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Let R be a simply connected region in E N wi th smooth bounding surface S. For " suffl
ciently different iable set of fun ctions we derive a class of quadrat ic in tegral identities r elat in g; 
surface integrals of derivatives to integrals over R. These identit ies are a genera li zal io ll of 
a first order iden tity given by L. I-liirmander (Compt. Rend . D ouzieme Congr. des Math6-
maticiens Scandinaves T enu a Lund, 1953, pp. 105- 115) and L. E . Payne and H . F . Wein
berger (Paci fi c J. Math . (1958) pp . 551- 573) . As an example of an " pplicatiolJ of LI1l'sP 
identi ties we consider a solution u of t he boundar y value prob lem tn< - p t< = F in Rand 
t<= / on S. H ere 6. denotes t he Laplace operator and O~p(x) . We obtain poin twise a 
priori bounds for t he derivatives of u in R in terms of a quadratic functional of an a rbi trary 
fu nct ion. H ence t he Rayleigh-Ritz p rocedure can be used to make t he error arbitrari ly 
slll.ali. 

1. Introduction 

In a recen t paper [6] 3 L . E. Payne and H. F . 
'iV eillberger Q'ive a method for ob tail1ing bounds for 
solutions of second order elliptic boundary value 
problems. In that paper they give a generaliza tion 
(see eq 2.4) of an integral identi ty of R ellich [7] which 
was essen tial to th eu' m ethod. This generalization , 
which was first ob tained and applied to hyperbolic 
operators by L . Hormander [4], clisplays the highest 
derivatives in lhe form of a second order operator 
Lu= (aiiu,j)';, This fact m akes Lhe iden tity useful 
in tr eating boundar y problems for the corresponding 
differenLial equation Lu= F. 

Use was also made of tJli s identiLy by Hubbard 
[5] to obtain bounds for m embrall e eigen valu es by 
fini te difference m eLhods. 

In section 2 we give a fur Lher generaliza tion of 
Hormander 's resul t, which involves higher deriva
tives on tb e boundary and where the highesL order 
terms enter as ci eri vaLives of Lu. Section 3 gives 
an application of these higher order identities in 
obtaining poin twise bounds for tbe derivatives of a 
function u . Th e particul ar problem treated assumes 
a knowledge of l1u - pu in a r egion Rand u on th e 
boundary G wb ere 11 is Laplace opera tor and p >0 
in R + G . . B ecause of the important physical appli
cation of tbis:equation (see e.g)Bergman and Schiffer 
[1]) , this pl"Oblem was chosen as an exampl e to illus
trate a usc of the higher order iden ti ty. More 
general equations could be treated with only tech
nical modifications. Oth er m ethods for obtaining 
explici t pointwise bounds for derivatives in such 
problems have been given by J . B . Diaz [3] and by 
Payne and Weinberger [6] . In both cases tbe 
method given involves differenLiation of Lhe fund a-
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mental soluLion in Gr een's third identity, thus 
introducing more singular behavior of t ir e bounds 
as the boundary is approached. In our paper the 
bounds for derivatives of all orders have th e same 
behavior near th e boundary, provici ed the bound ary 
data is s ufficiently differ entiable. 

Ex ten ions of the fundam ental identity (2.4) can 
be clerind for higher order operators by the sam e 
technique used here. One such, involving the 
biharmonic operator 112 , is applied in a forthcoming 
paper of J. H . Brambl e a nd L . E. P ayne [2] to obLain 
expli cit po in Lwise bounds in lit e biharmonic Di
ri chl eL problem . 

As bas bee n pr eviously poinLecl out in various 
places (see e.g. [6]) bounds of th e type obtained here 
can be used in co nj unctio n with a R ayleigh-RiL7, 
lechnique Lo approximaLe Lir e unknown solu Lion (o r 
deri va t i ve) arbi LJ"fl.l"ily clo ely. 

2. A Class of Quadratic Integral Identities 

L eL 
(2.1) 

be defin ed on a region R in En with boundary G. 
Th e symbol I i indicates covarian t differentiation 
which coincides with Ii (partial differentiation with 
r espect to Xi) in Car tesian coordinates. A r epeated 
index indicates smnmation from 1 to N. The sym
m etric tensor a i1 (x ) is assum ed to possess piecewise 
continuous derivatives of order M + 1. In addition, 
Jet th e eigenvalu es of the m aLrix aij b e bounded 
away from zero and infini ty in R. H ence there 
exists a posi tiv e co nstant, a, such tha.t for all real 
no nzero (~l' ... , ~ n ) and all x in H, 

Under these conditions L is said to be uniformly 
elliptic. 
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Letf(x),A?(x), ... , A;,;(x) be symmetric tensors 
of Lhe second order w·itb piecewise continuous 
first derivatives in R. L. E. Payne and H. F. 
'Veinberger have developed tbe following first order 
quadratic in entity [6] and used it to obtain pointwise 
bounds in certai n boundary problems. It is clear 
that 

(j·maiju u) - (j"'a ij) U U + ?Jmaiju U Ii Ij 1"' - 1m I i I j ~j Ii 1m; 

(2 .3) 

An application of the divergence theorem yields 

fUlnai j- 2Paim ju liulJv",dS=-2 IR J"'u l", L(u)dv 

+ IR {(jmaiJ) lm- 2f{",ai''' ju liUljclv. (2.4) 

In an analogous manner we can develop a homo
geneous quadratic integral identity involving second 
derivatives of U on the boundary C. Now 

-\- {(j "'A iiakl) - ') (J tAiiakln) ju u ' 
1m -- 1m I lk I J I 

+ 2.f"'A ij (ar1ull ) liUIJ m" (2 .5) 

AfLer applying the divergence theorem we have 

Pc,Akl {flnaiJ- 2Faim j Ulikulj lv",ds 

=-2 I /"AijUljm(LU) lidv+ 2 J j"'Aij (artUlk )liUIj",dv 

+ IR { UlnA iiakl) Im- 2U tA ijakm ) Im}u likU fj tdv. (2.6) 

The corresponding identity which involves covariant 
derivatives of order M + 1 on tbe boundary is 

rF Ai,jt AiMht {jm kl 2jl km } is J c 1 ...]v[ a - a Ulkil , .. iA/nilil . . , j",VmG 

2J j mAilil AiMi"(L) I = - R 1· .. M U I ii . . . iMUljt . .. JM71{V 

+ IR { (fmAi,j, .. . A~"akl) m 

2 (j'IAiIjt A i,I1jM km) } d 
- 1. .. ]v[ a 1m U lil . .. ;,,,kUIj. . . ,jMl V 

(2.7) 

Since the integrands are in each case tensor in
variants, we may perform each integration in the 

most advantageous coordinate system. Since bound
ary conditions usually are given in terms of normal 
and tangential derivatives we shall display the deriv
atives appearing in tbe boundary integrals in such a 
form. Assume C to be a surface possessing 1\1+ 1 
(·ontiIlUOllS derivatives as given in th e paramet.ric 
form 

i = l , . .. , N. (2.8) 

The unit normal X i(y ) satisfi es tbe cOJlditions 

a= l , ... , N - 1, 

X iX i= l (2. 9) 

and the orientation o[ X i is taken inward. In what 
follows Greek: indices will always range over 1, . . . , 
N - 1, whereas Latin indices will refer to 1, ... , N . 

We introduce geodesic normal coordinates (y! , ... , 
yN) in a strip immediately adjacent to the bounding 
surface. The transformation is given by 

Th e coordinate yN refers t.o a distance itlong the 
inward Jlormal to C n,t. th e point (y ... , yN- l). 
The metric tensor has the form 

gap= (G,~ + yN X,~) (G ,~+ y N XJ), 

gaN = ( G ,~ + y NX,~)Xk = !yN(XkXk) ,a= O, l 

Th e ChrisLo fI' el symbols which involve t l H~ normal 
roordillate yN are 

The various second order covariant derivatives of '!I, 

then have the form 

- _ 02U { {3 }-
Ula.v = 'U INa= oyaoyN- aN Ulp, 

:>'2-_ u n 
UiNN=( oyNi (2.13) 

vVe indicate with it bar when the tensor is expressed 
in geodesic normal coordinat.es. Our operator takes 
the form 

(2. 14) 
~ 

l 

262 I 



f 
I 

\iVhen L is Lhe Laplftce op erRto)' Ll lye hRve The following notation will b e used th ro ughou t 
t his pftp er . L et j(x) b e a piecewise contin uous func-

(2. 15) tion O Ll R + O, th en 

s ince y".v= O and gNN= l. Also th e firs t illVell'ian t 
teL k.es til e [orlll 

(2. 16) 

We now express the b oundftry in tegml Hppeal'ing in 
(2.4) in geodesic norm a l coordinates. 

_rh (]N(iiJ- 2J J(i iN }U' i u ' J clS = - ~ (fN[(a"llu ,,,u ,ll) 
) (' • C 

_ (iNN(U,N) ZJ - 2(f"u ,,,) ((i iNu 'i }dS . (2. 17 ) 

If L = Ll then (i iJ= giJ and (2. 17) beco mes 

-Pc {fN[(g"flu ,,,U,Il) - (U, N)2 ]- 2(f "u ,,,)U,N }dS. 

(2. 18) 

Th e surface in teg ral i n (2.6 ) can be t )'elltecl in ft 
s illl ila l' nlll.JlIler to ob tfLin 

-Pc Akl ON[a"Pu lkaUJlfl - aNN(u lkN) (U1IN) ] 

- 2(]"U1k,,) ((i iNUlil ) }dS . (2.19) 

Tn pMti c uhl l' i[' ) \ :=lkl is chosen on 0 so th at 

th en (0 ), L = Ll (2 .19) takes t he simple form 

-PJ g all u I N" u I N ~ - (UINN)2 }dS. 

(2.20 

(2 .21) 

In view of (2.15) we have thereby isolated a n in
t er esting combination o[ mixed normal and tangen
tial second deri vatives on 0 in term s of second order 
tangen tiftl d eriva tives on 0 ft nd cer tain in tegrals 
over R. 

In fac t, a specific mixed d erivfttive, say u jNu, can 
b e isolated in this m ann er . L et 

f N= l , J" = O, 

A ;"u= l , A i}= O 

Then £0 1' L = Ll (2 .19) becomes 

-f { g"llu 1u"U1ull - (UlNu)Z } dS . 

(2.22) 

(2.23) 

As we sh all see in Lh e next section, th ese c hoices of 

] i,AY will enable us to ob tain n ew p ointwise b ound s 
[01' d erivft tives in cer tftin boundary problem s . 

263 

.f..r= max f(x) 

xER + O J 

f m=min f (x) 

xER + O 
(2.24) 

F or N = 2, Xi= Gi (yl ) r epresents a plane closed 
curve. Equation (2.10) b ecomes 

(2.25) 

where we h ave se t y l = S (ft rclen g Lh ftlong 0) and 
y2= N (dis ta nce along the un i t inward n Ol'll1ftl 
(n\ n 2 ). If K (S ) is Lb e cu r\'ll tu re o [ 0 th en we h ave 

r; 11 = ( l - K (S)N) - z, gI 2= g21= O, g22= 1. 

(2.26) 

Th e u 'e of t his coordinate sys tem is , of co urse, 
rcs t ricLed to a cer'Lain s trip in the n eig hborh ood 0[' 

th e boundary w here in term s of iL 1111 poin ts a re 
lin ig uely cI efined . 

3. Pointwise Bounds 

As was prev io usl.v noted , Payn e and \Veillbergel' 
[6J mad e usc o[ (2.4) in order to obLfti n b ound s ['0 1' 

so lu tions 0 [' second orei er ellip lic p ar Lia l difFeren t ia l 
equa lio lls. This id en tity enabled th em Lo es t imat (' 
til e' ill Leg ml over IL dosed s urfltC'e' o[ the' sq uil l'(' of 
the no rm al c1 eri vn,live o r IL solli LiOIl of ,L seeoJl(1 o rder 
equation in ter 1l1 S of int egrals of t he sq uares 0 [' t ht' 
fun ction :tn d iLs tlw genli td cl c riva tive over lh e 
s urflwe. 111 ord er to bo wl d Lhe dcrivatives Ilt 
IL poin t wi t hin the r eg io ll t he.l" noted that one could 
diftcrell Lin te t he " G reen 's Jd ell ti ty," b eing eurd ul 
to define 11 " p'LmmeLri x:" i n sucll a W ft .V LhcLt t his is 
pe' l'I11i ssibl e. Th e resulting es timates have t he d is
Ild V'lll tllgC t lm l lh e coeffic iellt s b ecol11 e infini te m ore 
mpidly elS t he bou ncl lU'.\T is Ilpproached t lmn do 
those ill t he es t ill llLtes ['o r t he val ue 0 [' t he solu Lioll 
itsel f. This pl'occdure !tas also b een u sed b~ ' Di az [3] 
in es t ima ting deriv at iv es ILt IL poin t for soluLions o r 
Laplace's equation . 

One could proceed i n ftn altcrnftte m ann er . Th at 
is, ins tead o[ differen tia ting th e "Green 's Tcl en ti Ly," 
simply wri te th e identi ty using [01' t he function to 
b e evalua t ed at th e poin t, the derivative o r the 
solu tion . This leads to t he es timation o f surface 
in teg rals of squares of second d erivn,tives of the 
function OVer th e s urfa ce in term s of s urface in tegmls 
o[ squft res of tangenticLl d erivatives oC th e f unction 
ov er t he surface. The icJ en ti t,v (2.4) gives a means 
of obLfli ning t be necessar y ineq uHli tics. 

As an example 0 [' HJl eLpplicltl ioJl of th ese iden ti ties 
we co nsid er t he p roblem oC obtai nin g a p riori 
poin t wise b o unds [ 0 1' th e d eri v lLtives 0 [' a function 
U fo r which LU= LlU- PU is known in R +O and U is 
known on O. H ere R is a simply conn ected fmi te 
plan e region bound ed b v th e sm ooth ('losed curve 
0, Ll is t he L el plHce ope m tor nnd p (x, y » O Hnd 
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bow1Cled togeth er with its first derivatives in R +C. N o\\- on 0, tJ.l1 - pu= UINN + l1 ISS- PU, so that 
(The functioJl p is taken to b e positive in R+O for 
tb e sake oJ convenience. By a slight modifica tion, j j 
simihll" r es ults co uld be obLained for p~O.) W e :Ycu,/ju, iJdS= :Yc[ P1t - 'UISS- (tJ.u - pu)F 
assunlC thaL Lu and u are sufficiently smoolh in 
R cllld Oil 0 r especLivc1 ~ ' . j 

As It steHtin g poin t wo li se the "Gr ec ll 's I cI cn LiL.,' " + urssdS+ 2:y c UTNSdS. (:3.8) 

J' rF, (01' OV) 
(P )= /tJ. l!dA+ y c v on - r on dS, (3. 1) 

wher e v is Im y sufficienLly s illool il i"unc tiOIl in H + C, 

P is a poin L in th e in te rior of If, r = - ')1 lll J"pQ(rpQ = elis-
~7f 

tance from Lhe poinL P Lo t1JloLher poinL Q), cLl1d;-.0 
u n 

IS the outward 1l0l"lllctl derivative. 

011., 
Now le t 

v= U .= - . Then we h ave 
" oXi 

P ) J' d 1 ~ ( 0 l' 011.,. ;) IS U' i( = rtJ.u ,; L: + U, i -:x-- r ~ ~ , 
II C un un 

which may be wriLten 

X;(P) = 1L,.;(P)- In r ( tJ. U - PU) 'i (l/ t = J ~ r (pU)' i 

+rF, ( or 011 ,; ) IS J c 1J , ; on - 1' i5fi: ( . 

(3.2) 

(3 .3) 

We sh a ll consid er x i(fJ ), sillcc x i(P ) -- 11." ;(1') is 
assumedlmowll . ~ , Ltkin g lI SC of Sclllnll'z's illcqllality 
for vectors it, follows thllL 

(3 .4) 

where D (u,n) is Diric hleL inLegral, a nd 

(3.5) 

N ow \\ 'e h ave 

(3.6) 

and ill terms of tllC normal coordinaLe system in tro
duced in section 2 (with the boundary coorelina to 
taken to b e ar c longLh, i .e ., yl = S , y2 = N), 

~ c U,;ju,jlS= ~ c u 1NN+ 2ufNs + u Tss dS. (3.7) 

N oting tha t 

(3.9) 

we have LlmL 

It follows from Green's Identity and th e ari thmetic
geometric mean inequ ality 

(3. 11 ) 

Lhat 

Co mbinin g (3. 10), (3. 12) with (3.4) we obtain 

+2f[ (rn/, - ~ :~ ) 2+ (~ :~ )]clS +Pr (~ ;Y dS 

+ ~ Pru2dS+ l~ Pr (~ ~Y dS+ 2 ~U TNS clS)-
(3. 13) 

All term s on the right h and side of (3. 13) f'xcept 
th e last two are in terms of data. In order to bound 
th e integral of the squ ar e of th e normal derivative 
around th e boundary we wri te th e identity 

rh [ fkn.((OU)2_ (OU)2)_2fiS OUOUJdS 
% . k os on . 1. 0 n os 

= I }P".oiJ-Pj-P;]n p U,JdA- 2 I J·;u ,;tJ.udA , 

(:3 .1 4) 

which b as iLs left hand side essentia.lly in the forlll 
of (2 .18). H ere aii= oii, n i and S i are the uni t nor- <I 

mal find unit tangent vectors r espectively and P is 
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ILil ItrbiLl'al'Y con Li n Ll OUS, piecewisc CO il LiH uously di[
f'c l'cnLi,1ble vccLor field in R+ G. vVe choosejk s uch 
Lilal rnk> O on C. (For exa.mple, if R is sULr-shaped 
wil h I'cs pcd lo Lhe origin, Lhell wo mlly Laker = xk.) 
Fro lll (:3. 14) w e obLaill LJlC iJl equaliLy 

~ (Pnk)",f(~~ydS 

< ~ [ (fkn .)+4( ]kSk)2] (OU)2 !IS 
- Jc k (rnk) os 

+ ((/1 + ]{I + K 2)D (u,u) + Ct-2:)ll{ J>U2dA 

+~ f Pfi( t::.u - pu)2d.ll (:3. 15) 
K 2 a 

wh ere CI is an~ ' bOlLllcl for t he hHgCSt eige llvalu e of 
t he coefficient matrix [- Pkoij+J:j +J\], and K\ itnd 
K 2 are positive. Let c= nH1X [Cl , U1ip )l\f] itnd choose 

2c " . - c+ -/c2+ 4c 
c+ K 1+ K z= i· (]or ex,lmple, takeKI 2 

leI 

;1 11(1 J( 2 = -R ~ ' ) ' I' hrll 11-(' hn vr , tl s in g (3. 12)n nrl (3 .11 ) 

Ili(h CU Ii ), 

p c (~~ydS ::; al p CU2dS + (l,ZP c (~~ydS 

+ a3p c (t::.u- pu)ZdS (:3. 17) 

where 

Finnlly, w e Heeel to obtain ;1 bound for PcuZlNsdS. 

W e make use of (2.23) and (2.6) Hssul11ing t lmL Lhe 
vector field P and th e le ll sor field A ij h ave been 
chosen as indicaLed . We Lhen obtain th e idenliLy 

~ (UTNS - UTss)dS=-2f j "'Aiju IJ", (t::.u) ltdA 
Jc a 

+ fa {(j'''AU) ,,,,rr- 2(pA iJ) lk) UI ik ulJ1dA . (3 .18) 

We ass uln o ;Llso Llm Lp alld A ij ar c bounded together 
wiLh Lheil' ci e riv;ttivt's ill R+ C. (If t he boundary 
is s ufriciell(1\' SlllooLll oll e c;Ln d efine Lhese tensors 
(i ll lhl' (S,N) SVSlf'lIl ) ns follows. L et 

for N> 1 
J{ 

whero if. is ;L CO il 'LanL g re;LLr r Lil aH Lhe 1Il1LXLillUm 
curvn,Lure K M or C. 

Usin g (3 .11) l111cl Schwarz's in equality w e obLain 
from (3 .18) 

whrl't' 

Th e ln s L lerll1 011 (.h(' l'i g ll L hand s id e of (3 .19) is 
bOli lldrd li S fo ll ows: 

(3.21) 

1\'1 1(, 1' (' H is ;J cO ll s (a n t.. A ftt'1'1I moderate caleulaLion , 
m<lking li se of (he defil1iLions ofP 11nd A ij in the normal 
('ool"(lil1<1( ' sys((,Il1 , it. is poss ih l(1 ( 0 ob(.<1in the bound 

where J{ ' is lhe derivative of the curva ture with 
respect to arc lengLh. No w using the divergen ce 
tbeorem w e h ave 

wher e Lile n i a r e Cnr Lesian componen Ls of the 
exLerior unit no rm al. W e J1)fi,Y r ewriLe Lhe boundary 
inLegrn,1 in Lerms of norm al and LangenLial derivatives 
lLnd obtain 

(3.23) 
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Using (3. 11 ) we have 

f R U' ij u .tJ dA~Pc K (~:Y dS+Pc (~ :~ y dS 

+Pc (1 K) (~ ~y dS+2 f R (flU- pU) 2dA 

+2 fR (pu)2dA. (3. 24) 

Using (3. 11 ) and (3 .12) we have Lhe i ll equality 

fR (PUFdA~PM { Pc u2dS 

+Pc (~~y dS+ f R ( flU ~ PU )2 dA } ' (3.25) 

Combining (3. 17), (3.24) and (3.25 ) we have 

j~ U' i JU'i;dA~ bIPcU 2dS + b 2 Pc (~:ydS 

+ b3 Pc (~ :~ ydS + b 4 f R (flU - pU)2dA 

where 

bl = [(1 + K)M + 2pM]al + 2pM, b2 = [(1 + K ) ilf + 2pAf ) a ~ 

+ K .M, b3= 1 and b4= 2+ [(1+ I()M + 2pM]a :J + 2p"t!Pm 

(3.2G) 

Now in (3. 19) we are loft to considcr lhe te rill s 

In order to bound the latter we can write 

~ J~Cp ;P' i +p2 )GpU 2 + U'iU'i )d A (3. 27 ) 

where (3. 11 ) has bee ll used wi th a = ~ 2P;P' i . 

Now (3.27) and (3. 12) yield 

f R (PU),i(PU), idA 

~ ~ CP;P Ji+ p2)M {Pc U2dS+Pc(~~Y dS 

+ f R ( flU ~ PU)2 dA } (3.28) 

and hence, using (3. 17 ) "e have 

fR (pu) ,;( pu )'i dA ~C l PcU2dS 

+C2 Pc(~~y dS + c3Pc (flu - pu)2dS (3 .29) 

\\ hero 

=! (2Pd P' i+ 2) (J + ) Cl 2 P - a], 
p AI 

and 

Finally we have [rom (3 .9 ), (3.11 ), and (3.17 ) 

( 3. : ~0) 

UO lllbining (3. 19), (3.21), (:3.2G) , (3.2!-n H Il e! (3.30) 
" -e JlltVe 

Pc UfN S dS ~ dl Pc u 2 dS+d 2 Pc(~~y dS + rl 3 Pc(~:~ydS 

+ d4 ( (llU- pu)2dA+ d5J (flU - PU) ,i(fl ll - pU),idA 
In R 

(3.31) 
" 'here 

Now (3 .17 ) and (3.31) may be inserted into (3.13) 
to yield the desired bound, 

XiXi(P ) ~ K r {f31 Pc u2dS + f32 Pc (~:y dS 

+ f3 3 Pc(~:~Y dS + f3 .1 IR (flu - puFdA 

-l f34IR (flu- pu) ,.J flu - pu) ,idA } (3.3 2) 

where the f3/s are explicitly determined constan ts. 
It should be pointed out that for the sake of 

simplicity, no effor t was made to obtain the " best" 
such bound. Better bounds could be obtained, for 
example, b~ T leaving certain Imown quantities under 
the sign of integration (compare equations (3. 16) 
and (3 .17) fa ther than replacing them by a maxi
mum value. 
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4. Higher Derivatives in N Dimensions 

T he process described in section 3 can be general
ized 0,)si1.,' to higher deriva t ives. 1 n bou ncling the 
1\1th derivn,tive wo musL require the existence and 
in tegn)'bili ty of l\11th derivatives of tlu - pu, pu, and 
1\1+ 1 ta ngen tial derivatives of u on 0. vVe <11so 
:tssume that bounds h,we been ob tH ined for the 
various lower order differen ti,)'l inv,tri}w ts. 

The mod e of generali za tion will beco me }),pparen t 
from the case 1\11= 2 ""here we assu me that bounds 
have been obtained for 

( pu2clv, D(7t,U), J' U,i jU' i/ lv, rh ~u dS, rh U, iJU' i/ lS J R R Yc v n Jc 
(4.1) 

The boundar.v integra1s occurrin g in the above in
equalities are the sam e as those to be dealt with 
bel 01"-' 

We shall show how the desired bounds may be 
obtained for N5:3 sin ce in higher dimensions only 
technical details enter. 

Applying Schwarz' inequality, as was done III 

(3.4), we see that 

where Kr is given by (3.5). 
vVe see that 

(4.4) 

:),s \ms done explicitly in two dimensions in the 

previous section. J'R(PU) 'i) (pU) ,ijclv5: 3 (P' ipjPdi),[ (RPU2 
rr w" denotes Lhe surface ar ea of the unit sphere " J j 

in N dimen sions then 

r 
- 1 

( 1\T_2) ,N-2' N > 2 
1. ' wnl PQ 

(4.2) 

IS a, fund alll en Ln l solution of tlu = O. We can write 

+~ ( or _rOU,i j) lS 
u" J 0 A G. 

• c n vn 
(4.3) 

Sin ce J ~r2dv docs not exist for N?:.. 4 we cannot appl ~ T 
Schwarz's in eq uali ty, as was done in (3.4), (or d im en
sions higher tha n three. 

For N?:..4 we apply Schwar z's inequality as 10110" 's 

where the singularity o( r is chosen as the origin . In 

order to bound fR r-(N- J)u2dv we use "Green's Iden

ti ty" 

- I R [tl (l' - (N-3l )u2_ r- (N-3l tlu2 jdll 

= Boundary Integrals , 

Now using (3. 11) we can easily obtain 

J r-(N- J)u2dv5: -_4- J 1,-(N- 3l (tlu - pu)2clv 
R 2N- 7 R 

+ Boundary Integrals. 

'>- This same basic technique may be used to handle all 
Lerlll s in (4.3) forN?:..4. 

606580- 61--4 

(4.5) 

but by assump tion ef\.ch in tegral on the right side of 
(4.5) has a known bound. Similarly we assume that 

f\. bound is known for PcU' ij7i )/jdS. 

It now remains for us to obtain bou nds for th e last 
te rm of (4 .4 ). We sec that 

rh OU' i} OU, i} d _rh ij k l- - dS 
Yc on On - y,.? Y UlikNU1jlN 

From (2.15) we ee that 

The first two expressions on the right are Imown and 

where 

(4.9) 

The first term on the right side of (4. ) is known. We 
can use the inequf\.lities 

(4. 10) 

267 



where 7 1, 7 2 are upper bounds for the largest eIgen
value in cfl,ch case, to complete the bound for 

by a function of the quantities (4.1). 
Furthermore, from (2.15) we see that 

UINNN= (LlU- pu) IN+ Cpu) IN- g a~ U l a~N (4.11) 

and hence we can bound the last term of (4.6) in 
terms of known quantiti es and a bound for 

Pc g afJ g ~S U l a~N U lfJo rrlS. 

From (2 .7) for M = 2 and the choice 

we have 

I N= l , 

A afJ= gafJ, 

B NN= l, 

j a=o, 

Ata=.ANN= O 

i ,j -F N , 

f [g aB g n u l a~N U lfJSN- g afJ u laNN U lfJNN ]dS 

=-JR r A iiB kl[(LlU- PU) + PU] I ikUlilmdv 

(4.12) 

+ I R { (pnA iiB kIOrs ) Im- 2(jsA iJ Bkl) IT } UlikTUIJlsdV. 

(4.13) 
Hence 

f gafJ g ~S U la~N U lfJON dS:S; Pc gaflu I aNN UI flNNdS 

+J~ A ii Bkl [(LlU- pU) lik (LlU- pU) IJI 
'II 

+ (pU) lik (pU) IHjdv+ I (UliJk)' (4.14) 
where 

I(Uiiik)= IR { (j"'A iJB kloT8)l m- 2(j8A iiB kl)IT 

+ fPAiiBkl} UlikTUIJ/s dv. (4.15) 

But 

I ( U lijk) :S;7 3 J~ U,ii/cU.iikdv 

_(73) 2rh ii kl - - d J' () d - 4E J c g 9 UlikUljl 8- 7 3 R l1u ,ijU,iJ V 

+~Pc giigkiUlikNUljlNcl8 (4 .16) 

where 7 3 is again an upper bound for the largest 
eigenvalue of the co efficient matrix in (4.15). We 
can substitute (4.1 ) into (4.4) for t< l and achieve 
the desired bound for 

rh fl 'Yo - - I J c ga 9 U la~N U l fJoNG 8. 
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