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SOME HOPF GALOIS STRUCTURES
ARISING FROM ELEMENTARY ABELIAN p-GROUPS

LINDSAY N. CHILDS

(Communicated by Martin Lorenz)

Abstract. Let p be an odd prime, G = Zm
p , the elementary abelian p-group

of rank m, and let Γ be the group of principal units of the ring Fp[x]/(xm+1).
If L/K is a Galois extension with Galois group Γ, then we show that for p ≥ 5,
the number of Hopf Galois structures on L/K afforded by K-Hopf algebras

with associated group G is greater than ps, where s = (m−1)2

3
− m.

If L/K is a Galois extension of fields with Galois group Γ, then the action of Γ
as automorphisms of L makes L an H-Hopf Galois extension for H = KΓ. But as
first systematically observed by Greither and Pareigis [GP87], there may be other
K-Hopf algebras H that act on L making L a Hopf Galois extension. Any such H
has the property that L ⊗K H ∼= LG for some group G of the same cardinality as
Γ: we say that H has associated group G. Byott [By96] transformed the problem of
determining Hopf Galois structures on a Galois extension with Galois group Γ by
K-Hopf algebras with associated group G, into the problem of finding equivalence
classes of regular embeddings of Γ into the holomorph of G, Hol(G) ∼= G�Aut(G),
the normalizer in Perm(G) of the image of G under the left regular representation
of G in Perm(G). For β, β′ one-to-one homomorphisms from Γ to Hol(G), the
equivalence is: β ∼ β′ iff there exists an automorphism δ of G so that (in Hol(G)),
for all g in G, β′(g) = δβ(g)δ−1.

Let E(Γ, G) denote the set of equivalence classes of regular embeddings of Γ into
Hol(G).

Let p be an odd prime number and G = Zm
p , the elementary abelian p-group

of rank m. S. Featherstonhaugh showed [Fe06] that if p > m, then E(Γ, G) is
nonempty iff G ∼= Γ. In [Ch05, 8.2] we showed that if p > m, then there exist at
least (pm − 1)(pm − p)(pm − p2) · · · (pm − pm−2) abelian Hopf algebra structures
on Galois extensions L/K with Galois group Γ ∼= G. This paper complements
this work. Here we let G = Zm

p and let Γ be the group of principal units of the
ring Fp[x]/(xm+1). When p > m, then Γ ∼= G. If L/K is a Galois extension with
Galois group Γ, then we obtain a lower bound on the cardinality of E(Γ, G) and
hence on the number of Hopf Galois structures on L/K with associated group G.
In particular, we show that for p ≥ 5 (or if p = 3 and m is sufficiently large), the
cardinality of E(Γ, G) is greater than ps where s = (m−1)2

3 − m . This result more
than confirms the necessity of the assumption p > m in Featherstonhaugh’s work
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and further reinforces the remark closing [GP87] that “in the construction of Hopf
Galois extensions there is a certain arbitrariness, in contrast to the classical case
where the Galois group always comes with the field”.

For a survey of work on Hopf Galois extensions prior to 2000, see [Ch00].

1. The structure of Γ

As above and for the remainder of the paper, Γ is the group 1 + M of principal
units of the finite ring R = Fp[x]/(xm+1), a local ring with maximal ideal M
generated by the image in R of the indeterminate x. We note that Γ is isomorphic
to the group Gm(R) = (M, +Gm

) of R-points of the multiplicative formal group
Gm, via the isomorphism ψ : Gm(R) → 1 + M , given by ψ(a) = 1 + a.

We are interested in the structure of Γ as a finite abelian group.

Proposition 1. Γ is the direct sum of the cyclic groups generated by {1 + xr | 1 ≤
r ≤ m, (r, p) = 1}.

Proof. Since R has characteristic p, (1 + xs)pk

= 1 + xpks. Thus the subgroup ∆
of Γ generated by {1 + xr} for all r with 1 ≤ r ≤ m is the same as that generated
by {1 + xr | 1 ≤ r ≤ m, (r, p) = 1}. Now for any r, if er satisfies

per−1r ≤ m < perr,

then (1 + xr) has order per . The product of the orders of {1 + xr | 1 ≤ r ≤
m, (r, p) = 1} is then Π1≤r≤m,(r,m)=1p

er . But that product equals pm. For when
(r, p) = 1, then er = |Sr| is the cardinality of the set

Sr = {r, pr, p2r, . . . , per−1r};

the sets Sr are pairwise disjoint and the union of the Sr for (r, p) = 1 and 1 ≤ r ≤ m
is the set {1, 2, . . . , m}. Thus∑

1≤r≤m,(r,p)=1

|Sr| =
∑

1≤r≤m,(r,p)=1

er = m,

and so ∏
1≤r≤m,(r,p)=1

per = pm.

To show that Γ is the direct sum of the cyclic groups generated by 1 + xr for
(r, p) = 1, it suffices to show that ∆ = Γ.

Let f(x) = 1 + a1x + a2x
2 + · · ·+ amxm be an arbitrary element of m. We show

that for 1 ≤ r ≤ m there is a product hr of elements of ∆ so that

f(x) ≡ hr (mod xr+1).

For r = 1 we have

(1 + x)a1 ≡ 1 + a1x ≡ f(x) (mod x2).

Suppose for r ≥ 1 we have hr−1 in ∆ so that

hr−1 ≡ f(x) ≡ 1 + a1x + · · · + ar−1x
r−1 (mod xr).

Let
hr−1 = 1 + a1x + · · · + ar−1x

r−1 + brx
r (mod xr+1).
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Then we set
hr = (1 + xr)ar−brhr−1 ≡ (1 + (ar − br)xr)hr

≡ 1 + a1x + · · · + ar−1x
r−1 + brx

r + (ar − br)xr

≡ f(x) (mod xr+1).

By induction, f(x) is in ∆; hence ∆ = Γ. �
Since er = 1 for all r iff m < p, we have

Corollary 2. Γ ∼= Zn
p iff m < p.

Corollary 3. As abelian groups,

Γ ∼= Zd1
p × Zd2

p2 × · · · × Zde
pe ,

where

dk =
⌊

m

pk−1

⌋
− 2

⌊
m

pk

⌋
+

⌊
m

pk+1

⌋
.

Proof. From the proof of Proposition 1, the element 1 + xr has order per if and
only if per−1r ≤ m < perr. Thus dk, the number of subgroups 〈1 + xr〉 of order pk,
satisfies

dk =
∣∣{r|(r, p) = 1 and pk−1r ≤ m < pkr}

∣∣
=

∣∣∣∣{r|(r, p) = 1 and
m

pk
< r ≤ m

pk−1
}
∣∣∣∣ .

Now ∣∣∣∣{r|mpk
< r ≤ m

pk−1
}
∣∣∣∣ =

⌊
m

pk−1

⌋
−

⌊
m

pk

⌋
,

while ∣∣∣∣{ps|m
pk

< ps ≤ m

pk−1
}
∣∣∣∣ =

∣∣∣∣{s| m

pk+1
< s ≤ m

pk
}
∣∣∣∣

=
⌊

m

pk

⌋
−

⌊
m

pk+1

⌋
.

Hence

dk =
⌊

m

pk−1

⌋
− 2

⌊
m

pk

⌋
+

⌊
m

pk+1

⌋
. �

2. Hopf Galois structures

As noted in the introduction, to find Hopf Galois structures on a Galois extension
L/K of fields with Galois group Γ, we need to find regular embeddings

β : Γ → Hol(G) ∼= G � Aut(G)

for G a group of the same cardinality as Γ. For σ in Γ, write β(σ) = (β1(σ), β2(σ))
in G � Aut(G). Then β is a regular embedding if β(Γ) is a regular subgroup of
Hol(G), that is, |G| = |Γ| and {β1(σ)|σ ∈ Γ} = G.

When G = Zm
p , we have a 1-1 homomorphism from Hol(G) to GLm+1(Fp) by

identifying G with Fm
p and Aut(G) with GLm(Fp), and mapping (v, A) in Hol(G)

(with v in G ∼= Fm
p , A in GLm(Fp)) to the m+1×m+1 matrix ( A v

0 1 ) in GLm+1(Fp).
Then a subgroup H of Hol(G) is regular if |H| = |G| and {v|(v, A) ∈ H} = G.

Proposition 4. There is a regular subgroup of Hol(G) ⊂ GLm+1(Fp) isomorphic
to Γ.
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Proof. Let X be the m + 1 × m + 1 Jordan block matrix⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0 0
0 0 · · · 0 0

. . . . . .
0 0 · · · 0 1
0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

Then the map
β : Fp[x]/(xm+1) → Mm+1(Fp)

by β(
∑m

i=0 aix
i) =

∑m
i=0 aiX

i is a 1-1 ring homomorphism that restricts to a 1-1
group homomorphism

β : Γ = 1 + M → GLm+1(Fp)
by β(1 +

∑m
i=1 aix

i) = I +
∑m

i=1 aiX
i. Then β(Γ) is a regular subgroup of Hol(G)

since I +
∑m

i=1 aiX
i = ( A v

0 1 ), where

v =

⎛
⎜⎜⎜⎜⎜⎝

am

am−1

...
a2

a1

⎞
⎟⎟⎟⎟⎟⎠

and A =

⎛
⎜⎜⎜⎜⎜⎝

1 a1 a2 · · · am−1

0 1 a1 · · · am−2

. . . . . .
0 0 · · · 1 a1

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

Evidently, the image of β includes all v in F
m
p = G, so β(Γ) is a regular subgroup

of Hol(G). �

As observed in [Ch05, Section 5], given the regular subgroup β(Γ) = J of Hol(G),
we obtain |Aut(Γ)| regular embeddings, namely, embeddings of the form βα, where
α is an arbitrary element of Aut(Γ). Two embeddings βα and βα′ are equivalent
if there exists an element γ of Aut(G) = GLm(Fp) in the stabilizer of J so that
conjugation by γ takes βα to βα′. More precisely, let

Sta(J) = {γ ∈ GLm(Fp)|
(

γ 0
0 1

)
J

(
γ−1 0
0 1

)
= J}.

If we denote by C(γ) the inner automorphism of Hol(G) given by conjugation by
γ in Aut(G), then βα and βα′ are equivalent if there exists an element γ in Sta(J)
so that

C(γ)βα = βα′.

Now
S = {β−1C(γ)β|C(γ) ∈ Sta(J)}

is a subgroup of Aut(Γ), and the equivalence classes of regular embeddings of Γ to
J are in 1-1 correspondence with the right cosets of S in Aut(Γ). So the number
of equivalence classes of regular embeddings of Γ to J is

|Aut(Γ)| / |Sta(J)| .
In [Ch05, 8.1] it was proved that

|Sta(J)| = pm − pm−1.

So we need to compute |Aut(Γ)|, where

Γ = Zd1
p × Zd2

p2 × . . . × Zde
pe .
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If we write elements of Γ as column vectors(
a1,1 . . . a1,d1 a2,1 . . . a2,d2 . . . ae,1 . . . ae,de

)tr

with aj,k in Zpj , then, abbreviating Hom(M, N) by (M, N), we have

End(Γ) =

⎛
⎜⎜⎜⎜⎝

(Zd1
p , Zd1

p ) (Zd2
p2 , Zd1

p ) · · · (Zde
pe , Zd1

p )
(Zd1

p , Zd2
p2 ) (Zd2

p2 , Zd2
p2 ) · · · (Zde

pe , Zd2
p2 )

...
(Zd1

p , Zde
pe ) (Zd2

p2 , Zde
pe ) · · · (Zde

pe , Zde
pe )

⎞
⎟⎟⎟⎟⎠ .

Now (Zpr , Zps) ∼= Zps if r ≥ s, and ∼= ps−rZps if r < s, both isomorphisms given
by sending f to f(1). Hence if (Zpk)r,s denotes r × s matrices with entries in Zpk ,
we have

End(Γ) =

⎛
⎜⎜⎜⎝

(Zp)d1,d1 (Zp)d1,d2 · · · (Zp)d1,de
)

p(Zp2)d2,d1 (Zp2)d2,d2 · · · (Zp2)d2,de

...
pe−1(Zpe)de,d1 pe−2(Zpe)de,d2 · · · (Zpe)de,de

)

⎞
⎟⎟⎟⎠ .

Now an element A of End(Γ) is an automorphism iff its image in End(Γ) = Zd1
p ×

Zd2
p × . . . × Zde

p is an automorphism. But the image of End(Γ) in End(Γ) is the
ring of block upper triangular matrices, and the invertible elements of the image
of End(Γ) consists of block upper triangular matrices where the blocks along the
diagonal are invertible matrices. Thus

Aut(Γ) =

⎛
⎜⎜⎜⎝

GLd1(Zp) (Zp)d1,d2 · · · (Zp)d1,de
)

p(Zp2)d2,d1 GLd2(Zp2) · · · (Zp2)d2,de

...
pe−1(Zpe)de,d1 pe−2(Zpe)de,d2 · · · GLde

(Zpe)

⎞
⎟⎟⎟⎠ .

Now for l ≥ k, ∣∣(Zpk)dk,dl

∣∣ = (pk)dldk

and for l ≤ k, ∣∣(pk−lZpk)dk,dl

∣∣ = (pl)dldk .

Hence for l < k, the cardinality of the (l, k) block, (Zpl)dl,dk
, is the same as the

cardinality of the (k, l) block, (pk−lZpk)dk,dl
, and the cardinality of the upper off-

diagonal blocks of Aut(Γ) is ph, where

h = d1(d2 + d3 + · · · + de)

+ 2d2(d3 + d4 + · · · + de) + · · · + (e − 1)de−1de.

Thus if we let gk =
∣∣GLdk

(Zpk)
∣∣, then

|Aut(Γ)| = g1g2 · . . . · ge · p2h.

To determine gk, we have the short exact sequence of groups:

1 → I + p(Zpk)dk,dk
→ GLdk

(Zpk) → GLdk
(Zp) → 1,
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and so
gk =

∣∣GLdk
(Zpk)

∣∣
=

∣∣I + p(Zpk)
∣∣ · |GLdk

(Zp)|

= p(k−1)d2
k · (pdk − 1)(pdk − p)(pdk − p2) · · · (pdk − pdk−1).

Thus we have

Proposition 5. |Aut(Γ)| = pcq, where

c = 2h +
e∑

k=1

(k − 1)d2
k +

dk(dk − 1)
2

and

q =
e∏

k=1

dk∏
m=1

(pm − 1).

Here is a lower bound on |Aut(Γ)|:

Proposition 6. For p ≥ 5 or m ≥ 25, |Aut(Γ)| > ps where s ≥ (m−1)2

3 .

Proof. Since
pdk − pr ≥ pdk−1

for all r < dk, we have
gk ≥ p(k−1)d2

k+dk(dk−1).

So
| Aut(G) |> ps

with

s = 2h +
e∑

k=1

(k − 1)d2
k +

e∑
k=1

dk(dk − 1).

Now
m

pk
− 1 <

⌊
m

pk

⌋
≤ m

pk
for k ≥ 1.

Hence for k > 1,

dk =
⌊

m

pk−1

⌋
− 2

⌊
m

pk

⌋
+

⌊
m

pk+1

⌋

≥ m

pk−1
− 1 − 2

m

pk
+

m

pk+1
− 1

=
(p − 1)2

pk+1
m − 2

and

d1 ≥ m − 2
m

p
+

m

p2
− 1 =

(p − 1)2

p2
m − 1.

Also, for k ≥ 2,
sk = dk + dk+1 + · · · + de

=
⌊

m

pk−1

⌋
−

⌊
m

pk

⌋

≥ m

pk−1
− 1 − m

pk
=

(p − 1)m
pk

− 1.
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Thus, just focusing on the terms in s involving d1 and d2, we have

2h ≥ 2d1s2 + 4d2s3 ≥ A,

where

A := 2(
(p − 1)2

p2
m − 1)(

(p − 1)
p2

m − 1) + 4(
(p − 1)2

p3
m − 2)(

(p − 1)
p3

m − 1).

Also,
e∑

k=1

(k − 1)d2
k ≥ d2

2 ≥ B := (
(p − 1)2

p3
m − 2)2,

and
e∑

k=1

dk(dk − 1) ≥ (d1 − 1)d1 + (d2 − 1)d2

≥ C := (
(p − 1)2

p2
m − 2)(

(p − 1)2

p2
m − 1) + (

(p − 1)2

p3
m − 3)(

(p − 1)2

p3
m − 2).

Hence
s ≥ A + B + C = a(m − b)2 + c,

where (with the aid of Maple 9.0.1),

a =
p6 − 2p5 + 2p4 − 2p3 − p2 + 4p − 2

p6
,

b =
5p3(p2 + 2p − 1)

2(p5 − p4 + p3 − p2 − 2p + 2)
,

c = 22 − 25(−2p5 + 2p4 − 2p3 − p2 + p6 + 4p − 2)(p4 + 4p3 + 2p2 − 4p + 1)
4(p5 − p4 + p3 − p2 − 2p + 2)2

.

For a simple lower bound for s, one can show (with Maple) that the minimum value
of (a(m − b)2 + c) − ( (m−1)2

3 ) is

c0 =
117p6 − 650p5 + 835p4 − 200p3 − 1085p2 + 1490p − 595

4(2p6 − 6p5 + 6p4 − 6p3 − 3p2 + 12p − 6)
,

which is > 0 for p ≥ 5, while if p = 3,

(a(m − b)2 + c) − (m − 1)2

3
=

109
729

(m − 1647
109

)2 − 4078
327

,

which is ≥ 0 for m ≥ 25. �

Since |Sta(J)| = pm − pm−1 < pm, we obtain the lower bound stated in the
Introduction:

Theorem 7. For Γ the group of principal units of Fp[x]/(xm+1), the number of
H-Hopf Galois structures on L/K with Galois group Γ, where H has associated
group G = Zm

p , is ≥ ps where s ≥ (m−1)2

3 − m if p ≥ 5 or m ≥ 25.

For specific examples we may of course compute explicitly: if p = 3, m = 10, we
have |Sta(J)| = 2 · 39 and d1 = 5, d2 = 1, d3 = 1; hence

|Aut(Γ)| = 324 · (35 − 1)(35 − 3)(35 − 32)(35 − 33)(35 − 34) · 6 · 18
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and the number of equivalence classes of Hopf Galois structures corresponding to
the regular subgroup J is

328 · 211 · 5 · 112 · 13 = 368, 488, 392, 004, 133, 406, 720.
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