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1. Introduction. K.Nomizu [2] studied the effect of the condition

(*) R(X,Y)-R = 0 for any tangent vectors X and Y

for hyp ersurfaces Mm of the Euclidean space Em*1, where R denotes the
Riemannian curvature tensor and R(X,Y) operates on the tensor algebra at each
point as a derivation. PJ.Ryan [4] treated the same condition for hypersurfaces
of spaces of non-zero constant curvature. On the other hand, one of the authors
[6] discussed the effect of the condition

(**) i?(X, Y)-Rι = 0 for any tangent vectors X and Y

for hypersurfaces of the Euclidean space, where Rx denotes the Ricci curvature
tensor.

The condition (*) implies the condition (**).
Recently, P.J.Ryan informed one of the authors that the conditions (*) and

(**) are equivalent if the ambient space is of non-zero constant curvature.
In this note we prove

THEOREM. Let Mm, m ^ 4, be an m-dimensional connected and complete
Riemannian manifold which is isometrically immersed in a sphere Sn+i(c)
of curvature c . Then Mm satisfies the condition (**), if and only if Mm is
one of the following spaces :

( i ) Mm = Sm(c); great sphere ,

(ii) Mm = Sm(c) small sphere f where c> c ,

(iii) Mm = S'tei) x Sm-p(c2), where ρ9 m—p^2 and cx>c , c2>c such
that cϊι 4- cςι = €-1,
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(iv) Mm = M 1 x Sm'1 (c), where c> c and M1 is a covering space (Eι/(2πrz)

for an integer z) of a circle of radius r = (c"1 — c" 1)" 1 7 2 .

If M7* has the parallel Ricci tensor, then (**) is satisfied. Conversely, if a

certain hypersurface Mm in S'a+ι(c) has property (**), then the theorem says

that the Ricci tensor is parallel (precisely, Mm is (locally) symmetric).

2. Reduction of the condition (**). Let M be an ra-dimensional connected

Riemannian manifold which is isometrically immersed in an (m 4-1)-dimensional

Riemannian manifold of constant curvature c Φ 0, and let g be the Riemannian

metric of M. Then the equation of Gauss is

(2.1) R(X, Y) = cXAY + AXAAY,

where, in general, X Λ ^ denotes the endomorphism which maps Z upon

g{ZX)X — g(Z,X)Y. The type number t{x) is, by definition, the rank of the

second fundamentel form operator A at a point x of M. For a point x of M,

take an orthoπormal basis {ex, , em} of the tangent space Mx at x such that

Aea — \aea, CL = 1, , m, where λα's are eigenvalues of A at x. Then (2.1)

is equivalent to

(2. 2) R(eay eb) = ( ί + λ α λ δ ) ea Λ eb,

and the condition (**) is equivalent to

(2.3) (c +

where Rab are the components of the Ricci tensor i?j with respect to the basis.

Taking account of (2.2), we get

(2. 4) Rab = (m - 1) cSab + \aBabθ - λ^

where θ = trace A = Σα λα In particular, we have

(2. 5) i?αα = (w - l)c + (9λα - λ2

α.

Thus (2.3) becomes

(2. 6) (£ + λαλ5) (λα - λ4) (<9 ~ λα - λ5) = 0 .

Now, suppose λ!, λ2, • , λ r Φ 0 and λ r +i = ••• = λ m = 0 at x of M, and
suppose l^r^m—1. Then (2.6) for b=m implies c\a(θ — λ α ) = 0 and hence
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β - χa = 0 for a = 1, , r Thus we have (r - 1)5 = 0. If 5 = 0, then 5 - χυ

= 0 implies Xa = 0. Hence we have r ~ 1. Thus

LEMMA 1. Let M be an m-dimensional connected Riemannian manifold
which is Ίsometrically immersed in an (m + 1)-dimensional Riemannian
manifold M of constant curvature c Φ 0 and satisfies the condition (**).
Then the type number t(x)^l or t{x) — m at each point x of M.

Suppose there are three distinct principal curvatures, say λ,, X2 and λ;}, at
a point. Then (2.6) implies

c + XaXh = 0 or θ = λα + Xh for (a,b) = (1, 2), (1, 3), (2, 3).

But these three conditions do not hold simultaneously. Hence there are at most
two distinct principal curvatures at each point. We put λ = min {λα] and
μ = max: {λα} at each point, λ and μ are locally defined functions with respect
to unit normal vector fields. Xμ is globally defined. Now let

(/= [xeM; t(x) - m\ ,

and let U() be a component of U. Then UQ is open. Let

V = {x e (70 c + \μ Φ 0} ,

and let V̂  be a component of V. Then VQ is open. Suppose ί70 and Vo are
non-empty. Then (2.3) and (2.4) imply that Vo is an Einstein hypersurface of
M. On the other hand, we have

LEMMA 2. (A.Fialkow[l]) Let Mm ( m ^ 3 ) be an Einstein hypersurface
(Rγ = Kg) of a Riemannian manifold of constant curvature c. Then we
have

( i ) if K> (m — ϊ)c , then Mm is totally umbilic, and of constant
curvature ,

(ii) if K = (m - l)c , then t(X) ^ 1 on Mm ,

(iii) if K < (m — l)c, ί/z-̂Λi there are exactly two distinct and constant
principal curvatures v and ρy of multiplicity Ξg 2, satisfying c + vp — 0.

Therefore, in our case, if m ^ 3, Vo is totally umbilic and of constant
curvature. Hence X = μ is constant on Vo and on the closure of Vo. Conseque-
ntly, we get Vo ~U{) = M. Thus, we have
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LEMMA 3. Let M and M be as in Lemma 1. If m^3, and if c +
at x0 where t(x0) = m, then c + XμφQ and t{x) = m hold on M and M is
totally umbilic (λ = μ).

By Lemma 3, if U Φ 0 and if V = 0, then £ + λ/t = 0 on U and hence on

the closure U oi U. Since £v^0 and t(x)^l imply c + λμ-^O, ^ 4- Xμ = 0 on

£/ implies ί(x) ~ m on U. Thus we get U — M and we have

LEMMA 4. Lei M and M be as in Lemma 1. If m^3 and if c + Xμ = 0

<:££ x 0 where t(x0) = w, ί/iβ/z c + λ/i- = 0 ĉ ^̂ cί ί(x) = w /ιo/ύ? ow M .

Combining Lemmas 1, 3, and 4, we get

LEMMA 5. L#£ M and M be as in Lemma 1. If m^3, then zve have

one of the followings:

(a) t(x)^ί on M,

(b) t (x) = m αw(i <? + Xμ Φ 0 o// Λί,

(c) t (x) = m and c 4- Xμ = 0 o z Λf.

3. Local theorems.

THEOREM 1. Let M be an ?n-dimensional connected Riemannian manifold

which is isometrically immersed in an (m +1)-dimensional Riemannian

manifold M of constant curvature cy where m ̂ 3 and c > 0. If M satisfies

the condition (*"*)> then we have one of the followings:

( i ) t{x) ίϋ 1 on M and hence M is of constant curvature c,

(ii) M i; totally umbilic and of constant curvature > c ,

(iii) M is locally a product of two spaces of constant curvature > ~c

and of dimension ^ 2 ,

(iv) M is locally a product of Eι and an (m — 1)-dimensional space of

constant curvature >7\

(v) M is a manifold such that the Ricci tensor has two eigenvalues 0

and 7 of multiplicity 1 and m — 1, respectively, where y is a non-

constant positive function.
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PROOF. Lemma 5 says that we have either t(x)2=51 on M or t(x) = m on
M. If t(x)^l on M, then (i) holds. In the following we assume t(x)=m on
M. If 7+ Xμ Φ 0 on M, then Lemma 3 says that M is of type (ii). If
7 + Xμ = 0 on M, then we have λ/*<0, since 7 > 0 . And we have \<0<μ
on M. Thus the multiplicities of λ and μ are constant. If the multiplicities of λ
and μ are not smaller than 2, then λ and μ are constant, as is well known
(cf. Prop. 2.3, [4]), and this is of typ3 (iii). Suppose the multiplicity of λ or
μ is 1. If X or μ is constant, then the rest is also constant and this is of type
(iv). If λ or μ is not constant, then the rest is neither constant. If, for example,
the multiplicity of λ is 1, then (2.5) implies

Rn = (ra — 1)7 + \θ - λ2

where Aex = Xex and Aet = μeif i = 2, , m. This is of type (v).

THEOREM 2. Let M be an m-dimensional connected Riemannian
manifold which is isometrically immersed in an (m + 1)-dimensional Riem-
annian manifold of constant curvature 7, where m ^ 3 and 7 < 0. / / M
satisfies the condition (**), ίAew W£ /law oτz£ 0/ ίΛβ followings:

( i ) ί ( ^ : ) ^ l ow M and M is of constant curvature 7,

(ii) M is totally umbilίc and of constant curvature >7,

(iii) M is locally a product of two spaces of constant curvature >7 and
of dimension^2,

(iv) M is locally a product of Eι and an (m — 1)-dimensional space of
constant curvture>7,

(v) M is a manifold such that the Ricci tensor has at most two distinct
eigenvalues at each point. They are not constant and if there are two
distinct eigenvalues at a point, then one of them is 0 with
multiplicity 1.

PROOF. For (i), (ii), the proof is the same as that of (i), (ii) of Theorem 1.
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So, in the following, we assume t(x) = m and 7 + Xμ = 0 on M. If λ < μ at a
point and if the multiplicities of λ and μ are not smaller than 2 at the point,
then λ and μ are constant on M and this is of type (iii). If one of the principal
curvatures is simple and if λ or μ is constant, the.i the rest is also constant and
this is of type (iv). The remaining possibilities are (a) λ or μ is simple at some
point and λ and μ are not constant, and (b) λ = μ on M. The case (a) implies
the type (v) as in Theorem 1, and the case (b) implies the type (ii).

4. Conullity operator. We apply A.RosenthaΓs method [5]. Let F(M), Qa,
wb

a be the frame bundle, solder forms, and connexion forms. We denote by Nx

and Cx the nullity space at x and the conullity space at x'

Nx = {Xz Mx; R(A,B)X = 0 for any A,B € Mx},

Cx = [Y € Mx; g{XtY) = 0 for any X € Nx].

Assume dim Nx = 1 on an open set U. An orthonormal frame (eu , em) at
x is called an adapted frame if ev € Nx and et € Cx (i = 2, , m). Let F0(ί7)
be the set of adapted frames over U. We denote θa, vυb

a restricted on F0(JJ) by
the same letters. Then

where z, j € (2, , m). The conullity operator T = T*e] : CX—>CX> for ^ . € iVx

is defined by Tet = Bdej. Then we have the followings (Theorem 2.3, Cor. 2.4,
Theorem 3.1, [5]):

LEMMA 6. (A) Λj

u = — Ax

n = 0 (//*£ nullity varieties are totally geodesic).

(B) If dim Nx^m-3 on U, then T satisfies

R(X,Y)(TZ) + R(y,Z)(TX)+R(Z,XχTY) = 0/or XY,Z € Cx.

(C) / / M z*5 complete, then the real eigenvalues of T vanish.

5. Proof of the main theorem. First we show

LEMMA 7. In Theorem 1, if M is complete and m jg: 4, £/*en *Λe case (v)
not occur.
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In Theorem 2, if M is complete, m ̂  4, and the scalar curvature S is
positive or negative on M, the case (v) does not occur.

PROOF. Let M be a manifold stated in (v). Assume that the multiplicity of
λ is 1 and Aex — \elf Ae} — μe.} (j = 2, , ?ri). Since 1: +Xμ = 0, by (2.2) we
have R(el9 e^)ex = 0. Again by (2.2) we have R(ej,ek)eι = 0. Hence we have
R(X, Y)e{ = 0 for any tangent vectors X and Y. Furthermore, we have

(5.1) R(ej9ek) = (7 + μ2) e,Kek 2^j

If ~c>0, then 7-f-/i'J^0 on M. On the other hand, by (2.5) the scalar
curvature S is given by

6' = ZRaa = (w - l)(m - 2)C?

and so 5 > 0 or *S<0 implies 7-f/i2 ^ 0. Thus M has constant nullity, and by
Lemma 6 (B) we have

R(eh ek)(Teϊ) + R{ek9 β t )(TO + Λ(βt, e ^ T e , ) = 0.

If we put Bii = jBf

j, then Tet = βtfe^Λ and we have

(ft**, - ft'O + (B/ek - B/et) 4- (ft^, - Bk%) = 0.

Thus we have Bik = Bk\ and T is symmetric. Consequently, all eigenvalues are
real. By Lemma 6 (C) we have T = 0. T = 0 {B\5 = - BJ, = 0) together with
Lemma 6 (A) implies Wιι = — w^ = 0. That is locally a product space
Eι x Mm~ι{m — l^3). By (5.1) Mm~ ι is of constant curvature Ί: + μ2. In particular,
λ and M are constant on M. This is a contradiction and the case (v) does not
occur.

For (i) of the main theorem, we need the following lemma:

LEMMA 8. (B. O'Neill and E.Stiel [3]) An m-dtmensional complete
Riemannian manifold of constant curvature 7 > 0 which is isometrically

immersed in an (m 4-1)-dimensional Riemannian manifold of constant

curvature 7 is totally geodesic.

Now ( i ) follows from Theorem 1 and Lemma 8.
For (ii), (iii) and (iv), we need the following:

LEMMA 9. (P.J.Ryan [4]) Let f and f be isometric immersions of an
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m-dimensional connected Rίemannian manifold *M, into an (m + ^-dimen-

sional simply connected real space form M. If t(x) > 3 at each point of

*M, then there is an isometry Φ of M such that Φ •/ = / .

Let *M be the universal covering manifold of M (π: *M—*M) and let
M=Sm+ι(c). Then for φ: M->M, we havef=φ π: *M->M. On the other
hand, we have the standard immersions / of Sm(c), Sp(cx) X Sm-*(c2)(cΓι + <ΐι

= ?-'), and Eι x Sm~Kc) into Sm+1(7). Thus, we have (ii), (iii) and (iv) from
Lemma 9 (/, / congruent) and Theorem 1.

REMARK.

(1) This theorem is a generalization of Theorem 4.10 of P.J.Ryan [4].

(2) If m = 3 and the scalar curvature S is constant, then we have the
similar results (i), (ii) and (iv).

(3) λα = λ or μ and the discussion in § 1 imply that condition (**) is
equivalent to (*). (In fact, recall that (*) is equivalent to (λαλi+?r)(λα—λδ)λc = 0
for distinct a, by c, [4]).
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