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Abstract 

In a secret sharing scheme, a dealer has a secret. The dealer gives each 

participant in the scheme a share of the secret. There is a set I? of subsets of 

the participants with the property that any subset of participants that is in 

I? can determine the secret. En a perfect secret sharing scheme, any subset of 
participants that is not in I’ cannot obtain any information about the secret. We 
wilI say that a perfect secret sharing scheme is ideal if all of the shares are from 

the same domain as the secret. Shamir and 13lakley constructed ideal threshold 

schemes, and Benaloh has constructed other ideal secret sharing schemes. In 

this paper, we construct ideal secret sharing schemes for more general access 

structures which include the multilevel and compartmented access structures 

proposed by Simmons. 

1 Introduction 

Given a set of n participants and a set I’ of subsets of the participants, a secret 

sharing scheme for r is a method of distributing shares to each of the participants 

such that any subset of the participants in I? can determine the secret, but any subset 

of participants that is not in I’ cannot determine the secret. The share of a participant 

refers specifically to the information that the dealer sends in private to the participant. 

If any subset of participants that is not in I? cannot determine any information about 

the secret, then the secret sharing scheme is said to be perfect. Given a secret sharing 

scheme in which S is the set of possible secrets and T is the set of possible shares, we 

define the infonation rate, p, of the scheme as p = log jTl/log IS/. For example, if 

the secret is a random element of GF(q), and all shares are elements of GF(q), then 

the information rate is 1. Simmons [5] defined a related notion. He called a secret 

sharing scheme eztrinsic if the set T of possible shares is the same for all participants. 

We will say that a secret sharing scheme is ideal if it is perfect and has information 

rate 1. 
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The first constructions of secret sharing schemes were due to Blakley [2] and 
Shamir [4]. Their schemes are called threshold schemes because they have the prop- 
erty that for some t ,  only the subsets of participants of cardinality at least t can 
determine the secret. Both the Blakley and the Shamir schemes are perfect and can 
be ideal as we will demonstrate later in this section. 

Given a secret sharing scheme, the access structure, r, is defined as the set of 
subsets of participants that  can determine the secret. In this paper, we will restrict 
our attention to secret sharing schemes in which r is monotone, that is if B E r, and 
if B is contained in C, then C E I'. 

Ito, Saito, and Nishizeki [3] have shown that for any monotone set of subsets, 
r, there exists a perfect secret sharing scheme for which is the access structure. 
Benaloh [l] has proven this result using a construction that has a lower information 
rate than the construction of Ito, et.al. although his construction is far from ideal 
for arbitrary r. Benaloh has also shown that there exist monotone sets r, which 
cannot be the access structure for an ideal secret sharing scheme. We will say that 
a monotone set of subsets, r, is an ideal access structure if there is some ideal secret 
sharing scheme for which I' is the access structure. 

The motivation for the current paper is to find ideal secret sharing schemes with 
access structures that  are more general than threshold access structures. 

Simmons [5] has described an access structure that arises in a practical application 
of secret sharing. A multileueI access structure is one in which each participant is 
assigned a level which is a positive integer and the access structure consists of those 
subsets which contain a t  least r participants all of level at most T .  In other words, 
2 participants of level 2 can determine the secret, as can 3 of level 3.  But also 1 
participant of level 2 and 2 participants of level 3 can determine the secret. Simmons 
asked whether all multilevel access structures are ideal access structures. 

In this paper, we answer Simmons' question in the affirmative. Specifically, in 
Theorem 1, we show that  given any multilevel access structure, there exists Q such 
that for any q a prime power with q > Q, there is an ideal secret sharing scheme 
realizing this access structure over GF(q). 

One drawback to  the construction given in Theorem 1 is that it requires the 
dealer to check many (possibly exponentially many) matrices to see that they are 
nonsingular. In Theorem 2, we give a different construction for realizing multilevel 
access structures that  removes this undesirable property. 

Simmons also pointed out that there were potential applications for compart- 
mented access structures. In a compartmented access structure , there are different 
compartments, say C1,. . . , Cu, and positive integers t l ,  . . . , t ,  and t. The access struc- 
ture consists of all subsets containing at  least t i  participants from C; for 1 5 I 21, 
and a total of at least t participants. Simmons' original notion of compartmented 
schemes had t = Cy='=, t;, but we have generalized his notion slightly since we have 
been able to construct more general ideal secret sharing schemes. In section 3, we 
show that for any compartmented access structure, there exists a Q ,  such that for 
4 > Q, there exists an ideal secret sharing scheme for r over GF(q). 

We conclude this section with a brief description of the threshold schemes of 
Shamir and Blakley. 
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The scheme of Shamir [4] is based on polynomials over GF(q). Let f(z) = 
C:iAa,zi. Participant Pj will receive an ordered pair 
(z,,f(zj)). It is easy to show that this is a threshold scheme, since for any t partic- 
ipants, there is only one polynomial of degree t - 1 passing through their t points. 
Also it is a perfect threshold scheme since for any t - 1 participants and any point 
(0, a ) ,  there is a polynomial of degree t passing through their t - 1 points and (0, a ) .  
This scheme will be  ideal if the value of z, is publicly revealed so that the share of 
participant Pj is just the  value of f(zj). 

The scheme of Blakley [2] is based on geometries over finite fields. Let V be 
a t-dimensional vector space over GF(q) and let el be the t-dimensional vector 
(1,0,. . . ,O). The dealer picks a 1-dimensional flat, g ,  that is not perpendicular to 
el  and a ( t  - 1)-dimensional flat, H, such that g and H intersect in a single point, 
P.  The secret will be the first coordinate of P. g will be made public but H will 
be kept secret. The  dealer will pick n points p i ,  i = 1,.  . . , n such that these points 
together with P are in general position, that is any t of the points generate a (t - 1)- 
dimensional flat. Participant P; will receive the point pi.  This is a perfect secret 
sharing scheme since any t of the participants can use their points to determine the 
hyperplane H ,  but  for any t - 1 of the participants, there is a hyperplane passing 
through their points and any given point on g. The Blakley scheme can be modified 
slightly SO that it is ideal. Let g be the first coordinate axis. When the dealer gives 
point pi to  participant Pi, he can make public all the coordinates except the first 
coordinate, and give only the first coordinate to Pi in secret. So Pi’s share is only the 
first coordinate. 

The secret is f ( O )  = G. 

2 A Basic Secret Sharing Scheme 
In this section, we give a slight generalization of the Shamir and Blakley schemes 
which is guaranteed to have information rate 1, and in Proposition 1, give sufficient 
conditions for it t o  be perfect and thus an ideal secret sharing scheme. 

The Basic Secret Sharing Scheme: The secret is an element in some finite 
field GF(q). The dealer chooses a vector a = (ao,.  . . , a 1 )  for some t ,  where each 
a, E GF(q), and uo is the secret. Denote the participants by Pi for 1 5 i 5 n. 
For each Pi, the dealer will pick a t-dimensional vector v; over GF(q). All of the 
vectors V; for 1 5 i 5 n will be made public. The share that the dealer gives to  P, 
will be s; = V ,  . a. Let ei denote the i’th t-dimensional unit coordinate vector (i.e. 
el  = (1 ,0 , .  . . ,O)). 
Proposition 1 Let -I = {Pi,, . . . ,Pi,.) be a set ofparticipants.  

{v i l , .  . . , v ; ~ )  con ta ins  e l .  

{vil, .  . . , vjk) does n o t  con ta in  el. 

Proof Let M be the matrix with rows vi l , .  . . ,vik. Let s = (s,], . . . , sJ. TO 
prove ( l ) ,  let w be the vector such that w M  = el.  Then wMa = ao. Hence w.s  = uo. 

(1) T h e  part ic ipants  in 7 can determine the secret if the  subspace 

(2) T h e  part ic ipants  in 7 receive no  information about the secret if t he  subspace 
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To prove (2),  let wo,. . . ,wt  be the column vectors of M .  If wo 6 (wI, .  . . ,wt) ,  
then there exists d such that d . w; = 0 for 1 <_ i 5 t and d.wo = 1.  So dM = el, but 
this contradicts the assumption that el $ (v;~, . . . ,vik}. Hence, wo E (wl, .  . . ,wt). 
So there exists b such that Mb = 0 and # 0. The only information the participants 
in 7 have about a0 is that Ma = s. But s = Ma = M(a + ab) for all a E GF(q). 
Consequently, given any ~0 E GF(q), there exists c = (cg,. . . , Q) with c; E GF(q) for 
1 5 i 5 t such that M c  = s. Therefore, the participants in 7 cannot rule out any 
element of GF(q) as a possibility for ao. 0 

3 Multilevel Schemes 
In this section, we give an existence proof that any multilevel access structure can 
be achieved in an ideal secret sharing scheme. Then we give a different construction 
that requires less computation on the part of the dealer. 

The Basic Multilevel Scheme: Let I” be a multilevel access structure with 
levels I1 < 12 < . . . < 1 ~ .  Let N, be the number of participants of level I,. Denote the 
participants by Pi for 1 5 i 5 n, and let L; be the level of Pi. We will use the basic 
secret sharing scheme. So we need only specify how the dealer will choose the vectors 
v;. For each Pi, the dealer will pick an 2; E GF(q). Let v; be the IR-dimensional 
vector (1, z;,z?, . . . , z?-’,O,. . . ,O). Note that if ll = 1 and P; is a participant with 
L; = 1, then v; = el. Define polynomials f,(z) = C ~ ~ ~ a ; z i .  The share s; that the 
dealer gives to Pi will satisfy si = f~,(z;). 

To complete the proof that there exists an ideal secret sharing scheme for any mul- 
tilevel access structure, we need only to show that for any multilevel access structure, 
there is a method for the dealer to choose the z; so that ( v ; ~ , .  . . , vi,.) contains el iff 
{I&,. . . , Pik} E r. In the remainder of this section, we give three different methods 
for the dealer to choose the xi. 

Theorem 1 Let I’ be a multileueZ access structure with levels lI < l2  < . . . < 1 ~ .  Let 
N ,  be the number of participants of level I,. Let n be the total number of participants. 

If q > ([R - 1) ( lRT ), then there is an ideal secret sharing scheme for r over 

W d .  
Proof We will use the basic multilevel scheme construction. We only need to 

show how the dealer will choose the 2;. Let vo = el (although there is no participant 
Po). Suppose the dealer has chosen z, for all i, 0 _< i < h. Let fl be the set of 
subspaces spanned by some subset of size L h  - 1 of the vectors {v; I 0 5 z < h}.  

IfiI < ( Lh\ ). The dealer then picks i h  so that the LR-dimensional vector 

vh = (1, zh, x i , .  . . , zkh-’, 0,. . . ,0) is not in any of the subspaces in 0. To see that 
this is possible, let H E 0, and let w = (wo, q,.. . , wLh-l ,  0,. . . ,O) be a normal 
vector to H .  Then C,”=a-’ w;xi = 0 has at most L h  - 1 solutions over GF(q). 
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Suppose that k participants, Pi,, . . . , Pi,, of level at most I ;  try to recover the secret 
and suppose that there is no subset of this set which contains 1 participants of level 
at most 1 for any 1 < k. The vectors v;, , . . . , v;, are independent and are contained 
in the k-dimensional space spanned by el,.  .. , e k .  Hence, el E (vil, .  . . ,v ik)  and so 
by Proposition 1, these participants can determine the secret. 

Let 
7 = {pil,.. . , pik}.  Since the vectors el, vil , .  . . , vik are independent, by Proposition 
1, these participants cannot obtain any information about ao. 0 

Suppose now tha t  a set 7 4 r of participants try to recover the secret. 

The Blakley scheme can also be modified to implement a multilevel access struc- 
ture. The dealer again picks g to  be the first coordinate axis and a sequence of flats 
F; satisfying: F1 C Fz C . . . C FR, F1 fl g is nonempty, and g FR. The secret is 
P = Fl n g. A person of level T will be given a point on Frw1. The points should be 
selected so that any r participants of rank at most r can determine the point P ,  and 
also so that for the flat, F ,  generated by a group of participants in which for any r 
there is no subset of r participants who all have rank at most r ,  F ng must be empty. 
This construction was also discovered by Simmons [6] .  

One other issue to  consider is the amount of computation needed for the dealer 
to construct a system. For the original Blakley system, the dealer must do a check 
to make sure that the points are in general position. An obvious way to do this 

requires ( ) time, although if the points are carefully selected, no such check is 

necessary. Also, no such check is needed for the Shamir scheme. Unfortunately, this 
nice property does not hold in the above construction for multilevel schemes. The 
obvious way to implement the scheme presented in Theorem 1 would require many 
checks to  be sure that the points are in general position. We have however found 
some constructions which do not require checking. 

The first construction we will mention is only feasible if there are not too many 
levels involved. We will use the basic multilevel scheme and so we simply need to  
describe how the dealer will pick the z,. For illustration, suppose that we want to 
allow levels 2 or 3. Pick q = p 2 .  Let a be algebraic of degree 2 over GF(p) (i.e. 
Q satisfies an irreducible polynomial of degree 2 over GF(p)). The dealer picks an 
element y; in GF(p) for each participant P, so that if i f j and L; = Lj ,  then y; f yj. 
For a participant of level 3, the dealer sets z; = yi. For a participant of level 2, 
he uses i; = a y i .  This system will have the desired properties. To see that three 
participants Pi,, Pi,, Pi, with L;, = 2, and L;, = L;, = 3 can determine the secret, 
consider the matrix iM formed by v;, , v;, , v , ~ .  The determinant of this matrix is a 
polynomial in Q of degree at  most 1. It can be shown that the constant term in this 
polynomial is nonzero. Since cy is algebraic of degree 2, the value of the polynomial 
must be nonzero. 

In themore general setting, with levels 11 < . . . < I R ,  the dealer picks 0 1 , .  . . , Q R - I ,  

where a, satisfies an irreducible of degree + 1 over 

R- 1 
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The dealer then sets z, = Q L , Y ~ .  The proof that this system has the desired properties 
is an extension of the above arguement. We will not include the arguement here 
because the following theorem constructs ideal multilevel schemes in a more efficient 
manner. 

Theorem 2 Let J? be a multilevel access structure with levels 1 = 10 < 11 < . . . < I R .  
Let q be a prime satisfying q > N, + 1 for 1 _< r _< R. Let p = 81;. Then there is 
an ideal secret sharing scheme for r over GF(qp) which can be constructed in time 
polynomial in (NI , .  . . , NR,  q ). 

Proof Once again, we just need to show how the dealer will pick the xi to use 
in the basic multilevel scheme. If there is no participant of level 1, add a participant 
Po with Lo = 1. The dealer selects a y; for each Pi so that y; # yj if L; = L, and 
i # j .  Define p(z) to  be the integer j such that L; = 1,. The dealer also picks an a 
that satisfies an irreducible of degree RI; over G F ( p ) .  Let 5; = y ; ~ ~ - ~ ( ' ) .  

Let 7 = {P;,, . . . , Pik} ,  be a set of k participants each of whom has level at  most 
k and suppose that there is no subset of 7 which contains more than ! participants 
of rank at  most 1 for any 1 < k. Let nj be the number of these participants of rank 
1;. Let M'(7)  be the matrix whose rows are the vectors v,, , . . . ,vik. Let M ( 7 )  be the 
matrix consisting of only the first k columns of M'(7) .  M ( 7 )  is essentially the same 
matrix as M'(7)  since all of the columns removed consisted of aII zeros. 

To show that M = M ( 7 )  is nonsingular, we will show that the determinant of M 
can be written as a polynomial in (Y of degree less than Rli. We will show that the 
polynomial is not identically zero by showing that the constant term is nonzero. 

Consider the determinant of M as a polynomial in a. Let M = (m;,j). Recall that 
the determinant is the sum of all elementary signed products of M ,  where an elemen- 
tary signed product is the product of the terms ml,cl , .  . . , mk,ct with the appropriate 
sign, where cl,. . . , ck is a permutation of 1,. . . , k. Any nonzero elementary signed 
product will satisfy ci 5 L, for 1 5 i 5 k. The maximum exponent of Q in a row i 
of M is ( R  - p(i))(L; - 1). Therefore the maximum exponent of Q in an elementary 
signed product is < C:g;(R - .)(I, - l)n, < RIR C:!; n, 5 Rl;. 

= xi=o n; for 0 5 j _< R. The exponent of cr in a nonzero 
elementary signed product will be X~=,(C; - 1)(R - p ( i ) ) ,  This sum achieves its 
minimum exactly when { C T , - ~ + ~ ,  . . . ,cT,) = {Tr-l + 1,.  . . ,T,} for 0 5 r 5 R. Let D, 
be the n, by n, submatrix of M generated by the rows and columns Tr-l + 1,. . . , T,. 
Let z be the minimum exponent of a in the determinant of M .  Then the term BQ' 
for 6 E GF(q) in the determinant of M satisfies Ba" = n;"=, ID,I. Since each D, is 
a multiple of a Van der Monde matrix, [Or[ # 0. Therefore, the coefficient of Q" is 
nonzero. Thus, since M ( 7 )  is nonsingular, the participants in 7 can determine ao. 

Suppose now that y is a set of k - 1 participants each of level at  most k and 
suppose that there is no subset of 7 which contains 1 participants of level a t  most 
1 for any 1 < k. Let 7' = 7 u {Po>. Now y' is a set of k participants each of level 
at most k and there is no subset of 7' which contains more than 1 participants of 
level at most 1 for any 1 < k. The matrix M ( y ' )  will thus be nonsingular. Therefore, 
el $ (vi I P, E 7 ) .  From Proposition 1, the participants in 7 receive no information 
about the value of ao. 0 

Let T-1 = 0, and let 
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4 Compartmented schemes 
In a compartmented scheme, there are disjoint sets of participants C1,. . . , C,. The 
access structure consists of subsets of participants containing at least t ,  from C; for 
i = 1,. . . ,u, and a total of at least t participants. Let n be the total number of 
participants. 

Theorem 3 Let I' be Q compartmented access structure. Ifq > (;). then there is 

an ideal secret sharing scheme for  r over GF(q). 

Proof WLOG, we may assume that T = t - ti 2 0. The dealer chooses a 
vector a = (ao, . . . , where uo is the secret. Let To = T, and let Ti = T + Cj,, t j  

for 1 5 i 5 u. Denote the participants by P,,; where Pr,i is in compartment C,. For 
participant P,,i, the dealer will pick a t-dimensional vector over GF(q) of the form 

2 T-1 T T+t,-1 

v 
coordinates Tp-l+l, ..., TF 

vr,i = ( l , ~ r , ; , x , , ; , . . . , x r , j  > 1 > . . . , 1 7  x r , i , * * - > x r , i  , I , .  . .11) 

for some xr,; E GF(q). As in Theorem 1, the dealer must be careful in choosing the 
zr,;. Let 4 denote lexicographic ordering on ordered pairs. 1.e. ( r , i )  -i ( s , j )  iff r < s 
or ( r  = s and i < j ) .  Let v0.0 = el. Suppose that the dealer has chosen xr,; for all 
( r , i )  + ( s , j ) .  Then the dealer must choose xSj # 1 so that the vector vs,j is not in 
any subspace spanned by a set of vectors consisting of at least t, of the vr,; for each 
r < s and at  least t: = min(t, - 1,j - 1) of the vs,i for i < j and a total of a t  most 

T + t;  + C::: t ,  of the vr,i for (0,O) 5 ( ~ , i )  < ( s , j ) .  Since q > ( ), it is easy to 

see that this is possible by using similar arguments to those used in Theorem 1. 
A set of participants in I' can determine the secret since the vectors v7,i are 

independent. Conversely, suppose that a set y = {P,,, I (r , i )  E I }  of participants 
is not in r. Suppose there is a C, such that 7 does not contain at least t ,  of the 
Participants in C,. Let M be the matrix with rows vr,; for ( r , i )  E I .  Let M' be the 
matrix consisting of columns 1, T,+ 1,. . . , T, +t, of M .  There are only t ,  distinct rows 
in M',  namely the rows corresponding to the vectors vr,; with r = s and ( r , i )  E I ,  
and the vector (1,1,. . . ,1). Let {il,. . . ,it,-l} = {i I ( s , i )  E I } .  Let M" be the 
matrix consisting of the rows e1,vs,i17.. . ,vs,its-l. Then (M"I = lM~ll, where 
is the matrix M" with the first row and column removed. But hi; is just a Van 
der blonde matrix with row ij multiplied by zTij for 1 5 j 5 t ,  - 1. So lM:ll # 0. 
Therefore el is not in (v,,? 1 ( ~ , z )  E I ) .  If y contains at least t ,  participants from 
C, for 1 5 r 5 u, but does not contain a total of at least t participants, then the 
participants in 7 receive no information about uo since el and the vectors v,,; for 
( r 7 z )  E I are independent. 0 

The construction presented in Theorem 3 requires that the dealer check exponen- 
tially many subspaces. It is easy to give an efficient implementation in the case that 
t = C:='=,t;. The dealer can simply choose a. as the secret, and then randomly pick 
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bl,. . . , b, such that  a. = Cy=o b;.  He then uses a threshold scheme with threshold t;  
and secret b; to  distribute shares to  the participants in C;. However, we have found 
no efficient construction for the more general compartmented access structures. 

5 Remarks 
Benaloh [I] has shown that any set of subsets which can be recognized by a monotone 
circuit in which all gates and all inputs have fanout 1 can be realized as the access 
structure of an ideal secret sharing scheme. He also pointed out that since threshold 
schemes were ideal secret sharing schemes, threshold gates could be added to  the 
circuits as well. Since we have now shown that multilevel schemes and compartmented 
schemes are ideal, gates realizing these access structures can be added as well. 
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