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Some Higher Order Integral Identities With Application
to Bounding Techniques’

]. H. Bramble ' and B. E. Hubbard *

(July

Let R be a simply connected region in Ey with smooth bounding surface S.  For

17, 1961)

o sufli-

ciently differentiable set of functions we derive a elass of quadratic integral identities relating

wnlflt‘f integrals of derivatives to integrals over R.

1 first order identity given by L. Hormander (Compt,
1953, pp.
573).

m aticiens Scandinaves Tenu i Laund,
berger (Pacific J. Math. (1958) pp. 551

identities we consider a solution w« of the
w=f on 8. Here A denotes the

boundary wvalue
Laplace operator

These identities are a generalization of

Rend. Ih:llfll‘rm Congr. l]l-— \l;i[hl"—
105-115) and L. I, Payne and H. Wein-
As an example of an application nf these
problem Auw—pu=F in K and
and 0<p(r). We obtain pointwise a

priori bounds for the derivatives of w in R in terms of a quadratic functional of an arbitrary

funetion.
small.

1. Introduction
In a recent paper [6]% L. E. Payne and H. I
Weinberger give a method for obtaining bounds for
solutions of second order elliptic boundary value
problems. In that paper they give a generalization
(see eq 2.4) of an integral ldenlll\ of Rellich [7] which
was essential to their method. = This generalization,

which was first obtained and applied to hyperbolic

operators by L. Hormander [4], displays the highest
derivatives in the form of a second order operator
Lu=(a"u,;),,. This fact makes the identity useful
in treating boundary problems for the corresponding
differential equation Lu=F.

Use was also made of this identity by Hubbard
[5] to obtain bounds for membrane eigenvalues hy
finite difference methods.

In section 2 we give a further generalization of
Hormander's result, which involves higher deriva-
tives on the boundary and where the highest order
terms enter as derivatives of Lu. Section 3 gives
an application of these higher order identities in
obtaining l)t:inl\\iw bounds for the derivatives of a
funetion w.  The particular problem treated assumes
a knowledge of Au—puw in a region £ and » on the
i)()ll]‘liizll'.\_' (" where A is Laplace operator and p >0
in R+ Because of the important physical appli-
cation ﬂf thistequation (see e.g.)Bergman and Schiffer
[1]), this pr oblem was chosen as an example to illus-
trate a use of the higher order identity. More
general equations could be treated with only tech-
nical modifications. Other methods for ublmmntr
explicit pointwise bounds for derivatives in such
problems have been given by J. B. Diaz [3] and by
Payne and Weinberger [6]. In both cases the
method given involves differentiation of the funda-
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University of Mury-

Henee the Rayleigh-Ritz procedure can be used to make the error arbitrarily

mental solution in Green'’s third
introducing more singular behavior of the bounds
as the boundary is approached. In our paper the
hounds for derivatives of all orders have the same
hehavior near the boundary, provided the boundary
data is sufficiently differentiable.

Extensions of the fundamental identity (2.4) can
be devived for higher order operators by the same
technique used here.  One such, involving the
hiharmonie operator A% is applied in a forthcoming
paper of J. H. Bramble and L. E. Payne [2] to obtain
explicit  pointwise bounds in the biharmonic Di-
richlet problem.

As has been previously pointed out in various
places (see e.g. [6]) bounds of the type obtained here
can be used in conjunction with a Rayleigh-Ritz
technique to approximate the unknown solution (or
derivative) arbitrarily closely.

identity, thus

2. A Class of Quadratic Integral Identities

[t

Lw)=(a )1 (2.1)
be defined on a region R in F, with boundary ('
The symbol |; indicates covariant differentiation
which coincides with ,; (partial differentiation with
respect to «?) in Cartesian coordinates. A repeated
index indicates summation from 1 to N. [||v sym-
metric tensor a”(r) is assumed (o ])l!'ﬁ‘\l“ﬁ plecewise
continuous derivatives of order M- In addition,
let the eigenvalues of the matrix f:’j be bounded
away [rom zero and infinity in . Hence there
exists a positive constant, a, such that for all real
nonzero (&, o &) and all 2 in 12,

N
150 g2

:\T
a 3 ""Ugrg)gﬂ' Z 5;‘
i=1

i=

(2.2)

Under these conditions L is said to be uniformly
elliptic.
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Let fi{(x), A% (x), , AY(x) be symmetric tensors
of the second order with piecewise continuous
first derivatives in 2. L. E. Payne and H. F.
Weinberger have developed the Inllmvmg first order
qnaulln.tu identity [6] and used it to obtain pnmt\\«lw
bounds in certain boundary problems. It is clear
that

(._-P"”'fj?’:' !“i j)l m— (,er”' ij) | m"‘l J'.” |4 _i z‘fma".ju' r'u', md

== (_)’.mf-' U) by iy o

- 21t i m— 2™ L (28).

2(fma u in)) 1
(2.3)

An application of the divergence theorem vields

-

»
g){_f"*a.'i—*z_-,f'i.«;w b rds=—2 [ ™ L)l
e Jr
+ I {(fma") im—2f{ma™ ) v, (2.4)
R
L

1 & il SOUs mner we cill deve 1 -
In an analogous manner we can develop a homo
eneotls aratice 1inte el ) =00 {
geneous quadratic integral identity involving second
derivatives of # on the boundary €. Now
(J.m ‘l U”k I”r: J'k.?;'| i -‘) | i
Jm '. I'Ja“ Imuer” _.‘!_I_‘) i 1“““““.{””:»!
= 20" Aa* ey pt ) 1 i— 2T A Py, (L)
i' : (fwi.l ‘.Jﬂ'k‘l)lm_“ 2(.""'11)‘“}-”‘)“” ; u‘|!i'u"H
+21mA Y (ak i ) e

Aflter applying the divergence theorem we have
g);l“ { e —2 5t |, g, g v,ds
[ 54
= ——2J frASy, (L) do- :?,] TrAY (g, o g
'
.
. J { (A w—2 (A | gt o, (2.6)
r.

The corresponding identity which involves covariant
derivatives of order /41 on the boundary is

(ﬁ l’ Jl

=2 f FrA AR L)
+ l {(-‘frrr‘r_lilsﬁ - Ill:‘\}rj.‘r“ki) "

R

o 4 givh iafa ke
—_[fz'li A ."l‘\,r
"f er 4““ 1‘ U“(“"Ii-iui!')- T iy‘" |j| i e }'_tlnrfhl-

(2.7)

iaf. m H 1 km -
11 \" “{_ )-'r }ulkil o _f.\rf"'Hi"!S

il

it . . ,Jmu'h‘

) m | ?Lm ikl .j.uld.’_-‘

Since the integrands are in each case tensor in-
variants, we may perform each integration in the

most advantageous coordinate system. Since bound-
ary conditions usually are given in terms of normal
and tangential derivatives we shall display the deriv-
atives appearing in the boundary integrals in such a
form. Assume (/ to be a surface possessing M1
continuous derivatives as given in the parametrie
form

x::(;l(!}[.' H !‘}‘\-_l)? T:.___li *3 "\r' (E'H]
The unit normal X'(y) satisfies the conditions
G .X'=0, a=1, , N—1,
KX =1 (2.9)

and the ortentation of X' is taken inward. In what
I'(':II{I\\-‘s Greek indices will always range over 1, . .
N—1, whereas Latin indices will refer to 1, . . ., N.

Wv introduce geodesic normal coordinates (y', :
y¥) in a strip immediately adjacent to the buumhng
surface. The transformation is given by

xI:Gi(.yl’ o y;\'—l)_{"ya\"\’i(y1, . y.‘\‘—]). (2
The coordinate ™ refers to a distance along the
inward normal to (' at the point (y . . . y¥ ).
The metrie tensor has the form

Jas=(Q L+ X ENE S+ X E),
VX S X =5 (X*XY) ,a=0,

T

10)

lan=— ( (;.i.'
Hn= 4\'*‘.\'# (2 1 )

The Christoffel symbols which involve the normal
coordinate yv are

p 3 ) l_ i’){,l,fa

Ne j =) f () i
N | Qr,t?,,
o } 20"

N\ _ P - N\
{x\rp} o { N, i’\f} — {_}\T‘,\r} =0. (2.12)

The various second order covariant derivatives of
_ a?a

then have the form
M= a— k }if
T oy onf af Hy

iy =Wina= (’)1;“0?; {af\ }”

0

i ) |) B
(oy™)* (2.13)

i INN—

We indicate with a bar when the tensor is expressed
in geodesic normal eoordinates. Our operator takes
the form

Lu=(au,) = @"7,)),.. (2.14)
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When L is the Laplace operator A we have
Au=8"u, ;= nv+ G ap, (2.15)

since ¢*¥=0 and ¢"¥=1. Also the first invariant

takes the form
lerad w|>= (U,x)*+ G, o1l 5. (2.16)

We now express the boundary integral appearing in
(2.4) in geodesic normal coordinates,

—(]() {([Na''—2fa™ ) a,, -ﬁ.,jf.’,_\'-—-—(p [T (@87, 471 ,5)
— @ (T, ) 2| — 2 fT0,0) (@, JdS. (2.17)
If L=A then @”=g¢" and (2.17) becomes
_4) (T (87t ) — (7, )] — 2(Fo, ), } LS.
P
(2.18)

The surface integral in (2.6) can be treated in o
similar manner to obtain

—( A% { N -,.;-g_”g—'i_""'”_.-m‘ _'Jr:.\'
) AR [P GoBTE o ™Y (W) (0 in)]

—2(feia) @V, 1) 1S, (2.19)
In particular if /4, A% is chosen on (' so that
T :E;\'.v =1,
' (2.20
fo—= Aol — 0,
then for L=A (2.19) takes the simple form
_(ﬁ L0, ol g — (U ww)* S (2.21)
Je

In view ol (2.15) we have thereby isolated an in-
teresting combination of mixed normal and tangen-

tinl second derivatives on 7 in terms ol second order

tangential derivatives on ' and ecertain integrals
over It

In fact, a specific mixed derivative, say %y, can
be isolated in this manner. Let

r\: 1 .r_‘u:”‘

Ar=1, AY=0 1,j#c (2.22)

Then for L=A (2.19) becomes

'_-¢ |r !)maﬁ;mr‘a;aﬂ'_ (ﬁ_,\'a)z_} f!"lg;. {223j
Je
As we shall see in the next section, these choices of

S AR will enable us to obtain new pointwise hbounds
for derivatives in certain boundary problems.

263

The following notation will be used throughout
this paper. Let f(x) be a piecewise continuous fune-
tion on R+, then

Jn=min f(x)
zeR4+-C '

fy=max f(x) o
reR+C "’ (2.24)
For
curve,

N=2, #'=G"(y") represents a plane closed
Equation (2.10) becomes

X'=G"(S)+Nni(S) 2.25

where we have set y'=8 (arclength along €) and
=N (distance along the unit inward normal
(nt, w*). I K(S)is the curvature of €' then we have

g=(1—K(S)N) 2, g"*=g"=0,
(2.26)

The use of this coordinate system is, ol course,
restricted to a certain strip in the neighborhood of
the boundary where in terms of it all points are
uniquely defined.

3. Pointwise Bounds

As was previously noted, Pavne and Weinberger
[6] made use of (2.4) in order to obtain bounds for
solutions of second order elliptic partial differential
equations,  This identity enabled them to estimate
the integral over a closed surface of the square of
the normal derivative ol a solution of a second order
equation in terms ol integrals of the squares of the
function and its tangential derivative over the
surface. In order to bound the derivatives at
u point within the region they noted that one could
differentiate the “Green’s Identity,”” being ecareful
to define a “parametrix’ in such a way that this is
permissible.  The resulting estimates have the dis-
advantage that the coeflicients become infinite more
rapidly as the boundary is approached than do
those in the estimates for the value of the solution
itsell,  This procedure has also been used by Diaz [3]
in estimating derivatives at a point for solutions of
Laplace’s equation,

One could proceed in an alternate manner.  That
is, instead of differentiating the “Green’s Identity,”
simply write the identity using for the function to
be evaluated at the point, the derivative of the
solution.  This leads to the estimation of surface
integrals of squares of second derivatives of the
function over the surface in terms of surface integrals
of squares of tangential derivatives of the function
over the surface. The identity (2.4) gives a means
of obtaining the necessary inequalities.

As an example of an application of these identities
we  consider the problem  of obtaining o prior
pointwise bounds for the derivatives ol a funetion
u for which Lu=Au—pu is known in --C" and wu is
known on (. Here [? is a simply connected finite
plane region bounded by the smooth closed curve
(', A is the Laplace operator and p(e,y)>0 and



bounded together with its first derivatives in R —|—{T
(The function p is taken to be positive in R4
the sake of convenience, By a slight modifie: itlml
similar results could be obtained for p=>0.) We
assume that Lu and w are sufficiently smooth in
[t and on € respectively.

As a starting point we use the “Green’s Identity”

»n =] i 3 ]@_l_ o
(P) Jkl_w‘-l +9‘{‘(a .

v is any sufficiently smooth funetion in 22} ¢,

ds. (8.1

where
Pisapointin the interior of 2,1 =—_" Inrpg(rpe— dis-
=T

tance from the point 17 to another point (), aml-oO

15 the outward normal derivative. Now let
o

;'_NHEB-&. T'hen we have

Wy /’]—J I_\r.f.,rLl—i—q) :.-‘ . O =1 Oo” )rh‘s (3.2)

which may be written

X,H’)Eu,,-(!’}—l (Au—pt), il A= [ I'(pu),,
R

.

5 or ()H =
+.q>f( it on  om )”“’ (9:3)
We shall consider x,(7°), since x,(F? ) —u, () is

assumed known, M 1|\m;_1: use of Sehwarz's ||u-{||mI|I \
for veetors it follows thal

X, (Px,(P)<Kp ( I) J putd A-FD(uu)
o - i

—I—CJ;.»H.,-H..,:!J\'—%(]D‘

where D(u,u) is Divichlet integral, and

Qf Ou

on On JH) (8.4)

K,‘_—;\‘l I grad p|2n";l+f 1" A
Lt " &

i aF 2 , - e .
+g>r(a) rfb“l-.q)w[ dS. (3.5)
Now we have
Oty Oyt ;o »
. on on A8 < Eﬁﬁmu,u!\ (3.6)

and in terms ol the normal coordinate system intro-
duced in section 2 (\\1[!1 the hmln(im\ coordinate
taken to be are length, ie., y'=S, #=N),

d) u, f_)““\ UCZS:; Eb 'H-?,\.-‘\- ‘l‘ 2”-1{\-_5.- { '”-‘TJS_\(.,AS'_ {.‘:_T)
I Tt

Now on O, Au—pu=u yx—+u,s5—pu, so that

(]) H.,_,u.,ﬂh‘:(j) [t — 15— (Au—pu) |
o U o C

Fudoud .\'4:—2(1) WReedS.

(3.8)
Noting that

- On

o K ot OH+[\__

0s? oN o8t

Uigs—

(3.9)

we have that

¢ G Q%u b orotuNe
Ny .' ;\; 2 U — — AU — 3 - = N
-(r)('u,”u IS S‘)U[(pu 35 [Au ;m|) +(\E)s’* ) ]rf’ 5
ke R Vo e s
AR, qf o) dS+2 ([? wivedS.  (3.10)

It follows from Green’s Identity and the arithmetic-
geometrie mean imequality

b h?
2aa— <afat4-—;
44 o

o >0 (3.11)
that
L , ou
2d AL D(un) < S
ljnpu dA+-D(u u)_-ﬁﬁu oﬁd’%
L (M (Au—pu)? R
+2JH 5 dA.. (3.12)

Clombining (3.10), (3.12) with (3.4) we obtain

X, (p)X () < Ky ( -IJJ (-_""f'":ﬁ)_‘,f,l

+9 Lpl: o o; (()’u :I «‘\—I—fﬁ Du rh%
4 (I)u h‘a—f— r(g”) dS+2 C])umu’h)

(3.13)

All terms on the right hand side of (3.13) except
the last two are in terms of data. In order to bound
the integral of the square of the normal derivative
around the boundary we write the identity

$ o]

(3 -(0))-2rs

_' [ 1*,8 I]'I‘_J—_f'_f',|n_.,u.1r.-’;l-—2l Sy Aud A,
o R ¥/

.

().'.'O\

(:3.14)

which has its left hand side essentially in the form
of (2.18). Here a=8", n;, and s, are the unit nor-
mal and unit tangent vectors respectively and J* is
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an arbitrary continuous, piecewise continuously dil-
ferentinble vector field in -4 € We choose f* such
that fFue =0 on € (For example, il 1t is sl.1|~~;|n||wr|
with respect to the origin, then we may take f*=urt.)
From (3.14) we obtain the inequality

(" :,,,cj) (= J.\'

& VI) 0” 1
<(|L) I:””’H(f*n):[( ds

r'f).

(K K D(u, u)—|— l putdA
o R

N . Lo
+K2J1.:fj (Auw— pu)dd  (3.15)

where € is any bound for the |:|r}__r|~.~'«'t eigenvalue of

the coefficient matrix [— /% :S"J'—l—f“;—n—f |, and A, and
K, are positive. Let e=max [(', (ff’ p)\,! and choose

—o-tn
e+ K+ K, (Forexample, take K, ——

2¢
ke 0,

and K e )

i
with (3.15),

] {r’ t) ”‘q.(g”) rf\/i I:,f "y

4( f2s)¥] fony K, s
1 (F'n,) ](0 ) d S | S (Au— pu)d A

¢ [* (Au
+K|.|x.

Then we have, using (3.12) and (3.11)

u* :
fl—l—; |_¢“f r!'.\.

pu)*
#

(3.16)

or for stimplicity

(P (Igf:)!f5<”ﬂp u2dS +as (‘ (3:; )2,,’1\'

Iu,-{q) (Au—pu)*dS  (3.17)
o A
where
. 8c?
M= T7a7 o %
] Kg(]’“”-;-);a
s

ao=2("n )" .+ =5
{ﬁfI: i {r{ﬂ)m M

2 K, .
3= ”xmg{ (f i ]|I+I' }

Finally,

we need to obtain a bound !'nl'(;)u-z:y_\dﬁ.

. Je
We make use of (2.23) and (2.6) assuming that the
vector field f* and the tensor field AY have been
chosen as indicated. We then obtain the identity

q)(u.u—u \\)fh\——'.lj S"AYy (An) d A

+J ((P"AY), W —20f'AY) gy d A (3.18)
R

f-4¢

We assume also that f*and A"V are bounded together
with their derivatives in R4, (If the boundary
is sufliciently smooth one ean define these tensors

(in the (S,N) system) as follows, et
fi=0, P=(1—KN) |
_ for N<=
{22 {R— 48— A= (1—KN) i

for N>2
®

where K is a constant greater than the maximum
curvature Ky of (',
Using (3.11) and Schwarz’s inequality we obtain

from (3.18)

('5 u',—{\,h.ri,sg([) el S+ ] (Au— pu),(Au— pu), A
> i o R

-

‘-{—l [_;af:}.,.(;:ifﬁ.,rf.-i+] (' # oy g pd A (3.19)
Jr Jr

where

(ki

2:]',}:;1"_1"“-'ln_ﬂ!;m” t {_f""a'lu}|m_f,’”_."!(_rﬂ4lu_]iﬁ" 1:;2”}

The last term on the right hand side of (3.19) is
bounded as follows:

I (r-.a.t.n’”_.”l” Hd‘_lgh} n; ”Jn“ ‘ (.LQI)
i iR

where 2is a constant.  After a moderate ealenlation,
making use ol the definitions of /*and 2" in the normal
coordinate system, 1t is possible to obtain the bound

B=1+4K—K,+max (K, 2]2(K")/K*—K|y)

is the derivative of the curvature with
Now using the divergence

where K’
respect to are length.
theorem we have

X g R
Jnu.uw,ud.-i—gt:ju.,f H""-E')-J_"-_H'I_E).rj) u, A4S
+f (Au)dA  (3.22)
E

where the n, are Cartesian components of the
exterior unit normal.  We may rewrite the boundary
integral in terms of normal and tangential derivatives
and obtain

i ou O*u
S, wma=2 35 S as

+gj (LY +(5LY ) as+ [ upaa. @2m)
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Using (3.11) we have

j ou

Uy A< —

J T g)t K (O.'
i : "

‘l‘ﬁ‘\l -K) (a?)

ds +q‘,> ofj 4
:!S-{-‘BJ (Au— pu)*dA
R
—I-‘_’-‘J (pu)*dA. (3.24)
R

Using (3.11) and (3.12) we have the inequality

J‘ (pu)*dA SP‘”{? wrdS
R [
S (ouN (Au—pu)* , N 4o
+g>C ( aTa,) s +L T au} (3.25)
Combining (3.17), (3.24) and (3.25) we have
J‘u,uu,f}d A<h ?u-rf% - hq.(a” S
mq)(a” ;rm-mj (Au—puyidA
o R

where

bI:l(l =+ l\—)m +'2,“_1.f}”|' 2}’,”‘
Kir, bs=1 and b,=2-[(1

b= (1K)t 2pas s
R+ 2 |ers+ 2',0.1:_#*,””;
(3.26)

Now in (3.19) we are lelt to consider the terms

CP weedS and l (pu) e (pu),d A,
= R

In order to bound the latter we can write

| e
R

——-j (pyipy > -H2pu, op, - pPu,u,)dA
¥

J( <P, v Pz ljpur?—'—?f U, i)‘L

. B
where (3.11) has been used with a:_\/‘_;}'i&.
'!'J

(3.27)

Now (3.27) and (3.12) vield

") { (]S_.,,.zds+c]§ (24 as

f (pu),(pu),dA
R

172p.p,
Se{ Ry

[(Arf pu)? fl} f‘”’*][

and hence, using (3.17) we have

} (pu),(pu),dA<e q:l ud S
R o

ou

{ ((JDF(O—\)‘ S 4 c-;‘g%{:ln-— pu)dsS  (3.29)
2P,

P

Cr— ;])(Q‘D”U -+ 12) ty

), (o)

). and (3.17)

where

2) (14ay),
‘+ » )‘_f fey)
1

Finally we have from (3.9), (3.11

R L ey g e y o ou'\? o

:‘.J'.T_-.:;;-“LS é 2K j{ﬂ-]¢ u*d.S = 211}.10‘-‘3 (_ dS
c e % os

+ ¢

Combining (3.19),
we have

([) 1f|wfb<d| rufS (ng(a“ ) ds J({)(O “Y 4

'irhl (Aw— pu)*dA :'n‘f;—,J (Au— pu), (Au—pu),;dA
o N '

f;l\ | )I\ rlls l (ﬂff_jlﬂ.)sz{i. (-%.3”}

(3.21), (3.26), (3.29) and (3.30)

(3.31)
where

rh—..[\,‘fﬂ'l—i—!ﬁ)l—t—ﬂ (;o )I\.;{Hz‘i fﬂ)r Ca,

dy=2-+ Bb,, d,=2K3a,-+ Bb;+¢; and d;=1.

Now (3.17) and (3.31) may be inserted into (3.13)
to vield the desired bound,

& 2
XX:(P) < Ko {,81 92 wdS '*"‘%Eﬁ (%) s
—I—B,CIS(?) dS-+8; f (Au— pu)*dA

| {:’,f (Au— pu), (Au- -}m'},,-rf,-l} (3.32)
R

where the 8,'s are explicitly determined constants,

[t should be pointed out that for the sake of
simplicity, no effort was made to obtain the “best”
such bound. Better bounds could be obtained, for
example, by leaving certain known quantities under
the sign of integration (compare equations (3. 16)
and (3.17)) rather than replacing them by a maxi-
mum value,



4. Higher Derivatives in N Dimensions

The process deseribed in section 3 can be general-
ized easily to higher derivatives, In bounding the
Mth derivative we must require the existence and
integrability of Mth derivatives ol Au— pu, pu, and
U—fl tangential derivatives of » on (. We also
assume that bounds have been obtained for the
various lower order differential invariants.

The mode of generalization will become apparent
from the ease M=2 where we assume that bounds

have been obtained for
n’h 9()?:,,,u,udb

(4.1)

l pwide, D) J U, i1, ,J«h

as was done explicitly in two dimensions in the
previous section.

If w, denotes the surface area of the unit sphere
in N dimensions then

==
T N =2 9
A (N—2)w,rPq? e Vo (42)

is a fundamental solution of Au=0. We can write

x,J(l’)Eu.,f{!’)—-] l‘(.-lrf—pu’).,jr!e'——l U'(pu),de
R o R

+6 (50

Since l I'%p does not exist for N >4 we cannot apply

‘aH'”. f f 5

Schwarz's inequality, as was done in (3.4), lor dimen-
sions higher than three.
For N >4 we apply Schwarz's

. 2
(l ]'”-"*") Sf Sy mJ ~ =12y
w B R R

where the singularity of I' is chosen as the origin.  In
2 £

s inequality as follows

order to h('llllldJ = 02de we use “Green's Iden-
tity"”
_J [A('j.—"\'—lll }”_2__".— l';\f'-liiﬂuﬂh-!u
R
=Boundary Integrals.

Now using (3.11) we can easily obtain

- 4 ;
J r~ 9 Puide< o N7 l ==Y (Ayu— pu) 2
R o

+Boundary Integrals,

This same basic technique may be used to handle all
terms in (4.3) for N>4.
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The boundary integrals occurring in the above in-
equalities are the same as those to be dealt with
below.

We shall show how the desired bounds may be
obtained for N<3 since in higher dimensions only
technical details enter,

Applying Schwarz’s inequality, as
(3.4), we see that

was done in

xu(}’jx,,(f-")glf.-{ l (pu), o, (pu),onde
o R

+<ﬁ ?J',,fu,“(fﬁ—l—q). Qe D”'” !h} (4.4)

on

where Ar is given by (3.5).
We see that

l (prf}.,J-{pz.').ufh‘g:%(m) J put
JER O N Tl i

—+—]2(;).,}),,-)_\;!)(!:,?{')+3pﬁ;l Wy gtty oo, (4.5)
R

but by assumption each integral on the right side of
(4.5) has n known bound. Similarly we assume that
a bound is known for (Pu, o, /S,
L
[t now remains for us to obtain bounds for the last
term of (4.4). We see that

S Oy 1; Ol 4 -
: ds= q)r;”q“u vl indS
Jd | RN fINLLL
J. on on “TY ik 41

__-(P !? af ﬂ‘rﬁ ﬁ |ayN Eiiﬁ | _-\-'d AS‘ + 2¢ Huﬁa | a.-‘\«',’\-’ﬁ I .‘.i,'\'.\'d's'
o O o C

+(b ( yww)dS. (4.6)
PO
From (2.15) we see that

Wjown= (AT— D)o+ (P) o — g Wjage.  (4.7)

The first two expressions on the right are known and

k =
{aﬂ} "lk]
= {{:’;}ﬁu-ﬂ_ {é:y}ﬁ:ok’ (4-3)

Ot

u ||’l,li’}' a‘j"ai‘;‘ﬂ

where

?);:'z?im—l—{ ;}} . (4.9)
The first term on the right side of (4.8) is known. We
can use the inequalities
RTIPIPA ST/ AP IR
b 0 < Tag G 0T 1, (4.10)
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where 7y, 7, are upper bounds for the largest eigen-
value in each ease, to complete the bound for

(ﬁ U o ayndS
Je

by a function of the quantities (4.1).
Furthermore, from (2.15) we see that
Ew.\'.-\': (Au—piu) v+ (pu) N !’f“'ﬂ‘l?q wiy (41 1)

and hence we can bound the last term of (4.6) in
terms of known quantities and a bound for

qj f.faﬂffﬁﬁ‘u".f.-‘\"ﬁ'lﬁﬁ.\'(!rs-
oSO

From (2.7) for M=2 and the choiee

¥=1, fe=0,
A= g°8, Ale=AN—()
BW=1, BY=0 ij=N, (412

we have
§ [9°P G700 oy U i — 9P | axen W g ] S
{4
e J T AY B (Au—pu) +pu), g jndy

R

-|~J { (" AYBYE") n—2(fAYBY) oy st 0 AV
&

(4.13)
Hence
§ ﬂ"ﬁ ﬁ” ﬁ]aw\'itﬁwdsﬁ C’) g"ﬂﬁmw Emm\rds
L ¢ o0
+ l‘r:AijB“[(Au_Pu)mc(ﬁm—}”f)ux
+(pw) a (pu) ol do+1 (), (4.14)
where
)= [ {4985 =2 4B,
R
+jTAuBH}u|m» Uuud'b‘. (4.15)
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But

[('u'lijk) <7y l U, 15, fjkdr'-‘
JER

:ra{q) w150, ,;,kwfs—J (Aw) o, ,Jrh‘}
o O R

_(m)?
de C

GG gl s — Taj (Aw), gy, el
R
+E§ UG Wl axds  (4.16)
(4

where 73 1s again an upper bound for the largest
eigenvalue of the coefficient matrix in (4.15). We
can substitute (4.1) into (4.4) for e<71 and achieve
the desired bound for

(ﬁ PGV gy T gantls.
o
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