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1. INTROBUCTION AND RESULTS 

As usual, the Fibonacci polynomials F(x) = {Fn(x)}, ?i = 0,1,2,..., are defined by the second-
order linear recurrence sequence 

Fw+2(x) = xFw+1(x) + Fw(x) (1) 

for n > 0 and F0(x) = 0, Fx{x) = 1. Let 

a = 1 - and 8 = !L-
2 r 2 

denote the roots of the characteristic polynomial I 2 - xX -1 of the sequence F(x), then the terms 
of the sequence F(x) (see [2]) can be expressed as 

Fn(x) = -~p{oc"-n 

for » = (>, 1,2,.... 
If x = 1, then the sequence F(l) is called the Fibonacci sequence, and we shall denote it by 

F = {F„). 
The various properties of {Fn) were investigated by many authors. For example, Duncan [1] 

and Kuipers [3] proved that QogFJ is uniformly distributed mod 1. Robbins [4] studied the 
Fibonacci numbers of the forms px2 ±1 and px3 ± 1, where p is a prime. The second author [5] 
obtained some identities involving the Fibonacci numbers. The main purpose of this paper is to 
study how to calculate the summation involving the Fibonacci polynomials: 

I Fai+i(*)-Fa2+1(x) Fat+l(x), (2) 

where the summation is over all ^-dimension nonnegative integer coordinates ( a b a 2 ? ...,ak) such 
that ax +a2 + • • • H-â  = n9 and k is any positive integer. 

Regarding (2), it seems that it has not been studied yet, at least I have not seen expressions 
like (2) before. The problem is interesting because it is a generalization of [5], and it can also help 
us to find some new convolution properties for F(x). In this paper we use the generating func-
tion of the sequence F(x) and its partial derivative to study the evaluation of (2), and give an 
interesting identity for any fixed positive integers k and n. That is, we shall prove the following 
proposition. 

Proposition: Let F(x) = {Fn(x)} be defined by (1). Then, for any positive integers k and n, we 
have the calculating formula 
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z ^+i(*)-^+tw ^+iw=if , i +*-1-w}f , i +V-1r2 B ,Vt a . 
where (J) = wl(^iw)!, and [z] denotes the greatest integer not exceeding z. 

From this proposition, we may immediately deduce the following several corollaries. 

Corollary 1: For any positive integers k and w, we have the identity 

aj +a2 H — +tf& = n+k m=Q 

'n + k-l-m\ (n + k-l-2m 
m ) \ k-l 

Corollary 2: For any positive integers k and n, we have 

Y F -F F - i M ^ Y ^ 
Jfc-l-/iA (n + k-l-2m 

m j ' l jfc-1 

m=0 

Corollary 3: The identity 

^ • F 3ai 3o9 
[ 3 a A 

_ <}2n+k m l * H *-i J 
<OjH—+ak=n+k m=0 

holds for all positive integers k and n. 

Corollary 4: Let £ and n be positive integers. Then 

16" 

ri f/i + £ - l - / ?A fn + k-l-
Y K -R .....R = 3 » . 7 t - 5 ^ - y i ^ A *Z1 

- 1 - 2 / M 

«] + ••• +«£=«+& m=0 

Corollary 5: Let & and w be positive integers. Then 
ri fn + k-l-m\ (n + k-l-2m 

z v s * ^=5*.ii-.tL—^ n ^ 
121" 

In feet, for any positive integer m, using the proposition, we can give an exact calculating 
formula for 

cti +a2+ - • • +cik ~ n+k 

p .p ...--F 
•"• max * ma2 •* mak • 

2. PROOF OF THE PROPOSITION 

In this section we shall complete the proof of the proposition. First, note that 

Fn(x) = - 1 x W x 2 + 4 Y f x -Vx 2 +4 V 
Vx2+4 

so we can easily deduce that the generating function of F(x) is 
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G(t,x) = 1 1 
\-xt-t1 (a-t)(fi-t) 

=^f>"+1-/?"+V>"=Z^+1(*)-'"-
a P n=0 

(3) 

«=o 
Let J^** denote the &* partial derivative of G(t, x) for x, and F^k\x) denote the &* deriva-
tive of F„(x). Then from (3) we have 

dG(f, x) t ILF^xyt", ax (i-xt-ty %-
<X}\t,x)_ 2\.f _frm(x)tn 

(5) 

k-l oo dG«-%x)= (k-iy.-f-1 _ 
dxk~x (l-xt-t2f Z^w-^Z^A*)-' n+k-l 

n=0 n=0 

where we have used the fact that Fn+l(x) is a polynomial of degree n. 
For any two absolutely convergent power series ZJ^Lo'V^ and T^=0hnxn, note that 

OO \ ( 00 \ 00 / " \ 

!"„*" • ZV" = 1 Z«A 
H=0 / \w=0 / «=0 \u+v=n J 

X". 

So from (5) we obtain 

Z[ Z v*)-f«,+iW ^iwl-'^fz^wiW-'"^ 
n = 0 \̂ <j]H !-<»*=>> J \n=0 

1 1 dG (f,x) _ 1 y c-(fc-i)/-̂ . t" 

Equating the coefficients of/" on both sides of equation (6), we obtain the identity 

Z F^xyF^x) Fak+1(x) = —I_./&-»>(*). 

On the other hand, note that from the combinatorial identity 

(*-l)! 

(n-m +1 "\_ (n-m \ (n-rn\ 
\ m ) - { m ) + {m-l)> 

(6) 

(7) 

(8) 

the recurrence formula Fn+2(x) = xF„+l(x) + F„(x), and by mathematical induction, we can easily 
deduce 

^+i(*)=z(w;wV2 m (9) 
In fact, from the definition of Fn(x), we know that (9) is true for n = 0 and n = 1. Assume 

(9) is true for all integers 0 < n < k. Then, for n - k +1, applying (8) and the inductive hypothesis 
we immediately obtain 
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[—1 

m=Q ' m m=0 V / 
2m 

=i+2 
— ' k-i-m\ _k-l-2m — 

m=0 
m + l m=0 V / 

-1-2/w 

[¥] [¥], 

m=0 ^ ' w=0 

-l-2m 

k-l-m) k-l-2m 
m l'x 

= xFM(x) + Fk(x) = Fk+2 (X), 

where we have used {k
m

m)= 0 if m> •§-. So by'induction we know that (9) is true for all non-
negative integer n. 

From (9) we can deduce that the (k -1)* derivative of Fn+k(x) is 

^ ( x ) = 
, L ^ S fft + k-l-m Yx„+k-i-2m

] — 
m=0 m 

(n + k-l-m)\Y„-2m 
„.„ m\-(n-2m){ = Y/Z^\"^x"~lm- o°) 

Combining (7) and (10), we obtain the identity 

i JW^-M n«w-S("+*;l"">("+V-Ir2"}*rt"-
This completes the proof of the Proposition. 

Proof of the Corollaries: Taking x = 1 in the Proposition and noting that F0 = 0, we have 

al + a2 + ---+ak=n al+l+a2+l+---+ak+l=n+k 

[-1 

fl|+a2 +•••+"* = "+£ m=0 v ' v ' 

This proves Corollary 1. 

Taking x = —S, 4, - 3*j5, and 11, respectively, in the Proposition, and noting that 

• ^ + i 

FnHSY-
(-1) «+l 3+sx (3-sy (-1)"+1V5 

**!«•> 

w)=^[(2+vsr-(2-vsr]=^ 
F„(-3V5) = ^ 

1+VTf" fl-V5V"' 
2 3"' 

7 + 3VSY f 7-3^5 Y 
7 4«? 

and 
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W ) = ̂ 5 W m - M '1+V5 5n 1-V5V"' 
= 5^5». 

we may immediately deduce Corollary 2, Corollary 3, Corollary 4, and Corollary 5. 
This completes the proof of the Corollaries. 
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