SOME HOPF GALOIS STRUCTURES ARISING FROM ELEMENTARY ABELIAN p-GROUPS

LINDSAY N. CHILDS

(Communicated by Martin Lorenz)

Abstract

Let p be an odd prime, $G=Z_{p}^{m}$, the elementary abelian p-group of rank m, and let Γ be the group of principal units of the ring $\mathbb{F}_{p}[x] /\left(x^{m+1}\right)$. If L / K is a Galois extension with Galois group Γ, then we show that for $p \geq 5$, the number of Hopf Galois structures on L / K afforded by K-Hopf algebras with associated group G is greater than p^{s}, where $s=\frac{(m-1)^{2}}{3}-m$.

If L / K is a Galois extension of fields with Galois group Γ, then the action of Γ as automorphisms of L makes L an H-Hopf Galois extension for $H=K \Gamma$. But as first systematically observed by Greither and Pareigis GP87, there may be other K-Hopf algebras H that act on L making L a Hopf Galois extension. Any such H has the property that $L \otimes_{K} H \cong L G$ for some group G of the same cardinality as Γ : we say that H has associated group G. Byott By96 transformed the problem of determining Hopf Galois structures on a Galois extension with Galois group Γ by K-Hopf algebras with associated group G, into the problem of finding equivalence classes of regular embeddings of Γ into the holomorph of $G, \operatorname{Hol}(G) \cong G \rtimes \operatorname{Aut}(G)$, the normalizer in $\operatorname{Perm}(G)$ of the image of G under the left regular representation of G in $\operatorname{Perm}(G)$. For β, β^{\prime} one-to-one homomorphisms from Γ to $\operatorname{Hol}(G)$, the equivalence is: $\beta \sim \beta^{\prime}$ iff there exists an automorphism δ of G so that (in $\operatorname{Hol}(G)$), for all g in $G, \beta^{\prime}(g)=\delta \beta(g) \delta^{-1}$.

Let $\mathcal{E}(\Gamma, G)$ denote the set of equivalence classes of regular embeddings of Γ into $\operatorname{Hol}(G)$.

Let p be an odd prime number and $G=Z_{p}^{m}$, the elementary abelian p-group of rank m. S. Featherstonhaugh showed Fe06 that if $p>m$, then $\mathcal{E}(\Gamma, G)$ is nonempty iff $G \cong \Gamma$. In Ch05, 8.2] we showed that if $p>m$, then there exist at least $\left(p^{m}-1\right)\left(p^{m}-p\right)\left(p^{m}-p^{2}\right) \cdots\left(p^{m}-p^{m-2}\right)$ abelian Hopf algebra structures on Galois extensions L / K with Galois group $\Gamma \cong G$. This paper complements this work. Here we let $G=Z_{p}^{m}$ and let Γ be the group of principal units of the ring $\mathbb{F}_{p}[x] /\left(x^{m+1}\right)$. When $p>m$, then $\Gamma \cong G$. If L / K is a Galois extension with Galois group Γ, then we obtain a lower bound on the cardinality of $\mathcal{E}(\Gamma, G)$ and hence on the number of Hopf Galois structures on L / K with associated group G. In particular, we show that for $p \geq 5$ (or if $p=3$ and m is sufficiently large), the cardinality of $\mathcal{E}(\Gamma, G)$ is greater than p^{s} where $s=\frac{(m-1)^{2}}{3}-m$. This result more than confirms the necessity of the assumption $p>m$ in Featherstonhaugh's work

[^0]and further reinforces the remark closing GP87] that "in the construction of Hopf Galois extensions there is a certain arbitrariness, in contrast to the classical case where the Galois group always comes with the field".

For a survey of work on Hopf Galois extensions prior to 2000, see [Ch00].

1. The structure of Γ

As above and for the remainder of the paper, Γ is the group $1+M$ of principal units of the finite ring $R=\mathbb{F}_{p}[x] /\left(x^{m+1}\right)$, a local ring with maximal ideal M generated by the image in R of the indeterminate x. We note that Γ is isomorphic to the group $\mathbb{G}_{m}(R)=\left(M,+_{G_{m}}\right)$ of R-points of the multiplicative formal group \mathbb{G}_{m}, via the isomorphism $\psi: \mathbb{G}_{m}(R) \rightarrow 1+M$, given by $\psi(a)=1+a$.

We are interested in the structure of Γ as a finite abelian group.
Proposition 1. Γ is the direct sum of the cyclic groups generated by $\left\{1+x^{r} \mid 1 \leq\right.$ $r \leq m,(r, p)=1\}$.

Proof. Since R has characteristic $p,\left(1+x^{s}\right)^{p^{k}}=1+x^{p^{k} s}$. Thus the subgroup Δ of Γ generated by $\left\{1+x^{r}\right\}$ for all r with $1 \leq r \leq m$ is the same as that generated by $\left\{1+x^{r} \mid 1 \leq r \leq m,(r, p)=1\right\}$. Now for any r, if e_{r} satisfies

$$
p^{e_{r}-1} r \leq m<p^{e_{r}} r
$$

then $\left(1+x^{r}\right)$ has order $p^{e_{r}}$. The product of the orders of $\left\{1+x^{r} \mid 1 \leq r \leq\right.$ $m,(r, p)=1\}$ is then $\Pi_{1 \leq r \leq m,(r, m)=1} p^{e_{r}}$. But that product equals p^{m}. For when $(r, p)=1$, then $e_{r}=\left|S_{r}\right|$ is the cardinality of the set

$$
S_{r}=\left\{r, p r, p^{2} r, \ldots, p^{e_{r}-1} r\right\}
$$

the sets S_{r} are pairwise disjoint and the union of the S_{r} for $(r, p)=1$ and $1 \leq r \leq m$ is the set $\{1,2, \ldots, m\}$. Thus

$$
\sum_{1 \leq r \leq m,(r, p)=1}\left|S_{r}\right|=\sum_{1 \leq r \leq m,(r, p)=1} e_{r}=m
$$

and so

$$
\prod_{1 \leq r \leq m,(r, p)=1} p^{e_{r}}=p^{m}
$$

To show that Γ is the direct sum of the cyclic groups generated by $1+x^{r}$ for $(r, p)=1$, it suffices to show that $\Delta=\Gamma$.

Let $f(x)=1+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}$ be an arbitrary element of m. We show that for $1 \leq r \leq m$ there is a product h_{r} of elements of Δ so that

$$
f(x) \equiv h_{r} \quad\left(\bmod x^{r+1}\right)
$$

For $r=1$ we have

$$
(1+x)^{a_{1}} \equiv 1+a_{1} x \equiv f(x) \quad\left(\bmod x^{2}\right)
$$

Suppose for $r \geq 1$ we have h_{r-1} in Δ so that

$$
h_{r-1} \equiv f(x) \equiv 1+a_{1} x+\cdots+a_{r-1} x^{r-1} \quad\left(\bmod x^{r}\right)
$$

Let

$$
h_{r-1}=1+a_{1} x+\cdots+a_{r-1} x^{r-1}+b_{r} x^{r} \quad\left(\bmod x^{r+1}\right)
$$

Then we set

$$
\begin{aligned}
h_{r}=\left(1+x^{r}\right)^{a_{r}-b_{r}} h_{r-1} & \equiv\left(1+\left(a_{r}-b_{r}\right) x^{r}\right) h_{r} \\
& \equiv 1+a_{1} x+\cdots+a_{r-1} x^{r-1}+b_{r} x^{r}+\left(a_{r}-b_{r}\right) x^{r} \\
& \equiv f(x) \quad\left(\bmod x^{r+1}\right)
\end{aligned}
$$

By induction, $f(x)$ is in Δ; hence $\Delta=\Gamma$.
Since $e_{r}=1$ for all r iff $m<p$, we have
Corollary 2. $\Gamma \cong Z_{p}^{n}$ iff $m<p$.
Corollary 3. As abelian groups,

$$
\Gamma \cong Z_{p}^{d_{1}} \times Z_{p^{2}}^{d_{2}} \times \cdots \times Z_{p^{e}}^{d_{e}}
$$

where

$$
d_{k}=\left\lfloor\frac{m}{p^{k-1}}\right\rfloor-2\left\lfloor\frac{m}{p^{k}}\right\rfloor+\left\lfloor\frac{m}{p^{k+1}}\right\rfloor .
$$

Proof. From the proof of Proposition 1, the element $1+x^{r}$ has order $p^{e_{r}}$ if and only if $p^{e_{r}-1} r \leq m<p^{e_{r}} r$. Thus d_{k}, the number of subgroups $\left\langle 1+x^{r}\right\rangle$ of order p^{k}, satisfies

$$
\begin{aligned}
d_{k} & =\mid\left\{r \mid(r, p)=1 \text { and } p^{k-1} r \leq m<p^{k} r\right\} \mid \\
& \left.=\left\lvert\,\left\{r \mid(r, p)=1 \text { and } \frac{m}{p^{k}}<r \leq \frac{m}{p^{k-1}}\right\}\right. \right\rvert\, .
\end{aligned}
$$

Now

$$
\left|\left\{r \left\lvert\, \frac{m}{p^{k}}<r \leq \frac{m}{p^{k-1}}\right.\right\}\right|=\left\lfloor\frac{m}{p^{k-1}}\right\rfloor-\left\lfloor\frac{m}{p^{k}}\right\rfloor
$$

while

$$
\begin{aligned}
\left|\left\{p s \left\lvert\, \frac{m}{p^{k}}<p s \leq \frac{m}{p^{k-1}}\right.\right\}\right| & =\left|\left\{s \left\lvert\, \frac{m}{p^{k+1}}<s \leq \frac{m}{p^{k}}\right.\right\}\right| \\
& =\left\lfloor\frac{m}{p^{k}}\right\rfloor-\left\lfloor\frac{m}{p^{k+1}}\right\rfloor
\end{aligned}
$$

Hence

$$
d_{k}=\left\lfloor\frac{m}{p^{k-1}}\right\rfloor-2\left\lfloor\frac{m}{p^{k}}\right\rfloor+\left\lfloor\frac{m}{p^{k+1}}\right\rfloor
$$

2. Hopf Galois structures

As noted in the introduction, to find Hopf Galois structures on a Galois extension L / K of fields with Galois group Γ, we need to find regular embeddings

$$
\beta: \Gamma \rightarrow \operatorname{Hol}(G) \cong G \rtimes \operatorname{Aut}(G)
$$

for G a group of the same cardinality as Γ. For σ in Γ, write $\beta(\sigma)=\left(\beta_{1}(\sigma), \beta_{2}(\sigma)\right)$ in $G \rtimes \operatorname{Aut}(G)$. Then β is a regular embedding if $\beta(\Gamma)$ is a regular subgroup of $\operatorname{Hol}(G)$, that is, $|G|=|\Gamma|$ and $\left\{\beta_{1}(\sigma) \mid \sigma \in \Gamma\right\}=G$.

When $G=Z_{p}^{m}$, we have a 1-1 homomorphism from $\operatorname{Hol}(G)$ to $G L_{m+1}\left(\mathbb{F}_{p}\right)$ by identifying G with \mathbb{F}_{p}^{m} and $\operatorname{Aut}(G)$ with $G L_{m}\left(\mathbb{F}_{p}\right)$, and mapping (v, A) in $\operatorname{Hol}(G)$ (with v in $G \cong \mathbb{F}_{p}^{m}, A$ in $G L_{m}\left(\mathbb{F}_{p}\right)$) to the $m+1 \times m+1$ matrix $\left(\begin{array}{cc}A & v \\ 0 & 1\end{array}\right)$ in $G L_{m+1}\left(\mathbb{F}_{p}\right)$. Then a subgroup H of $\operatorname{Hol}(G)$ is regular if $|H|=|G|$ and $\{v \mid(v, A) \in H\}=G$.
Proposition 4. There is a regular subgroup of $\operatorname{Hol}(G) \subset G L_{m+1}\left(\mathbb{F}_{p}\right)$ isomorphic to Γ.

Proof. Let X be the $m+1 \times m+1$ Jordan block matrix

$$
\left(\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
& & \ddots & \ddots & \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

Then the map

$$
\beta: \mathbb{F}_{p}[x] /\left(x^{m+1}\right) \rightarrow M_{m+1}\left(\mathbb{F}_{p}\right)
$$

by $\beta\left(\sum_{i=0}^{m} a_{i} x^{i}\right)=\sum_{i=0}^{m} a_{i} X^{i}$ is a 1-1 ring homomorphism that restricts to a 1-1 group homomorphism

$$
\beta: \Gamma=1+M \rightarrow G L_{m+1}\left(\mathbb{F}_{p}\right)
$$

by $\beta\left(1+\sum_{i=1}^{m} a_{i} x^{i}\right)=I+\sum_{i=1}^{m} a_{i} X^{i}$. Then $\beta(\Gamma)$ is a regular subgroup of $\operatorname{Hol}(G)$ since $I+\sum_{i=1}^{m} a_{i} X^{i}=\left(\begin{array}{cc}A & v \\ 0 & 1\end{array}\right)$, where

$$
v=\left(\begin{array}{c}
a_{m} \\
a_{m-1} \\
\vdots \\
a_{2} \\
a_{1}
\end{array}\right) \text { and } A=\left(\begin{array}{ccccc}
1 & a_{1} & a_{2} & \cdots & a_{m-1} \\
0 & 1 & a_{1} & \cdots & a_{m-2} \\
& & \ddots & \ddots & \\
0 & 0 & \cdots & 1 & a_{1} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

Evidently, the image of β includes all v in $\mathbb{F}_{p}^{m}=G$, so $\beta(\Gamma)$ is a regular subgroup of $\operatorname{Hol}(G)$.

As observed in Ch05, Section 5], given the regular subgroup $\beta(\Gamma)=J$ of $\operatorname{Hol}(G)$, we obtain $|A u t(\Gamma)|$ regular embeddings, namely, embeddings of the form $\beta \alpha$, where α is an arbitrary element of $\operatorname{Aut}(\Gamma)$. Two embeddings $\beta \alpha$ and $\beta \alpha^{\prime}$ are equivalent if there exists an element γ of $\operatorname{Aut}(G)=G L_{m}\left(\mathbb{F}_{p}\right)$ in the stabilizer of J so that conjugation by γ takes $\beta \alpha$ to $\beta \alpha^{\prime}$. More precisely, let

$$
\operatorname{Sta}(J)=\left\{\gamma \in G L_{m}\left(\mathbb{F}_{p}\right) \left\lvert\,\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right) J\left(\begin{array}{cc}
\gamma^{-1} & 0 \\
0 & 1
\end{array}\right)=J\right.\right\}
$$

If we denote by $C(\gamma)$ the inner automorphism of $\operatorname{Hol}(G)$ given by conjugation by γ in $\operatorname{Aut}(G)$, then $\beta \alpha$ and $\beta \alpha^{\prime}$ are equivalent if there exists an element γ in $\operatorname{Sta}(J)$ so that

$$
C(\gamma) \beta \alpha=\beta \alpha^{\prime}
$$

Now

$$
S=\left\{\beta^{-1} C(\gamma) \beta \mid C(\gamma) \in S t a(J)\right\}
$$

is a subgroup of $\operatorname{Aut}(\Gamma)$, and the equivalence classes of regular embeddings of Γ to J are in 1-1 correspondence with the right cosets of S in $\operatorname{Aut}(\Gamma)$. So the number of equivalence classes of regular embeddings of Γ to J is

$$
|A u t(\Gamma)| /|S t a(J)| .
$$

In Ch05, 8.1] it was proved that

$$
|\operatorname{Sta}(J)|=p^{m}-p^{m-1}
$$

So we need to compute $|A u t(\Gamma)|$, where

$$
\Gamma=Z_{p}^{d_{1}} \times Z_{p^{2}}^{d_{2}} \times \ldots \times Z_{p^{e}}^{d_{e}}
$$

If we write elements of Γ as column vectors

$$
\left(\begin{array}{llllllllll}
a_{1,1} & \ldots & a_{1, d_{1}} & a_{2,1} & \ldots & a_{2, d_{2}} & \ldots & a_{e, 1} & \ldots & a_{e, d_{e}}
\end{array}\right)^{t r}
$$

with $a_{j, k}$ in $Z_{p^{j}}$, then, abbreviating $\operatorname{Hom}(M, N)$ by (M, N), we have

$$
\operatorname{End}(\Gamma)=\left(\begin{array}{cccc}
\left(Z_{p}^{d_{1}}, Z_{p}^{d_{1}}\right) & \left(Z_{p^{2}}^{d_{2}}, Z_{p}^{d_{1}}\right) & \cdots & \left(Z_{p^{e}}^{d_{e}}, Z_{p}^{d_{1}}\right) \\
\left(Z_{p}^{d_{1}}, Z_{p^{2}}^{d_{2}}\right) & \left(Z_{p^{2}}^{d_{2}}, Z_{p^{2}}^{d_{2}}\right) & \cdots & \left(Z_{p^{e}}^{d_{e}}, Z_{p^{2}}^{d_{2}}\right) \\
& & \vdots & \\
\left(Z_{p}^{d_{1}}, Z_{p^{e}}^{d_{e}}\right) & \left(Z_{p^{2}}^{d_{2}}, Z_{p^{e}}^{d_{e}}\right) & \cdots & \left(Z_{p^{e}}^{d_{e}}, Z_{p^{e}}^{d_{e}}\right.
\end{array}\right)
$$

Now $\left(Z_{p^{r}}, Z_{p^{s}}\right) \cong Z_{p^{s}}$ if $r \geq s$, and $\cong p^{s-r} Z_{p^{s}}$ if $r<s$, both isomorphisms given by sending f to $f(1)$. Hence if $\left(Z_{p^{k}}\right)_{r, s}$ denotes $r \times s$ matrices with entries in $Z_{p^{k}}$, we have

$$
\operatorname{End}(\Gamma)=\left(\begin{array}{cccc}
\left(Z_{p}\right)_{d_{1}, d_{1}} & \left(Z_{p}\right)_{d_{1}, d_{2}} & \cdots & \left.\left(Z_{p}\right)_{d_{1}, d_{e}}\right) \\
p\left(Z_{p^{2}}\right)_{d_{2}, d_{1}} & \left(Z_{p^{2}}\right)_{d_{2}, d_{2}} & \cdots & \left(Z_{p^{2}}\right)_{d_{2}, d_{e}} \\
& & \vdots & \\
p^{e-1}\left(Z_{p^{e}}\right)_{d_{e}, d_{1}} & p^{e-2}\left(Z_{p^{e}}\right)_{d_{e}, d_{2}} & \cdots & \left.\left(Z_{p^{e}}\right)_{d_{e}, d_{e}}\right)
\end{array}\right)
$$

Now an element A of $\operatorname{End}(\Gamma)$ is an automorphism iff its image in $\operatorname{End}(\bar{\Gamma})=Z_{p}^{d_{1}} \times$ $Z_{p}^{d_{2}} \times \ldots \times Z_{p}^{d_{e}}$ is an automorphism. But the image of $\operatorname{End}(\Gamma)$ in $\operatorname{End}(\bar{\Gamma})$ is the ring of block upper triangular matrices, and the invertible elements of the image of $\operatorname{End}(\Gamma)$ consists of block upper triangular matrices where the blocks along the diagonal are invertible matrices. Thus

$$
\operatorname{Aut}(\Gamma)=\left(\begin{array}{cccc}
G L_{d_{1}}\left(Z_{p}\right) & \left(Z_{p}\right)_{d_{1}, d_{2}} & \cdots & \left.\left(Z_{p}\right)_{d_{1}, d_{e}}\right) \\
p\left(Z_{p^{2}}\right)_{d_{2}, d_{1}} & G L_{d_{2}}\left(Z_{p^{2}}\right) & \cdots & \left(Z_{p^{2}}\right)_{d_{2}, d_{e}} \\
& & \vdots & \\
p^{e-1}\left(Z_{p^{e}}\right)_{d_{e}, d_{1}} & p^{e-2}\left(Z_{p^{e}}\right)_{d_{e}, d_{2}} & \cdots & G L_{d_{e}}\left(Z_{p^{e}}\right)
\end{array}\right)
$$

Now for $l \geq k$,

$$
\left|\left(Z_{p^{k}}\right)_{d_{k}, d_{l}}\right|=\left(p^{k}\right)^{d_{l} d_{k}}
$$

and for $l \leq k$,

$$
\left|\left(p^{k-l} Z_{p^{k}}\right)_{d_{k}, d_{l}}\right|=\left(p^{l}\right)^{d_{l} d_{k}}
$$

Hence for $l<k$, the cardinality of the (l, k) block, $\left(Z_{p^{l}}\right)_{d_{l}, d_{k}}$, is the same as the cardinality of the (k, l) block, $\left(p^{k-l} Z_{p^{k}}\right)_{d_{k}, d_{l}}$, and the cardinality of the upper offdiagonal blocks of $A u t(\Gamma)$ is p^{h}, where

$$
\begin{aligned}
h & =d_{1}\left(d_{2}+d_{3}+\cdots+d_{e}\right) \\
& +2 d_{2}\left(d_{3}+d_{4}+\cdots+d_{e}\right)+\cdots+(e-1) d_{e-1} d_{e}
\end{aligned}
$$

Thus if we let $g_{k}=\left|G L_{d_{k}}\left(Z_{p^{k}}\right)\right|$, then

$$
|A u t(\Gamma)|=g_{1} g_{2} \cdot \ldots \cdot g_{e} \cdot p^{2 h}
$$

To determine g_{k}, we have the short exact sequence of groups:

$$
1 \rightarrow I+p\left(Z_{p^{k}}\right)_{d_{k}, d_{k}} \rightarrow G L_{d_{k}}\left(Z_{p^{k}}\right) \rightarrow G L_{d_{k}}\left(Z_{p}\right) \rightarrow 1
$$

and so

$$
\begin{aligned}
g_{k} & =\left|G L_{d_{k}}\left(Z_{p^{k}}\right)\right| \\
& =\left|I+p\left(Z_{p^{k}}\right)\right| \cdot\left|G L_{d_{k}}\left(Z_{p}\right)\right| \\
& =p^{(k-1) d_{k}^{2}} \cdot\left(p^{d_{k}}-1\right)\left(p^{d_{k}}-p\right)\left(p^{d_{k}}-p^{2}\right) \cdots\left(p^{d_{k}}-p^{d_{k}-1}\right)
\end{aligned}
$$

Thus we have
Proposition 5. $|A u t(\Gamma)|=p^{c} q$, where

$$
c=2 h+\sum_{k=1}^{e}(k-1) d_{k}^{2}+\frac{d_{k}\left(d_{k}-1\right)}{2}
$$

and

$$
q=\prod_{k=1}^{e} \prod_{m=1}^{d_{k}}\left(p^{m}-1\right)
$$

Here is a lower bound on $|A u t(\Gamma)|$:
Proposition 6. For $p \geq 5$ or $m \geq 25,|A u t(\Gamma)|>p^{s}$ where $s \geq \frac{(m-1)^{2}}{3}$.
Proof. Since

$$
p^{d_{k}}-p^{r} \geq p^{d_{k}-1}
$$

for all $r<d_{k}$, we have

$$
g_{k} \geq p^{(k-1) d_{k}^{2}+d_{k}\left(d_{k}-1\right)}
$$

So

$$
|\operatorname{Aut}(G)|>p^{s}
$$

with

$$
s=2 h+\sum_{k=1}^{e}(k-1) d_{k}^{2}+\sum_{k=1}^{e} d_{k}\left(d_{k}-1\right)
$$

Now

$$
\frac{m}{p^{k}}-1<\left\lfloor\frac{m}{p^{k}}\right\rfloor \leq \frac{m}{p^{k}} \text { for } k \geq 1
$$

Hence for $k>1$,

$$
\begin{aligned}
d_{k} & =\left\lfloor\frac{m}{p^{k-1}}\right\rfloor-2\left\lfloor\frac{m}{p^{k}}\right\rfloor+\left\lfloor\frac{m}{p^{k+1}}\right\rfloor \\
& \geq \frac{m}{p^{k-1}}-1-2 \frac{m}{p^{k}}+\frac{m}{p^{k+1}}-1 \\
& =\frac{(p-1)^{2}}{p^{k+1}} m-2
\end{aligned}
$$

and

$$
d_{1} \geq m-2 \frac{m}{p}+\frac{m}{p^{2}}-1=\frac{(p-1)^{2}}{p^{2}} m-1
$$

Also, for $k \geq 2$,

$$
\begin{aligned}
s_{k} & =d_{k}+d_{k+1}+\cdots+d_{e} \\
& =\left\lfloor\frac{m}{p^{k-1}}\right\rfloor-\left\lfloor\frac{m}{p^{k}}\right\rfloor \\
& \geq \frac{m}{p^{k-1}}-1-\frac{m}{p^{k}}=\frac{(p-1) m}{p^{k}}-1 .
\end{aligned}
$$

Thus, just focusing on the terms in s involving d_{1} and d_{2}, we have

$$
2 h \geq 2 d_{1} s_{2}+4 d_{2} s_{3} \geq A
$$

where

$$
A:=2\left(\frac{(p-1)^{2}}{p^{2}} m-1\right)\left(\frac{(p-1)}{p^{2}} m-1\right)+4\left(\frac{(p-1)^{2}}{p^{3}} m-2\right)\left(\frac{(p-1)}{p^{3}} m-1\right)
$$

Also,

$$
\sum_{k=1}^{e}(k-1) d_{k}^{2} \geq d_{2}^{2} \geq B:=\left(\frac{(p-1)^{2}}{p^{3}} m-2\right)^{2}
$$

and

$$
\begin{aligned}
& \sum_{k=1}^{e} d_{k}\left(d_{k}-1\right) \geq\left(d_{1}-1\right) d_{1}+\left(d_{2}-1\right) d_{2} \\
& \quad \geq C:=\left(\frac{(p-1)^{2}}{p^{2}} m-2\right)\left(\frac{(p-1)^{2}}{p^{2}} m-1\right)+\left(\frac{(p-1)^{2}}{p^{3}} m-3\right)\left(\frac{(p-1)^{2}}{p^{3}} m-2\right)
\end{aligned}
$$

Hence

$$
s \geq A+B+C=a(m-b)^{2}+c
$$

where (with the aid of Maple 9.0.1),

$$
\begin{aligned}
& a=\frac{p^{6}-2 p^{5}+2 p^{4}-2 p^{3}-p^{2}+4 p-2}{p^{6}} \\
& b=\frac{5 p^{3}\left(p^{2}+2 p-1\right)}{2\left(p^{5}-p^{4}+p^{3}-p^{2}-2 p+2\right)} \\
& c=22-\frac{25\left(-2 p^{5}+2 p^{4}-2 p^{3}-p^{2}+p^{6}+4 p-2\right)\left(p^{4}+4 p^{3}+2 p^{2}-4 p+1\right)}{4\left(p^{5}-p^{4}+p^{3}-p^{2}-2 p+2\right)^{2}} .
\end{aligned}
$$

For a simple lower bound for s, one can show (with Maple) that the minimum value of $\left(a(m-b)^{2}+c\right)-\left(\frac{(m-1)^{2}}{3}\right)$ is

$$
c_{0}=\frac{117 p^{6}-650 p^{5}+835 p^{4}-200 p^{3}-1085 p^{2}+1490 p-595}{4\left(2 p^{6}-6 p^{5}+6 p^{4}-6 p^{3}-3 p^{2}+12 p-6\right)}
$$

which is >0 for $p \geq 5$, while if $p=3$,

$$
\left(a(m-b)^{2}+c\right)-\frac{(m-1)^{2}}{3}=\frac{109}{729}\left(m-\frac{1647}{109}\right)^{2}-\frac{4078}{327}
$$

which is ≥ 0 for $m \geq 25$.
Since $|\operatorname{Sta}(J)|=p^{m}-p^{m-1}<p^{m}$, we obtain the lower bound stated in the Introduction:

Theorem 7. For Γ the group of principal units of $\mathbb{F}_{p}[x] /\left(x^{m+1}\right)$, the number of H-Hopf Galois structures on L / K with Galois group Γ, where H has associated group $G=Z_{p}^{m}$, is $\geq p^{s}$ where $s \geq \frac{(m-1)^{2}}{3}-m$ if $p \geq 5$ or $m \geq 25$.

For specific examples we may of course compute explicitly: if $p=3, m=10$, we have $|\operatorname{Sta}(J)|=2 \cdot 3^{9}$ and $d_{1}=5, d_{2}=1, d_{3}=1$; hence

$$
|A u t(\Gamma)|=3^{24} \cdot\left(3^{5}-1\right)\left(3^{5}-3\right)\left(3^{5}-3^{2}\right)\left(3^{5}-3^{3}\right)\left(3^{5}-3^{4}\right) \cdot 6 \cdot 18
$$

and the number of equivalence classes of Hopf Galois structures corresponding to the regular subgroup J is

$$
3^{28} \cdot 2^{11} \cdot 5 \cdot 11^{2} \cdot 13=368,488,392,004,133,406,720
$$

References

[By96] N. P. Byott, Uniqueness of Hopf Galois structure of a separable field extension, Comm. Algebra 24 (1996), 3217-3228. MR 1402555 (97j:16051a)
[Ch00] L. N . Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, Math. Surveys and Monographs, vol. 80, Amer. Math. Soc., 2000. MR1767499 (2001e:11116)
[Ch05] L. N. Childs, Elementary abelian Hopf Galois structures and polynomial formal groups, J. Algebra 283 (2005), 292-316. MR2102084 (2005g:16073)
[Fe06] S. C. Featherstonhaugh, Abelian Hopf Galois structures on Galois field extensions of prime power order, Ph.D. thesis, Univ. at Albany, 2003.
[GP87] C. Greither, B. Pareigis, Hopf Galois theory for separable field extensions, J. Algebra 106 (1987), 239-258. MR878476 (88i:12006)

Department of Mathematics and Statistics, University at Albany, Albany, New York 12222

E-mail address: childs@math.albany.edu

[^0]: Received by the editors February 13, 2006 and, in revised form, August 11, 2006.
 2000 Mathematics Subject Classification. Primary 16W30.

