math6-
maticiens Scandinaves T enu a Lund, 1953, pp. 105- 115) and L. E . Payne and H . F . Wein­
berger (Paci fi c J. Math . (1958) pp . 551- 573) . As an example of an " pplicatiolJ of LI1l'sP 
identi ties we consider a solution u of t he boundar y value prob lem tn< - p t< = F in Rand 
t<= / on S. H ere 6. denotes t he Laplace operator and O~p(x) . We obtain poin twise a 
priori bounds for t he derivatives of u in R in terms of a quadratic functional of an a rbi trary 
fu nct ion. H ence t he Rayleigh-Ritz p rocedure can be used to make t he error arbitrari ly 
slll.ali. 

1. Introduction 

In a recen t paper [6] 3 L . E. Payne and H. F . 
'iV eillberger Q'ive a method for ob tail1ing bounds for 
solutions of second order elliptic boundary value 
problems. In that paper they give a generaliza tion 
(see eq 2.4) of an integral identi ty of R ellich [7] which 
was essen tial to th eu' m ethod. This generalization , 
which was first ob tained and applied to hyperbolic 
operators by L . Hormander [4], clisplays the highest 
derivatives in lhe form of a second order operator 
Lu= (aiiu,j)';, This fact m akes Lhe iden tity useful 
in tr eating boundar y problems for the corresponding 
differenLial equation Lu= F. 

Use was also made of tJli s identiLy by Hubbard 
[5] to obtain bounds for m embrall e eigen valu es by 
fini te difference m eLhods. 

In section 2 we give a fur Lher generaliza tion of 
Hormander 's resul t, which involves higher deriva­
tives on tb e boundary and where the highesL order 
terms enter as ci eri vaLives of Lu. Section 3 gives 
an application of these higher order identities in 
obtaining poin twise bounds for tbe derivatives of a 
function u . Th e particul ar problem treated assumes 
a knowledge of l1u - pu in a r egion Rand u on th e 
boundary G wb ere 11 is Laplace opera tor and p >0 
in R + G . . B ecause of the important physical appli­
cation of tbis:equation (see e.g)Bergman and Schiffer 
[1]) , this pl"Oblem was chosen as an exampl e to illus­
trate a usc of the higher order iden ti ty. More 
general equations could be treated with only tech­
nical modifications. Oth er m ethods for obtaining 
explici t pointwise bounds for derivatives in such 
problems have been given by J . B . Diaz [3] and by 
Payne and Weinberger [6] . In both cases tbe 
method given involves differenLiation of Lhe fund a-
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mental soluLion in Gr een's third identity, thus 
introducing more singular behavior of t ir e bounds 
as the boundary is approached. In our paper the 
bounds for derivatives of all orders have th e same 
behavior near th e boundary, provici ed the bound ary 
data is s ufficiently differ entiable. 

Ex ten ions of the fundam ental identity (2.4) can 
be clerind for higher order operators by the sam e 
technique used here. One such, involving the 
biharmonic operator 112 , is applied in a forthcoming 
paper of J. H . Brambl e a nd L . E. P ayne [2] to obLain 
expli cit po in Lwise bounds in lit e biharmonic Di­
ri chl eL problem . 

As bas bee n pr eviously poinLecl out in various 
places (see e.g. [6]) bounds of th e type obtained here 
can be used in co nj unctio n with a R ayleigh-RiL7, 
lechnique Lo approximaLe Lir e unknown solu Lion (o r 
deri va t i ve) arbi LJ"fl.l"ily clo ely. 

2. A Class of Quadratic Integral Identities 

L eL 
(2.1) 

be defin ed on a region R in En with boundary G. 
Th e symbol I i indicates covarian t differentiation 
which coincides with Ii (partial differentiation with 
r espect to Xi) in Car tesian coordinates. A r epeated 
index indicates smnmation from 1 to N. The sym­
m etric tensor a i1 (x ) is assum ed to possess piecewise 
continuous derivatives of order M + 1. In addition, 
Jet th e eigenvalu es of the m aLrix aij b e bounded 
away from zero and infini ty in R. H ence there 
exists a posi tiv e co nstant, a, such tha.t for all real 
no nzero (~l' ... , ~ n ) and all x in H, 

Under these conditions L is said to be uniformly 
elliptic. 
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Letf(x),A?(x), ... , A;,;(x) be symmetric tensors 
of Lhe second order w·itb piecewise continuous 
first derivatives in R. L. E. Payne and H. F. 
'Veinberger have developed tbe following first order 
quadratic in entity [6] and used it to obtain pointwise 
bounds in certai n boundary problems. It is clear 
that 

(j·maiju u) - (j"'a ij) U U + ?Jmaiju U Ii Ij 1"' - 1m I i I j ~j Ii 1m; 

(2 .3) 

An application of the divergence theorem yields 

fUlnai j- 2Paim ju liulJv",dS=-2 IR J"'u l", L(u)dv 

+ IR {(jmaiJ) lm- 2f{",ai''' ju liUljclv. (2.4) 

In an analogous manner we can develop a homo­
geneous quadratic integral identity involving second 
derivatives of U on the boundary C. Now 

-\- {(j "'A iiakl) - ') (J tAiiakln) ju u ' 
1m -- 1m I lk I J I 

+ 2.f"'A ij (ar1ull ) liUIJ m" (2 .5) 

AfLer applying the divergence theorem we have 

Pc,Akl {flnaiJ- 2Faim j Ulikulj lv",ds 

=-2 I /"AijUljm(LU) lidv+ 2 J j"'Aij (artUlk )liUIj",dv 

+ IR { UlnA iiakl) Im- 2U tA ijakm ) Im}u likU fj tdv. (2.6) 

The corresponding identity which involves covariant 
derivatives of order M + 1 on tbe boundary is 

rF Ai,jt AiMht {jm kl 2jl km } is J c 1 ...]v[ a - a Ulkil , .. iA/nilil . . , j",VmG 

2J j mAilil AiMi"(L) I = - R 1· .. M U I ii . . . iMUljt . .. JM71{V 

+ IR { (fmAi,j, .. . A~"akl) m 

2 (j'IAiIjt A i,I1jM km) } d 
- 1. .. ]v[ a 1m U lil . .. ;,,,kUIj. . . ,jMl V 

(2.7) 

Since the integrands are in each case tensor in­
variants, we may perform each integration in the 

most advantageous coordinate system. Since bound­
ary conditions usually are given in terms of normal 
and tangential derivatives we shall display the deriv­
atives appearing in tbe boundary integrals in such a 
form. Assume C to be a surface possessing 1\1+ 1 
(·ontiIlUOllS derivatives as given in th e paramet.ric 
form 

i = l , . .. , N. (2.8) 

The unit normal X i(y ) satisfi es tbe cOJlditions 

a= l , ... , N - 1, 

X iX i= l (2. 9) 

and the orientation o[ X i is taken inward. In what 
follows Greek: indices will always range over 1, . . . , 
N - 1, whereas Latin indices will refer to 1, ... , N . 

We introduce geodesic normal coordinates (y! , ... , 
yN) in a strip immediately adjacent to the bounding 
surface. The transformation is given by 

Th e coordinate yN refers t.o a distance itlong the 
inward Jlormal to C n,t. th e point (y ... , yN- l). 
The metric tensor has the form 

gap= (G,~ + yN X,~) (G ,~+ y N XJ), 

gaN = ( G ,~ + y NX,~)Xk = !yN(XkXk) ,a= O, l 

Th e ChrisLo fI' el symbols which involve t l H~ normal 
roordillate yN are 

The various second order covariant derivatives of '!I, 

then have the form 

- _ 02U { {3 }-
Ula.v = 'U INa= oyaoyN- aN Ulp, 

:>'2-_ u n 
UiNN=( oyNi (2.13) 

vVe indicate with it bar when the tensor is expressed 
in geodesic normal coordinat.es. Our operator takes 
the form 

(2. 14) 
~ 

l 
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\iVhen L is Lhe Laplftce op erRto)' Ll lye hRve The following notation will b e used th ro ughou t 
t his pftp er . L et j(x) b e a piecewise contin uous func-

(2. 15) tion O Ll R + O, th en 

s ince y".v= O and gNN= l. Also th e firs t illVell'ian t 
teL k.es til e [orlll 

(2. 16) 

We now express the b oundftry in tegml Hppeal'ing in 
(2.4) in geodesic norm a l coordinates. 

_rh (]N(iiJ- 2J J(i iN }U' i u ' J clS = - ~ (fN[(a"llu ,,,u ,ll) 
) (' • C 

_ (iNN(U,N) ZJ - 2(f"u ,,,) ((i iNu 'i }dS . (2. 17 ) 

If L = Ll then (i iJ= giJ and (2. 17) beco mes 

-Pc {fN[(g"flu ,,,U,Il) - (U, N)2 ]- 2(f "u ,,,)U,N }dS. 

(2. 18) 

Th e surface in teg ral i n (2.6 ) can be t )'elltecl in ft 
s illl ila l' nlll.JlIler to ob tfLin 

-Pc Akl ON[a"Pu lkaUJlfl - aNN(u lkN) (U1IN) ] 

- 2(]"U1k,,) ((i iNUlil ) }dS . (2.19) 

Tn pMti c uhl l' i[' ) \ :=lkl is chosen on 0 so th at 

th en (0 ), L = Ll (2 .19) takes t he simple form 

-PJ g all u I N" u I N ~ - (UINN)2 }dS. 

(2.20 

(2 .21) 

In view of (2.15) we have thereby isolated a n in­
t er esting combination o[ mixed normal and tangen­
tial second deri vatives on 0 in term s of second order 
tangen tiftl d eriva tives on 0 ft nd cer tain in tegrals 
over R. 

In fac t, a specific mixed d erivfttive, say u jNu, can 
b e isolated in this m ann er . L et 

f N= l , J" = O, 

A ;"u= l , A i}= O 

Then £0 1' L = Ll (2 .19) becomes 

-f { g"llu 1u"U1ull - (UlNu)Z } dS . 

(2.22) 

(2.23) 

As we sh all see in Lh e next section, th ese c hoices of 

] i,AY will enable us to ob tain n ew p ointwise b ound s 
[01' d erivft tives in cer tftin boundary problem s . 
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.f..r= max f(x) 

xER + O J 

f m=min f (x) 

xER + O 
(2.24) 

F or N = 2, Xi= Gi (yl ) r epresents a plane closed 
curve. Equation (2.10) b ecomes 

(2.25) 

where we h ave se t y l = S (ft rclen g Lh ftlong 0) and 
y2= N (dis ta nce along the un i t inward n Ol'll1ftl 
(n\ n 2 ). If K (S ) is Lb e cu r\'ll tu re o [ 0 th en we h ave 

r; 11 = ( l - K (S)N) - z, gI 2= g21= O, g22= 1. 

(2.26) 

Th e u 'e of t his coordinate sys tem is , of co urse, 
rcs t ricLed to a cer'Lain s trip in the n eig hborh ood 0[' 

th e boundary w here in term s of iL 1111 poin ts a re 
lin ig uely cI efined . 

3. Pointwise Bounds 

As was prev io usl.v noted , Payn e and \Veillbergel' 
[6J mad e usc o[ (2.4) in order to obLfti n b ound s ['0 1' 

so lu tions 0 [' second orei er ellip lic p ar Lia l difFeren t ia l 
equa lio lls. This id en tity enabled th em Lo es t imat (' 
til e' ill Leg ml over IL dosed s urfltC'e' o[ the' sq uil l'(' of 
the no rm al c1 eri vn,live o r IL solli LiOIl of ,L seeoJl(1 o rder 
equation in ter 1l1 S of int egrals of t he sq uares 0 [' t ht' 
fun ction :tn d iLs tlw genli td cl c riva tive over lh e 
s urflwe. 111 ord er to bo wl d Lhe dcrivatives Ilt 
IL poin t wi t hin the r eg io ll t he.l" noted that one could 
diftcrell Lin te t he " G reen 's Jd ell ti ty," b eing eurd ul 
to define 11 " p'LmmeLri x:" i n sucll a W ft .V LhcLt t his is 
pe' l'I11i ssibl e. Th e resulting es timates have t he d is­
Ild V'lll tllgC t lm l lh e coeffic iellt s b ecol11 e infini te m ore 
mpidly elS t he bou ncl lU'.\T is Ilpproached t lmn do 
those ill t he es t ill llLtes ['o r t he val ue 0 [' t he solu Lioll 
itsel f. This pl'occdure !tas also b een u sed b~ ' Di az [3] 
in es t ima ting deriv at iv es ILt IL poin t for soluLions o r 
Laplace's equation . 

One could proceed i n ftn altcrnftte m ann er . Th at 
is, ins tead o[ differen tia ting th e "Green 's Tcl en ti Ly," 
simply wri te th e identi ty using [01' t he function to 
b e evalua t ed at th e poin t, the derivative o r the 
solu tion . This leads to t he es timation o f surface 
in teg rals of squares of second d erivn,tives of the 
function OVer th e s urfa ce in term s of s urface in tegmls 
o[ squft res of tangenticLl d erivatives oC th e f unction 
ov er t he surface. The icJ en ti t,v (2.4) gives a means 
of obLfli ning t be necessar y ineq uHli tics. 

As an example 0 [' HJl eLpplicltl ioJl of th ese iden ti ties 
we co nsid er t he p roblem oC obtai nin g a p riori 
poin t wise b o unds [ 0 1' th e d eri v lLtives 0 [' a function 
U fo r which LU= LlU- PU is known in R +O and U is 
known on O. H ere R is a simply conn ected fmi te 
plan e region bound ed b v th e sm ooth ('losed curve 
0, Ll is t he L el plHce ope m tor nnd p (x, y » O Hnd 
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bow1Cled togeth er with its first derivatives in R +C. N o\\- on 0, tJ.l1 - pu= UINN + l1 ISS- PU, so that 
(The functioJl p is taken to b e positive in R+O for 
tb e sake oJ convenience. By a slight modifica tion, j j 
simihll" r es ults co uld be obLained for p~O.) W e :Ycu,/ju, iJdS= :Yc[ P1t - 'UISS- (tJ.u - pu)F 
assunlC thaL Lu and u are sufficiently smoolh in 
R cllld Oil 0 r especLivc1 ~ ' . j 

As It steHtin g poin t wo li se the "Gr ec ll 's I cI cn LiL.,' " + urssdS+ 2:y c UTNSdS. (:3.8) 

J' rF, (01' OV) 
(P )= /tJ. l!dA+ y c v on - r on dS, (3. 1) 

wher e v is Im y sufficienLly s illool il i"unc tiOIl in H + C, 

P is a poin L in th e in te rior of If, r = - ')1 lll J"pQ(rpQ = elis-
~7f 

tance from Lhe poinL P Lo t1JloLher poinL Q), cLl1d;-.0 
u n 

IS the outward 1l0l"lllctl derivative. 

011., 
Now le t 

v= U .= - . Then we h ave 
" oXi 

P ) J' d 1 ~ ( 0 l' 011.,. ;) IS U' i( = rtJ.u ,; L: + U, i -:x-- r ~ ~ , 
II C un un 

which may be wriLten 

X;(P) = 1L,.;(P)- In r ( tJ. U - PU) 'i (l/ t = J ~ r (pU)' i 

+rF, ( or 011 ,; ) IS J c 1J , ; on - 1' i5fi: ( . 

(3.2) 

(3 .3) 

We sh a ll consid er x i(fJ ), sillcc x i(P ) -- 11." ;(1') is 
assumedlmowll . ~ , Ltkin g lI SC of Sclllnll'z's illcqllality 
for vectors it, follows thllL 

(3 .4) 

where D (u,n) is Diric hleL inLegral, a nd 

(3.5) 

N ow \\ 'e h ave 

(3.6) 

and ill terms of tllC normal coordinaLe system in tro­
duced in section 2 (with the boundary coorelina to 
taken to b e ar c longLh, i .e ., yl = S , y2 = N), 

~ c U,;ju,jlS= ~ c u 1NN+ 2ufNs + u Tss dS. (3.7) 

N oting tha t 

(3.9) 

we have LlmL 

It follows from Green's Identity and th e ari thmetic­
geometric mean inequ ality 

(3. 11 ) 

Lhat 

Co mbinin g (3. 10), (3. 12) with (3.4) we obtain 

+2f[ (rn/, - ~ :~ ) 2+ (~ :~ )]clS +Pr (~ ;Y dS 

+ ~ Pru2dS+ l~ Pr (~ ~Y dS+ 2 ~U TNS clS)-
(3. 13) 

All term s on the right h and side of (3. 13) f'xcept 
th e last two are in terms of data. In order to bound 
th e integral of the squ ar e of th e normal derivative 
around th e boundary we wri te th e identity 

rh [ fkn.((OU)2_ (OU)2)_2fiS OUOUJdS 
% . k os on . 1. 0 n os 

= I }P".oiJ-Pj-P;]n p U,JdA- 2 I J·;u ,;tJ.udA , 

(:3 .1 4) 

which b as iLs left hand side essentia.lly in the forlll 
of (2 .18). H ere aii= oii, n i and S i are the uni t nor- <I 

mal find unit tangent vectors r espectively and P is 
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ILil ItrbiLl'al'Y con Li n Ll OUS, piecewisc CO il LiH uously di[­
f'c l'cnLi,1ble vccLor field in R+ G. vVe choosejk s uch 
Lilal rnk> O on C. (For exa.mple, if R is sULr-shaped 
wil h I'cs pcd lo Lhe origin, Lhell wo mlly Laker = xk.) 
Fro lll (:3. 14) w e obLaill LJlC iJl equaliLy 

~ (Pnk)",f(~~ydS 

< ~ [ (fkn .)+4( ]kSk)2] (OU)2 !IS 
- Jc k (rnk) os 

+ ((/1 + ]{I + K 2)D (u,u) + Ct-2:)ll{ J>U2dA 

+~ f Pfi( t::.u - pu)2d.ll (:3. 15) 
K 2 a 

wh ere CI is an~ ' bOlLllcl for t he hHgCSt eige llvalu e of 
t he coefficient matrix [- Pkoij+J:j +J\], and K\ itnd 
K 2 are positive. Let c= nH1X [Cl , U1ip )l\f] itnd choose 

2c " . - c+ -/c2+ 4c 
c+ K 1+ K z= i· (]or ex,lmple, takeKI 2 

leI 

;1 11(1 J( 2 = -R ~ ' ) ' I' hrll 11-(' hn vr , tl s in g (3. 12)n nrl (3 .11 ) 

Ili(h CU Ii ), 

p c (~~ydS ::; al p CU2dS + (l,ZP c (~~ydS 

+ a3p c (t::.u- pu)ZdS (:3. 17) 

where 

Finnlly, w e Heeel to obtain ;1 bound for PcuZlNsdS. 

W e make use of (2.23) and (2.6) Hssul11ing t lmL Lhe 
vector field P and th e le ll sor field A ij h ave been 
chosen as indicaLed . We Lhen obtain th e idenliLy 

~ (UTNS - UTss)dS=-2f j "'Aiju IJ", (t::.u) ltdA 
Jc a 

+ fa {(j'''AU) ,,,,rr- 2(pA iJ) lk) UI ik ulJ1dA . (3 .18) 

We ass uln o ;Llso Llm Lp alld A ij ar c bounded together 
wiLh Lheil' ci e riv;ttivt's ill R+ C. (If t he boundary 
is s ufriciell(1\' SlllooLll oll e c;Ln d efine Lhese tensors 
(i ll lhl' (S,N) SVSlf'lIl ) ns follows. L et 

for N> 1 
J{ 

whero if. is ;L CO il 'LanL g re;LLr r Lil aH Lhe 1Il1LXLillUm 
curvn,Lure K M or C. 

Usin g (3 .11) l111cl Schwarz's in equality w e obLain 
from (3 .18) 

whrl't' 

Th e ln s L lerll1 011 (.h(' l'i g ll L hand s id e of (3 .19) is 
bOli lldrd li S fo ll ows: 

(3.21) 

1\'1 1(, 1' (' H is ;J cO ll s (a n t.. A ftt'1'1I moderate caleulaLion , 
m<lking li se of (he defil1iLions ofP 11nd A ij in the normal 
('ool"(lil1<1( ' sys((,Il1 , it. is poss ih l(1 ( 0 ob(.<1in the bound 

where J{ ' is lhe derivative of the curva ture with 
respect to arc lengLh. No w using the divergen ce 
tbeorem w e h ave 

wher e Lile n i a r e Cnr Lesian componen Ls of the 
exLerior unit no rm al. W e J1)fi,Y r ewriLe Lhe boundary 
inLegrn,1 in Lerms of norm al and LangenLial derivatives 
lLnd obtain 

(3.23) 
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Using (3. 11 ) we have 

f R U' ij u .tJ dA~Pc K (~:Y dS+Pc (~ :~ y dS 

+Pc (1 K) (~ ~y dS+2 f R (flU- pU) 2dA 

+2 fR (pu)2dA. (3. 24) 

Using (3. 11 ) and (3 .12) we have Lhe i ll equality 

fR (PUFdA~PM { Pc u2dS 

+Pc (~~y dS+ f R ( flU ~ PU )2 dA } ' (3.25) 

Combining (3. 17), (3.24) and (3.25 ) we have 

j~ U' i JU'i;dA~ bIPcU 2dS + b 2 Pc (~:ydS 

+ b3 Pc (~ :~ ydS + b 4 f R (flU - pU)2dA 

where 

bl = [(1 + K)M + 2pM]al + 2pM, b2 = [(1 + K ) ilf + 2pAf ) a ~ 

+ K .M, b3= 1 and b4= 2+ [(1+ I()M + 2pM]a :J + 2p"t!Pm 

(3.2G) 

Now in (3. 19) we are loft to considcr lhe te rill s 

In order to bound the latter we can write 

~ J~Cp ;P' i +p2 )GpU 2 + U'iU'i )d A (3. 27 ) 

where (3. 11 ) has bee ll used wi th a = ~ 2P;P' i . 

Now (3.27) and (3. 12) yield 

f R (PU),i(PU), idA 

~ ~ CP;P Ji+ p2)M {Pc U2dS+Pc(~~Y dS 

+ f R ( flU ~ PU)2 dA } (3.28) 

and hence, using (3. 17 ) "e have 

fR (pu) ,;( pu )'i dA ~C l PcU2dS 

+C2 Pc(~~y dS + c3Pc (flu - pu)2dS (3 .29) 

\\ hero 

=! (2Pd P' i+ 2) (J + ) Cl 2 P - a], 
p AI 

and 

Finally we have [rom (3 .9 ), (3.11 ), and (3.17 ) 

( 3. : ~0) 

UO lllbining (3. 19), (3.21), (:3.2G) , (3.2!-n H Il e! (3.30) 
" -e JlltVe 

Pc UfN S dS ~ dl Pc u 2 dS+d 2 Pc(~~y dS + rl 3 Pc(~:~ydS 

+ d4 ( (llU- pu)2dA+ d5J (flU - PU) ,i(fl ll - pU),idA 
In R 

(3.31) 
" 'here 

Now (3 .17 ) and (3.31) may be inserted into (3.13) 
to yield the desired bound, 

XiXi(P ) ~ K r {f31 Pc u2dS + f32 Pc (~:y dS 

+ f3 3 Pc(~:~Y dS + f3 .1 IR (flu - puFdA 

-l f34IR (flu- pu) ,.J flu - pu) ,idA } (3.3 2) 

where the f3/s are explicitly determined constan ts. 
It should be pointed out that for the sake of 

simplicity, no effor t was made to obtain the " best" 
such bound. Better bounds could be obtained, for 
example, b~ T leaving certain Imown quantities under 
the sign of integration (compare equations (3. 16) 
and (3 .17) fa ther than replacing them by a maxi­
mum value. 
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4. Higher Derivatives in N Dimensions 

T he process described in section 3 can be general­
ized 0,)si1.,' to higher deriva t ives. 1 n bou ncling the 
1\1th derivn,tive wo musL require the existence and 
in tegn)'bili ty of l\11th derivatives of tlu - pu, pu, and 
1\1+ 1 ta ngen tial derivatives of u on 0. vVe <11so 
:tssume that bounds h,we been ob tH ined for the 
various lower order differen ti,)'l inv,tri}w ts. 

The mod e of generali za tion will beco me }),pparen t 
from the case 1\11= 2 ""here we assu me that bounds 
have been obtained for 

( pu2clv, D(7t,U), J' U,i jU' i/ lv, rh ~u dS, rh U, iJU' i/ lS J R R Yc v n Jc 
(4.1) 

The boundar.v integra1s occurrin g in the above in­
equalities are the sam e as those to be dealt with 
bel 01"-' 

We shall show how the desired bounds may be 
obtained for N5:3 sin ce in higher dimensions only 
technical details enter. 

Applying Schwarz' inequality, as was done III 

(3.4), we see that 

where Kr is given by (3.5). 
vVe see that 

(4.4) 

:),s \ms done explicitly in two dimensions in the 

previous section. J'R(PU) 'i) (pU) ,ijclv5: 3 (P' ipjPdi),[ (RPU2 
rr w" denotes Lhe surface ar ea of the unit sphere " J j 

in N dimen sions then 

r 
- 1 

( 1\T_2) ,N-2' N > 2 
1. ' wnl PQ 

(4.2) 

IS a, fund alll en Ln l solution of tlu = O. We can write 

+~ ( or _rOU,i j) lS 
u" J 0 A G. 

• c n vn 
(4.3) 

Sin ce J ~r2dv docs not exist for N?:.. 4 we cannot appl ~ T 
Schwarz's in eq uali ty, as was done in (3.4), (or d im en­
sions higher tha n three. 

For N?:..4 we apply Schwar z's inequality as 10110" 's 

where the singularity o( r is chosen as the origin . In 

order to bound fR r-(N- J)u2dv we use "Green's Iden­

ti ty" 

- I R [tl (l' - (N-3l )u2_ r- (N-3l tlu2 jdll 

= Boundary Integrals , 

Now using (3. 11) we can easily obtain 

J r-(N- J)u2dv5: -_4- J 1,-(N- 3l (tlu - pu)2clv 
R 2N- 7 R 

+ Boundary Integrals. 

'>- This same basic technique may be used to handle all 
Lerlll s in (4.3) forN?:..4. 

606580- 61--4 

(4.5) 

but by assump tion ef\.ch in tegral on the right side of 
(4.5) has a known bound. Similarly we assume that 

f\. bound is known for PcU' ij7i )/jdS. 

It now remains for us to obtain bou nds for th e last 
te rm of (4 .4 ). We sec that 

rh OU' i} OU, i} d _rh ij k l- - dS 
Yc on On - y,.? Y UlikNU1jlN 

From (2.15) we ee that 

The first two expressions on the right are Imown and 

where 

(4.9) 

The first term on the right side of (4. ) is known. We 
can use the inequf\.lities 

(4. 10) 
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where 7 1, 7 2 are upper bounds for the largest eIgen­
value in cfl,ch case, to complete the bound for 

by a function of the quantities (4.1). 
Furthermore, from (2.15) we see that 

UINNN= (LlU- pu) IN+ Cpu) IN- g a~ U l a~N (4.11) 

and hence we can bound the last term of (4.6) in 
terms of known quantiti es and a bound for 

Pc g afJ g ~S U l a~N U lfJo rrlS. 

From (2 .7) for M = 2 and the choice 

we have 

I N= l , 

A afJ= gafJ, 

B NN= l, 

j a=o, 

Ata=.ANN= O 

i ,j -F N , 

f [g aB g n u l a~N U lfJSN- g afJ u laNN U lfJNN ]dS 

=-JR r A iiB kl[(LlU- PU) + PU] I ikUlilmdv 

(4.12) 

+ I R { (pnA iiB kIOrs ) Im- 2(jsA iJ Bkl) IT } UlikTUIJlsdV. 

(4.13) 
Hence 

f gafJ g ~S U la~N U lfJON dS:S; Pc gaflu I aNN UI flNNdS 

+J~ A ii Bkl [(LlU- pU) lik (LlU- pU) IJI 
'II 

+ (pU) lik (pU) IHjdv+ I (UliJk)' (4.14) 
where 

I(Uiiik)= IR { (j"'A iJB kloT8)l m- 2(j8A iiB kl)IT 

+ fPAiiBkl} UlikTUIJ/s dv. (4.15) 

But 

I ( U lijk) :S;7 3 J~ U,ii/cU.iikdv 

_(73) 2rh ii kl - - d J' () d - 4E J c g 9 UlikUljl 8- 7 3 R l1u ,ijU,iJ V 

+~Pc giigkiUlikNUljlNcl8 (4 .16) 

where 7 3 is again an upper bound for the largest 
eigenvalue of the co efficient matrix in (4.15). We 
can substitute (4.1 ) into (4.4) for t< l and achieve 
the desired bound for 

rh fl 'Yo - - I J c ga 9 U la~N U l fJoNG 8. 
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