Tôhoku Math. Journ. 22(1970), 212-219.

SOME HYPERSURFACES OF A SPHERE

SHÛKICHI TANNO AND TOSHIO TAKAHASHI

(Received Nov. 26, 1969)

1. Introduction. K.Nomizu [2] studied the effect of the condition

(*) $R(X, Y) \cdot R = 0$ for any tangent vectors X and Y

for hypersurfaces M^m of the Euclidean space E^{m+1} , where R denotes the Riemannian curvature tensor and R(X,Y) operates on the tensor algebra at each point as a derivation. P.J.Ryan [4] treated the same condition for hypersurfaces of spaces of non-zero constant curvature. On the other hand, one of the authors [6] discussed the effect of the condition

(**) $R(X, Y) \cdot R_1 = 0$ for any tangent vectors X and Y

for hypersurfaces of the Euclidean space, where R_1 denotes the Ricci curvature tensor.

The condition (*) implies the condition (**).

Recently, P.J.Ryan informed one of the authors that the conditions (*) and (**) are equivalent if the ambient space is of non-zero constant curvature.

In this note we prove

THEOREM. Let M^m , $m \ge 4$, be an m-dimensional connected and complete Riemannian manifold which is isometrically immersed in a sphere $S^{m+1}(\hat{c})$ of curvature \hat{c} . Then M^m satisfies the condition (**), if and only if M^m is one of the following spaces:

- (i) $M^m = S^m(\hat{c})$; great sphere.
- (ii) $M^m = S^m(c)$; small sphere, where $c > \tilde{c}$,
- (iii) $M^m = S^p(c_1) \times S^{m-p}(c_2)$, where $p, m-p \ge 2$ and $c_1 > \hat{c}$, $c_2 > \hat{c}$ such that $c_1^{-1} + c_2^{-1} = \hat{c}^{-1}$,

(iv) $M^m = M^1 \times S^{m-1}(c)$, where $c > \tilde{c}$ and M^1 is a covering space $(E^1/(2\pi rz))$ for an integer z) of a circle of radius $r = (\tilde{c}^{-1} - c^{-1})^{-1/2}$.

If M^m has the parallel Ricci tensor, then (**) is satisfied. Conversely, if a certain hypersurface M^m in $S^{m+1}(\hat{c})$ has property (**), then the theorem says that the Ricci tensor is parallel (precisely, M^m is (locally) symmetric).

2. Reduction of the condition (**). Let M be an m-dimensional connected Riemannian manifold which is isometrically immersed in an (m+1)-dimensional Riemannian manifold of constant curvature $\hat{c} \neq 0$, and let g be the Riemannian metric of M. Then the equation of Gauss is

(2.1)
$$R(X,Y) = \tilde{c}X \wedge Y + AX \wedge AY,$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon g(Z,Y)X - g(Z,X)Y. The type number t(x) is, by definition, the rank of the second fundamentel form operator A at a point x of M. For a point x of M, take an orthonormal basis $\{e_1, \dots, e_m\}$ of the tangent space M_x at x such that $Ae_a = \lambda_a e_a$, $a = 1, \dots, m$, where λ_a 's are eigenvalues of A at x. Then (2.1) is equivalent to

(2.2)
$$R(e_a, e_b) = (\hat{c} + \lambda_a \lambda_b) e_a \wedge e_b,$$

and the condition (**) is equivalent to

(2.3)
$$(\tilde{c} + \lambda_a \lambda_b) (R_{aa} - R_{bb}) = 0,$$

where R_{ab} are the components of the Ricci tensor R_1 with respect to the basis. Taking account of (2.2), we get

(2.4)
$$R_{ab} = (m-1)\,\tilde{c}\delta_{ab} + \lambda_a\delta_{ab}\theta - \lambda_a^2\delta_{ab},$$

where $\theta = \text{trace } A = \sum_{a} \lambda_{a}$. In particular, we have

(2.5)
$$R_{aa} = (m-1)\hat{c} + \theta\lambda_a - \lambda_a^2.$$

Thus (2.3) becomes

(2.6)
$$(\hat{\varepsilon} + \lambda_a \lambda_b)(\lambda_a - \lambda_b)(\theta - \lambda_a - \lambda_b) = 0.$$

Now, suppose $\lambda_1, \lambda_2, \dots, \lambda_r \neq 0$ and $\lambda_{r+1} = \dots = \lambda_m = 0$ at x of M, and suppose $1 \leq r \leq m-1$. Then (2.6) for b=m implies $\tilde{c}\lambda_a(\theta - \lambda_a) = 0$ and hence

 $\theta - \lambda_a = 0$ for $a = 1, \dots, r$. Thus we have $(r-1)\theta = 0$. If $\theta = 0$, then $\theta - \lambda_a = 0$ implies $\lambda_a = 0$. Hence we have r = 1. Thus

LEMMA 1. Let M be an m-dimensional connected Riemannian manifold which is isometrically immersed in an (m + 1)-dimensional Riemannian manifold \widetilde{M} of constant curvature $\tilde{c} \neq 0$ and satisfies the condition (**). Then the type number $t(x) \leq 1$ or t(x) = m at each point x of M.

Suppose there are three distinct principal curvatures, say λ_1 , λ_2 and λ_3 , at a point. Then (2.6) implies

$$\tilde{c} + \lambda_a \lambda_b = 0$$
 or $\theta = \lambda_a + \lambda_b$ for $(a,b) = (1,2), (1,3), (2,3)$.

But these three conditions do not hold simultaneously. Hence there are at most two distinct principal curvatures at each point. We put $\lambda = \min \{\lambda_a\}$ and $\mu = \max \{\lambda_a\}$ at each point. λ and μ are locally defined functions with respect to unit normal vector fields. $\lambda \mu$ is globally defined. Now let

$$U = \{x \in M; t(x) = m\},\$$

and let U_0 be a component of U. Then U_0 is open. Let

$$V = \{x \in U_0; \ \tilde{c} + \lambda \mu \neq 0\},\$$

and let V_0 be a component of V. Then V_0 is open. Suppose U_0 and V_0 are non-empty. Then (2.3) and (2.4) imply that V_0 is an Einstein hypersurface of M. On the other hand, we have

LEMMA 2. (A.Fialkow[1]) Let M^m $(m \ge 3)$ be an Einstein hypersurface $(R_1 = Kg)$ of a Riemannian manifold of constant curvature \tilde{c} . Then we have

- (i) if $K > (m-1)\tilde{c}$, then M^m is totally umbilic, and of constant curvature,
- (ii) if $K = (m-1)\tilde{z}$, then $t(X) \leq 1$ on M^m ,
- (iii) if $K < (m-1)\tilde{c}$, then there are exactly two distinct and constant principal curvatures ν and ρ , of multiplicity ≥ 2 , satisfying $\tilde{c} + \nu \rho = 0$.

Therefore, in our case, if $m \ge 3$, V_0 is totally umbilic and of constant curvature. Hence $\lambda = \mu$ is constant on V_0 and on the closure of V_0 . Consequently, we get $V_0 = U_0 = M$. Thus, we have

LEMMA 3. Let M and \tilde{M} be as in Lemma 1. If $m \ge 3$, and if $\tilde{c} + \lambda \mu \neq 0$ at x_0 where $t(x_0) = m$, then $\tilde{c} + \lambda \mu \neq 0$ and t(x) = m hold on M and M is totally umbilic $(\lambda = \mu)$.

By Lemma 3, if $U \neq \emptyset$ and if $V = \emptyset$, then $\tilde{c} + \lambda \mu = 0$ on U and hence on the closure \overline{U} of U. Since $\tilde{c} \neq 0$ and $t(x) \leq 1$ imply $\tilde{c} + \lambda \mu \neq 0$, $\tilde{c} + \lambda \mu = 0$ on \overline{U} implies t(x) = m on \overline{U} . Thus we get U = M and we have

LEMMA 4. Let M and \overline{M} be as in Lemma 1. If $m \ge 3$ and if $\overline{c} + \lambda \mu = 0$ at x_0 where $t(x_0) = m$, then $\overline{c} + \lambda \mu = 0$ and t(x) = m hold on M.

Combining Lemmas 1, 3, and 4, we get

LEMMA 5. Let M and M be as in Lemma 1. If $m \ge 3$, then we have one of the followings:

- (a) $t(x) \leq 1$ on M,
- (b) $t(x) = m \text{ and } \tilde{c} + \lambda \mu \neq 0 \text{ on } M$.
- (c) t(x) = m and $\tilde{c} + \lambda \mu = 0$ on M.

3. Local theorems.

THEOREM 1. Let M be an m-dimensional connected Riemannian manifold which is isometrically immersed in an (m+1)-dimensional Riemannian manifold \widetilde{M} of constant curvature \tilde{c} , where $m \ge 3$ and $\tilde{c} > 0$. If M satisfies the condition (**), then we have one of the followings:

- (i) $t(x) \leq 1$ on M and hence M is of constant curvature \hat{c} ,
- (ii) M is totally umbilic and of constant curvature $> \hat{c}$,
- (iii) M is locally a product of two spaces of constant curvature $> \tilde{c}$ and of dimension ≥ 2 ,
- (iv) M is locally a product of E^1 and an (m-1)-dimensional space of constant curvature $>\tilde{c}$,
- (v) M is a manifold such that the Ricci tensor has two eigenvalues 0 and γ of multiplicity 1 and m-1, respectively, where γ is a nonconstant positive function.

PROOF. Lemma 5 says that we have either $t(x) \leq 1$ on M or t(x) = m on M. If $t(x) \leq 1$ on M, then (i) holds. In the following we assume t(x)=m on M. If $\tilde{c} + \lambda \mu \neq 0$ on M, then Lemma 3 says that M is of type (ii). If $\tilde{c} + \lambda \mu = 0$ on M, then we have $\lambda \mu < 0$, since $\tilde{c} > 0$. And we have $\lambda < 0 < \mu$ on M. Thus the multiplicities of λ and μ are constant. If the multiplicities of λ and μ are not smaller than 2, then λ and μ are constant, as is well known (cf. Prop. 2.3, [4]), and this is of type (iii). Suppose the multiplicity of λ or μ is 1. If λ or μ is not constant, then the rest is also constant and this is of type (iv). If λ or μ is not constant, then the rest is neither constant. If, for example, the multiplicity of λ is 1, then (2.5) implies

$$R_{11} = (m-1)\widetilde{c} + \lambda\theta - \lambda^2$$
$$= (m-1)(\widetilde{c} + \lambda\mu) = 0$$
$$R_{ii} = (m-1)\widetilde{c} + \mu\theta - \mu^2$$
$$= (m-2)(\widetilde{c} + \mu^2),$$

where $Ae_1 = \lambda e_1$ and $Ae_i = \mu e_i$, $i = 2, \dots, m$. This is of type (v).

THEOREM 2. Let M be an m-dimensional connected Riemannian manifold which is isometrically immersed in an (m + 1)-dimensional Riemannian manifold of constant curvature \tilde{c} , where $m \ge 3$ and $\tilde{c} < 0$. If M satisfies the condition (**), then we have one of the followings:

- (i) $t(x) \leq 1$ on M and M is of constant curvature \tilde{c} ,
- (ii) M is totally umbilic and of constant curvature $> \tilde{c}$,
- (iii) M is locally a product of two spaces of constant curvature $> \tilde{c}$ and of dimension ≥ 2 ,
- (iv) M is locally a product of E' and an (m-1)-dimensional space of constant curvture $> \tilde{c}$,
- (v) M is a manifold such that the Ricci tensor has at most two distinct eigenvalues at each point. They are not constant and if there are two distinct eigenvalues at a point, then one of them is 0 with multiplicity 1.

PROOF. For (i), (ii), the proof is the same as that of (i), (ii) of Theorem 1.

216

So, in the following, we assume t(x) = m and $\tilde{c} + \lambda \mu = 0$ on M. If $\lambda < \mu$ at a point and if the multiplicities of λ and μ are not smaller than 2 at the point, then λ and μ are constant on M and this is of type (iii). If one of the principal curvatures is simple and if λ or μ is constant, then the rest is also constant and this is of type (iv). The remaining possibilities are (a) λ or μ is simple at some point and λ and μ are not constant, and (b) $\lambda = \mu$ on M. The case (a) implies the type (v) as in Theorem 1, and the case (b) implies the type (ii).

4. Conullity operator. We apply A.Rosenthal's method [5]. Let F(M), θ^a , w_b^a be the frame bundle, solder forms, and connexion forms. We denote by N_x and C_x the nullity space at x and the conullity space at x:

 $N_x = \{X \in M_x; R(A,B)X = 0 \text{ for any } A, B \in M_x\},\$

 $C_x = \{Y \in M_x; g(X,Y) = 0 \text{ for any } X \in N_x\}.$

Assume dim $N_x = 1$ on an open set U. An orthonormal frame (e_1, \dots, e_m) at x is called an adapted frame if $e_1 \in N_x$ and $e_i \in C_x$ $(i = 2, \dots, m)$. Let $F_0(U)$ be the set of adapted frames over U. We denote θ^a , w_b^a restricted on $F_0(U)$ by the same letters. Then

$$w_{i}^{\ i} = A_{i_{1}}^{i} \ \theta^{i} + B_{i_{j}}^{i} \ \theta^{j},$$
$$w_{i}^{\ i} = A_{i_{1}}^{i} \ \theta^{i} + B_{i_{j}}^{i} \theta^{j},$$

where $i, j \in (2, \dots, m)$. The conullity operator $T = T_{e_1}: C_x \to C_x$, for $e_1 \in N_x$ is defined by $Te_i = B_{1i}^i e_j$. Then we have the followings (Theorem 2.3, Cor.2.4, Theorem 3.1, [5]):

LEMMA 6. (A) $A_{11}^{i} = -A_{j1}^{1} = 0$ (the nullity varieties are totally geodesic).

(B) If dim $N_x \leq m-3$ on U, then T satisfies

$$R(X,Y)(TZ) + R(Y,Z)(TX) + R(Z,X)(TY) = 0$$
 for $X,Y,Z \in C_x$.

(C) If M is complete, then the real eigenvalues of T vanish.

5. Proof of the main theorem. First we show

LEMMA 7. In Theorem 1, if M is complete and $m \ge 4$, then the case (v) does not occur.

S. TANNO AND T. TAKAHASHI

In Theorem 2, if M is complete, $m \ge 4$, and the scalar curvature S is positive or negative on M, the case (v) does not occur.

PROOF. Let M be a manifold stated in (v). Assume that the multiplicity of λ is 1 and $Ae_1 = \lambda e_1$, $Ae_j = \mu e_j$ $(j = 2, \dots, m)$. Since $\tilde{c} + \lambda \mu = 0$, by (2.2) we have $R(e_1, e_j)e_1 = 0$. Again by (2.2) we have $R(e_j, e_k)e_1 = 0$. Hence we have $R(X, Y)e_1 = 0$ for any tangent vectors X and Y. Furthermore, we have

(5.1)
$$R(e_j, e_k) = (\widetilde{c} + \mu^2) \ e_j \wedge e_k \qquad 2 \leq j, \ k \leq m.$$

If $\tilde{c} > 0$, then $\tilde{c} + \mu^2 \neq 0$ on *M*. On the other hand, by (2.5) the scalar curvature *S* is given by

$$S = \Sigma R_{aa} = (m-1)(m-2)(\widetilde{c} + \mu^2),$$

and so S > 0 or S < 0 implies $\tilde{c} + \mu^2 \neq 0$. Thus *M* has constant nullity, and by Lemma 6 (B) we have

$$R(e_{i}, e_{k})(Te_{i}) + R(e_{k}, e_{i})(Te_{j}) + R(e_{i}, e_{j})(Te_{k}) = 0.$$

If we put $B_{1i}^j = B_i^{j}$, then $Te_i = B_i^{h}e_h$ and we have

$$(B_i^{\ k}e_j - B_i^{\ j}e_k) + (B_j^{\ i}e_k - B_j^{\ k}e_i) + (B_k^{\ j}e_i - B_k^{\ i}e_j) = 0.$$

Thus we have $B_i^{\ k} = B_k^{\ i}$, and T is symmetric. Consequently, all eigenvalues are real. By Lemma 6 (C) we have T = 0. T = 0 ($B_{1j}^i = -B_{ij}^1 = 0$) together with Lemma 6 (A) implies $w_i^1 = -w_1^i = 0$. That is locally a product space $E^1 \times M^{m-1}(m-1 \ge 3)$. By (5.1) M^{m-1} is of constant curvature $\tilde{c} + \mu^2$. In particular, λ and μ are constant on M. This is a contradiction and the case (v) does not occur.

For (i) of the main theorem, we need the following lemma:

LEMMA 8. (B.O'Neill and E.Stiel [3]) An m-dimensional complete Riemannian manifold of constant curvature $\tilde{c} > 0$ which is isometrically immersed in an (m+1)-dimensional Riemannian manifold of constant curvature \tilde{c} is totally geodesic.

Now (i) follows from Theorem 1 and Lemma 8. For (ii), (iii) and (iv), we need the following:

LEMMA 9. (P.J.Ryan [4]) Let f and \overline{f} be isometric immersions of an

218

m-dimensional connected Riemannian manifold *M, into an (m + 1)-dimensional simply connected real space form \tilde{M} . If t(x) > 3 at each point of *M, then there is an isometry Φ of \tilde{M} such that $\Phi \cdot f = f$.

Let **M* be the universal covering manifold of $M(\pi: *M \to M)$ and let $\widetilde{M} = S^{m+1}(\widetilde{c})$. Then for $\varphi: M \to \widetilde{M}$, we have $f = \varphi \cdot \pi : *M \to \widetilde{M}$. On the other hand, we have the standard immersions \overline{f} of $S^m(c)$, $S^p(c_1) \times S^{m-p}(c_2)(c_1^{-1}+c_2^{-1}) = \widetilde{c}^{-1}$, and $E^1 \times S^{m-1}(c)$ into $S^{m+1}(\widetilde{c})$. Thus, we have (ii), (iii) and (iv) from Lemma 9 $(f, \overline{f}; \text{ congruent})$ and Theorem 1.

REMARK.

(1) This theorem is a generalization of Theorem 4.10 of P.J.Ryan [4].

(2) If m = 3 and the scalar curvature S is constant, then we have the similar results (i), (ii) and (iv).

(3) $\lambda_a = \lambda$ or μ and the discussion in § 1 imply that condition (**) is equivalent to (*). (In fact, recall that (*) is equivalent to $(\lambda_a \lambda_b + \tilde{c})(\lambda_a - \lambda_b)\lambda_c = 0$ for distinct a, b, c, [4]).

References

- A. FIALKOW, Hypersurfaces of a space of constant curvature, Ann. of Math., 39(1938), 762-785.
- [2] K. NOMIZU, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J., 20(1968), 46-59.
- [3] B. O'NEILL AND E. STIEL, Isometric immensions of constant curvature manifolds, Michigan Math J., 10(1963), 335-339.
- [4] P. J. RYAN, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J., 21(1969), 363-388.
- [5] A. ROSENTHAL, Riemannian manifolds of constant nullity, Michigan Math. J., 14(1967), 469-480.
- [6] S. TANNO, Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J., 21 (1969), 297-303.

Mathematical Institute Tôhoku University Sendai, Japan

AND

DEPARTMENT OF MATHEMATICS KUMAMOTO UNIVERSITY KUMAMOTO, JAPAN