SOME IDENTITIES INVOLVING THE FIBONACCI POLYNOMIALS*

Yi Yuan and Wenpeng Zhang

Research Center for Basic Science, Xi'an Jiaotong University, Xi'an Shaanxi, P.R. China
(Submitted June 2000-Final Revision November 2000)

1. INTRODUCTION AND RESULTS

As usual, the Fibonacci polynomials $F(x)=\left\{F_{n}(x)\right\}, n=0,1,2, \ldots$, are defined by the secondorder linear recurrence sequence

$$
\begin{equation*}
F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x) \tag{1}
\end{equation*}
$$

for $n \geq 0$ and $F_{0}(x)=0, F_{1}(x)=1$. Let

$$
\alpha=\frac{x+\sqrt{x^{2}+4}}{2} \text { and } \beta=\frac{x-\sqrt{x^{2}+4}}{2}
$$

denote the roots of the characteristic polynomial $\lambda^{2}-x \lambda-1$ of the sequence $F(x)$, then the terms of the sequence $F(x)$ (see [2]) can be expressed as

$$
F_{n}(x)=\frac{1}{\alpha-\beta}\left\{\alpha^{n}-\beta^{n}\right\}
$$

for $n=0,1,2, \ldots$.
If $x=1$, then the sequence $F(1)$ is called the Fibonacci sequence, and we shall denote it by $F=\left\{F_{n}\right\}$.

The various properties of $\left\{F_{n}\right\}$ were investigated by many authors. For example, Duncan [1] and Kuipers [3] proved that $\left(\log F_{n}\right)$ is uniformly distributed mod 1. Robbins [4] studied the Fibonacci numbers of the forms $p x^{2} \pm 1$ and $p x^{3} \pm 1$, where p is a prime. The second author [5] obtained some identities involving the Fibonacci numbers. The main purpose of this paper is to study how to calculate the summation involving the Fibonacci polynomials:

$$
\begin{equation*}
\sum_{a_{1}+a_{2}+\cdots+a_{k}=n} F_{a_{1}+1}(x) \cdot F_{a_{2}+1}(x) \cdots \cdot F_{a_{k}+1}(x), \tag{2}
\end{equation*}
$$

where the summation is over all k-dimension nonnegative integer coordinates $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $a_{1}+a_{2}+\cdots+a_{k}=n$, and k is any positive integer.

Regarding (2), it seems that it has not been studied yet, at least I have not seen expressions like (2) before. The problem is interesting because it is a generalization of [5], and it can also help us to find some new convolution properties for $F(x)$. In this paper we use the generating function of the sequence $F(x)$ and its partial derivative to study the evaluation of (2), and give an interesting identity for any fixed positive integers k and n. That is, we shall prove the following proposition.

Proposition: Let $F(x)=\left\{F_{n}(x)\right\}$ be defined by (1). Then, for any positive integers k and n, we have the calculating formula

[^0]$$
\sum_{a_{1}+a_{2}+\cdots+a_{k}=n} F_{a_{1}+1}(x) \cdot F_{a_{2}+1}(x) \cdots \cdots F_{a_{k}+1}(x)=\sum_{m=0}^{\left[\frac{n}{2}\right]}\binom{n+k-1-m}{m} \cdot\binom{n+k-1-2 m}{k-1} \cdot x^{n-2 m}
$$
where $\binom{m}{n}=\frac{m!}{n!(m-n)!}$, and $[z]$ denotes the greatest integer not exceeding z.
From this proposition, we may immediately deduce the following several corollaries.
Corollary 1: For any positive integers k and n, we have the identity
$$
\sum_{a_{1}+a_{2}+\cdots+a_{k}=n+k} F_{a_{1}} \cdot F_{a_{2}} \cdots \cdots F_{a_{k}}=\sum_{m=0}^{\left[\frac{n}{2}\right]}\binom{n+k-1-m}{m} \cdot\binom{n+k-1-2 m}{k-1} .
$$

Corollary 2: For any positive integers k and n, we have

$$
\sum_{a_{1}+\cdots+a_{k}=n+k} F_{2 a_{1}} \cdot F_{2 a_{2}} \cdots \cdot F_{2 a_{k}}=3^{k} \cdot 5^{\frac{n-k}{2}} \cdot \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{\binom{n+k-1-m}{m} \cdot\binom{n+k-1-2 m}{k-1}}{5^{m}} .
$$

Corollary 3: The identity

$$
\sum_{a_{1}+\cdots+a_{k}=n+k} F_{3 a_{1}} \cdot F_{3 a_{2}} \cdots \cdots \cdot F_{3 a_{k}}=2^{2 n+k} \cdot \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{\binom{n+k-1-m}{m} \cdot\binom{n+k-1-2 m}{k-1}}{16^{m}}
$$

holds for all positive integers k and n.
Corollary 4: Let k and n be positive integers. Then

$$
\sum_{a_{1}+\cdots+a_{k}=n+k} F_{4 a_{1}} \cdot F_{4 a_{2}} \cdots \cdot F_{4 a_{k}}=3^{n} \cdot 7^{k} \cdot 5^{\frac{n-k}{2}} \cdot \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{\binom{n+k-1-m}{m} \cdot\binom{n+k-1-2 m}{k-1}}{45^{m}}
$$

Corollary 5: Let k and n be positive integers. Then

$$
\sum_{a_{1}+\cdots+a_{k}=n+k} F_{5 a_{1}} \cdot F_{5 a_{2}} \cdots \cdot F_{5 a_{k}}=5^{k} \cdot 11^{n} \cdot \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{\binom{n+k-1-m}{m} \cdot\binom{n+k-1-2 m}{k-1}}{121^{m}} .
$$

In fact, for any positive integer m, using the proposition, we can give an exact calculating formula for

$$
\sum_{a_{1}+a_{2}+\cdots+a_{k}=n+k} F_{m a_{1}} \cdot F_{m a_{2}} \cdots \cdots \cdot F_{m a_{k}} .
$$

2. PROOF OF THE PROPOSITION

In this section we shall complete the proof of the proposition. First, note that

$$
F_{n}(x)=\frac{1}{\sqrt{x^{2}+4}}\left[\left(\frac{x+\sqrt{x^{2}+4}}{2}\right)^{n}-\left(\frac{x-\sqrt{x^{2}+4}}{2}\right)^{n}\right]
$$

so we can easily deduce that the generating function of $F(x)$ is

$$
\begin{align*}
G(t, x) & =\frac{1}{1-x t-t^{2}}=\frac{1}{(\alpha-t)(\beta-t)} \\
& =\frac{1}{\alpha-\beta} \sum_{n=0}^{\infty}\left(\alpha^{n+1}-\beta^{n+1}\right) \cdot t^{n}=\sum_{n=0}^{\infty} F_{n+1}(x) \cdot t^{n} . \tag{3}
\end{align*}
$$

Let $\frac{\partial G^{k}(t, x)}{\partial x^{k}}$ denote the $k^{\text {th }}$ partial derivative of $G(t, x)$ for x, and $F_{n}^{(k)}(x)$ denote the $k^{\text {th }}$ derivative of $F_{n}(x)$. Then from (3) we have

$$
\begin{gather*}
\frac{\partial G(t, x)}{\partial x}=\frac{t}{\left(1-x t-t^{2}\right)^{2}}=\sum_{n=0}^{\infty} F_{n+1}^{(1)}(x) \cdot t^{n}, \\
\frac{\partial G^{2}(t, x)}{\partial x^{2}}=\frac{2!\cdot t^{2}}{\left(1-x t-t^{2}\right)^{3}}=\sum_{n=0}^{\infty} F_{n+1}^{(2)}(x) \cdot t^{n}, \tag{5}\\
\frac{\partial G^{k-1}(t, x)}{\partial x^{k-1}}=\frac{(k-1)!\cdot t^{k-1}}{\left(1-x t-t^{2}\right)^{k}}=\sum_{n=0}^{\infty} F_{n+1}^{(k-1)}(x) \cdot t^{n}=\sum_{n=0}^{\infty} F_{n+1}^{(k-1)}(x) \cdot t^{n+k-1},
\end{gather*}
$$

where we have used the fact that $F_{n+1}(x)$ is a polynomial of degree n.
For any two absolutely convergent power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$, note that

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{u+v=n} a_{u} b_{v}\right) x^{n} .
$$

So from (5) we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left(\sum_{a_{1}+\cdots+a_{k}=n} F_{a_{1}+1}(x) \cdot F_{a_{2}+1}(x) \cdots \cdot F_{a_{k}+1}(x)\right) \cdot t^{n}=\left(\sum_{n=0}^{\infty} F_{n+1}(x) \cdot t^{n}\right)^{k} \tag{6}\\
& =\frac{1}{\left(1-x t-t^{2}\right)^{k}}=\frac{1}{(k-1)!\cdot t^{k-1}} \frac{\partial G^{k-1}(t, x)}{\partial x^{k-1}}=\frac{1}{(k-1)!} \sum_{n=0}^{\infty} F_{n+k}^{(k-1)}(x) \cdot t^{n} .
\end{align*}
$$

Equating the coefficients of t^{n} on both sides of equation (6), we obtain the identity

$$
\begin{equation*}
\sum_{a_{1}+a_{2}+\cdots+a_{k}=n} F_{a_{1}+1}(x) \cdot F_{a_{2}+1}(x) \cdots \cdot F_{a_{k}+1}(x)=\frac{1}{(k-1)!} \cdot F_{n+k}^{(k-1)}(x) . \tag{7}
\end{equation*}
$$

On the other hand, note that from the combinatorial identity

$$
\begin{equation*}
\binom{n-m+1}{m}=\binom{n-m}{m}+\binom{n-m}{m-1}, \tag{8}
\end{equation*}
$$

the recurrence formula $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$, and by mathematical induction, we can easily deduce

$$
\begin{equation*}
F_{n+1}(x)=\sum_{m=0}^{\left[\frac{n}{2]}\right.}\binom{n-m}{m} \cdot x^{n-2 m} \tag{9}
\end{equation*}
$$

In fact, from the definition of $F_{n}(x)$, we know that (9) is true for $n=0$ and $n=1$. Assume (9) is true for all integers $0 \leq n \leq k$. Then, for $n=k+1$, applying (8) and the inductive hypothesis we immediately obtain

$$
\begin{aligned}
& \sum_{m=0}^{\left[\frac{k+1}{2}\right]}\binom{k+1-m}{m} \cdot x^{k+1-2 m}=1+\sum_{m=0}^{\left[\frac{k-1}{2}\right]}\binom{k-m}{m+1} \cdot x^{k-1-2 m} \\
& =1+\sum_{m=0}^{\left.\frac{k-1}{2}\right]}\binom{k-1-m}{m+1} \cdot x^{k-1-2 m}+\sum_{m=0}^{\left[\frac{k-1}{2}\right]}\binom{k-1-m}{m} \cdot x^{k-1-2 m} \\
& =\sum_{m=0}^{\left.\frac{[k-1}{2}\right]}\binom{k-m}{m} \cdot x^{k+1-2 m}+\sum_{m=0}^{\left[\frac{k-1}{2}\right]}\binom{k-1-m}{m} \cdot x^{k-1-2 m} \\
& =x \sum_{m=0}^{\left[\frac{k}{2}\right]}\binom{k-m}{m} \cdot x^{k-2 m}+\sum_{m=0}^{\left[\frac{k-1}{2}\right]}\binom{k-1-m}{m} \cdot x^{k-1-2 m} \\
& =x F_{k+1}(x)+F_{k}(x)=F_{k+2}(x)
\end{aligned}
$$

where we have used $\binom{k-m}{m}=0$ if $m>\frac{k}{2}$. So by induction we know that (9) is true for all nonnegative integer n.

From (9) we can deduce that the $(k-1)^{\text {th }}$ derivative of $F_{n+k}(x)$ is

$$
\begin{equation*}
F_{n+k}^{(k-1)}(x)=\left(\sum_{m=0}^{\left[\frac{n+k-1}{2-1}\right.}\binom{n+k-1-m}{m} \cdot x^{n+k-1-2 m}\right)^{(k-1)}=\sum_{m=0}^{\left[\frac{n}{n}\right]} \frac{(n+k-1-m)!}{m!\cdot(n-2 m)!} x^{n-2 m} . \tag{10}
\end{equation*}
$$

Combining (7) and (10), we obtain the identity

$$
\sum_{a_{1}+\cdots+a_{k}=n} F_{a_{1}+1}(x) \cdot F_{a_{2}+1}(x) \cdots \cdots F_{a_{k}+1}(x)=\sum_{m=0}^{\left[\frac{n}{2]}\right]}\binom{n+k-1-m}{m} \cdot\binom{n+k-1-2 m}{k-1} \cdot x^{n-2 m} .
$$

This completes the proof of the Proposition.
Proof of the Corollaries: Taking $x=1$ in the Proposition and noting that $F_{0}=0$, we have

$$
\begin{aligned}
& \sum_{a_{1}+a_{2}+\cdots+a_{k}=n} F_{a_{1}+1}(1) \cdot F_{a_{2}+1}(1) \cdots \cdot F_{a_{k}+1}(1)=\sum_{a_{1}+1+a_{2}+1+\cdots+a_{k}+1=n+k} F_{a_{1}+1} \cdot F_{a_{2}+1} \cdots \cdots \cdot F_{a_{k}+1} \\
& =\sum_{a_{1}+a_{2}+\cdots+a_{k}=n+k} F_{a_{1}} \cdot F_{a_{2}} \cdots \cdot F_{a_{k}}=\sum_{m=0}^{\left[\frac{n}{2}\right]}\binom{n+k-1-m}{m} \cdot\binom{n+k-1-2 m}{k-1} .
\end{aligned}
$$

This proves Corollary 1.
Taking $x=-\sqrt{5}, 4,-3 \sqrt{5}$, and 11 , respectively, in the Proposition, and noting that

$$
\begin{gathered}
F_{n}(-\sqrt{5})=\frac{(-1)^{n+1}}{3}\left[\left(\frac{3+\sqrt{5}}{2}\right)^{n}-\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right]=\frac{(-1)^{n+1} \sqrt{5}}{3} \cdot F_{2 n}, \\
F_{n}(4)=\frac{1}{2 \sqrt{5}}\left[(2+\sqrt{5})^{n}-(2-\sqrt{5})^{n}\right]=\frac{1}{2 \sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{3 n}-\left(\frac{1-\sqrt{5}}{2}\right)^{3 n}\right]=\frac{1}{2} \cdot F_{3 n}, \\
F_{n}(-3 \sqrt{5})=\frac{(-1)^{n+1}}{7}\left[\left(\frac{7+3 \sqrt{5}}{2}\right)^{n}-\left(\frac{7-3 \sqrt{5}}{2}\right)^{n}\right]=\frac{(-1)^{n+1} \sqrt{5}}{7} \cdot F_{4 n},
\end{gathered}
$$

and

$$
F_{n}(11)=\frac{1}{5 \sqrt{5}}\left[\left(\frac{11+5 \sqrt{5}}{2}\right)^{n}-\left(\frac{11-5 \sqrt{5}}{2}\right)^{n}\right]=\frac{1}{5 \sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{5 n}-\left(\frac{1-\sqrt{5}}{2}\right)^{5 n}\right]=\frac{1}{5} \cdot F_{5 n},
$$

we may immediately deduce Corollary 2, Corollary 3, Corollary 4, and Corollary 5.
This completes the proof of the Corollaries.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the anonymous referees for their very helpful and detailed comments.

REFERENCES

1. R. L. Duncan. "Application of Uniform Distribution to the Fibonacci Numbers." The Fibonacci Quarterly 5.2 (1967):137-40.
2. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. London: Oxford University Press, 1962.
3. L. Kuipers. "Remark on a Paper by R. L. Duncan Concerning the Uniform Distribution Mod 1 of the Sequence of the Logarithms of the Fibonacci Numbers." The Fibonacci Quarterly 7 (1969):465-66.
4. N. Robbins. "Numbers of the Forms $p x^{2} \pm 1, p x^{3} \pm 1$, Where p Is Prime." In Fibonacci Numbers and Their Applications 2:77-88. Ed. A. N. Philippou et al. Dordrecht: Reidel, 1988.
5. Wenpeng Zhang. "Some Identities Involving the Fibonacci Numbers." The Fibonacci Quarterly 35.3 (1997):225-29.
AMS Classification Numbers: 11B37, 11B39

[^0]: * This work was supported by the Doctorate Foundation of Xi'an Jiaotong University.

