
 
 

*Corresponding author, e-mail: cankizilates@gmail.com 
 

Research Article             GU J Sci 34 (2): 493-504 (2021)                              DOI:10.35378gujs.705885 

Gazi University 

Journal of Science 
 

http://dergipark.gov.tr/gujs 

Some Identities of Harmonic and Hyperharmonic Fibonacci Numbers 

 

Mirac CETIN1 , Can KIZILATES2,* , Fatma YESIL BARAN3 , Naim TUGLU4  

1Baskent University, Department of Mathematics Education, 06790, Ankara, Turkey 
2Zonguldak Bulent Ecevit University, Department of Mathematics, 67100, Zonguldak, Turkey 
3Amasya University, Department of Computer Engineering, 05100, Amasya, Turkey 
4Gazi University, Department of Mathematics, 06500, Ankara, Turkey 

 

Highlights 

• This paper is deal with some identities of the harmonic and the hyperharmonic Fibonacci numbers. 

• By using the symmetric algorithm, we get some important identities which improve the usual results. 

• By using the Riordan array, some identities for hyperharmonic Fibonacci numbers are derived. 
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Abstract 
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1. INTRODUCTION 

Harmonic numbers became popular in combinatorial problems and special functions. They are studied in 

many areas of mathematics and especially are considerable for number theory. They are related to harmonic 

series and Riemann zeta function. The 𝑛 −th harmonic number, denoted by 𝐻𝑛, is defined by 

 

𝐻𝑛 =∑
1

𝑘

𝑛

𝑘=1

 

 

where 𝐻0 = 0. Conway and Guy [1] generalized the harmonic numbers and they called the 𝑛 −th 

hyperharmonic number of order 𝑟, denoted by 𝐻𝑛
(𝑟)

, as 

 

𝐻𝑛
(𝑟)
=∑𝐻𝑘

(𝑟−1)

𝑛

𝑘=1

     ( 𝑛, 𝑟 ≥  1) 

 

where 𝐻𝑛
(0)
=
1

𝑛
 and 𝐻𝑛

(1)
= 𝐻𝑛 is the 𝑛 −th ordinary harmonic number.
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Fibonacci sequence is one of the most popular and useful sequence in mathematics. Therefore, this 

sequence has been investigated extensively. The Euler-Seidel matrix, which is given by [2], is useful to 

obtain some properties of the hyperharmonic and the 𝑟 −Stirling numbers. Dil and Mezö [3] defined the 

hyper-Fibonacci numbers and the hyper-Lucas numbers. Hyper-Fibonacci numbers [3] is denoted by 𝐹𝑛
(𝑟)

, 

for any 𝑟 positive integer 

 

𝐹𝑛
(𝑟)
=∑𝐹𝑛

(𝑟−1)

𝑛

𝑘=1

         ( 𝑛, 𝑟 ≥  1) 

 

with 𝐹𝑛
(0)
= 𝐹𝑛, 𝐹0

(𝑟)
= 0, 𝐹1

(𝑟)
= 1. Also by using recurrence relation which define 𝑎𝑛

𝑘 = 𝑎𝑛−1
𝑘 + 𝑎𝑛

𝑘−1, the 

authors introduce a symmetric algorithm. With the help of the symmetric algorithm, we can obtain some 

properties of the hyperharmonic numbers, Fibonacci and Lucas numbers and incomplete Fibonacci and 

Lucas numbers. Bahşi et al. [4] analyzed combinatorial properties of the hyper-Fibonacci and hyper-Lucas 

numbers by using a symmetric algorithm. Recently, in [5] Mezö and Ramirez obtained new algorithm 

which named the 𝑞 −analogue of symmetric matrix algorithm. Moreover, the authors give several analytic 

and number theoretic identities for the 𝑞 −hyperharmonic numbers. For more details about these algorithms 

see [6-8]. 

 

Fibonacci zeta function is defined by 

 

𝜁𝐹(𝑠) = ∑
1

𝐹𝑘
𝑠

∞

𝑘=1

 

 

and some combinatorial properties of this function have been studied in [9, 10]. But simple form of ∑
1

𝐹𝑘

∞
𝑘=1  

for finite sums of reciprocals Fibonacci numbers is not known [11]. 

 

Tuglu et al. [12] called this finite sum as the 𝑛 −th harmonic Fibonacci number by 

 

𝔽𝑛 =∑
1

𝐹𝑘

𝑛

𝑘=1

 (1) 

 

and for any 𝑟 positive integer, they introduced the 𝑛 −th hyperharmonic Fibonacci number, denoted by 

𝔽𝑛
(𝑟)

, by the undermentioned recurrence relations 

 

𝔽𝑛
(𝑟)
=∑𝔽𝑘

(𝑟−1)

𝑛

𝑘=1

             ( 𝑛, 𝑟 ≥  1) (2) 

 

with 𝔽𝑛
(0)
=

1

Fn
, 𝔽0

(𝑟)
= 0  and 𝔽0 = 0. For 𝑟 = 1, in particular, 

 

𝔽𝑛
(1)
= 𝔽𝑛 =∑

1

𝐹𝑘

𝑛

𝑘=1

  

 

is obtained. Tuglu and Kızılateş [13-14] studied norms of some circulant and special matrices involving the 

harmonic Fibonacci and the hyperharmonic Fibonacci numbers. 

 

Riordan matrices have been studied in some combinatorial problems and identities. Shapiro et al. [15] 

introduced Riordan group, which has element of Riordan matrices and defined conception of Riordan array. 

A Riordan array is defined by a pair of formal power series as follows: 
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𝑅 = (𝑔(𝑥), 𝑓(𝑥)) =  [𝑑𝑛,𝑘]𝑛,𝑘≥0  (3) 

 

with 𝑓(0) = 0, 𝑓′(0) ≠ 0 and 𝑔(0) ≠ 0 such that 

 

𝑑𝑛,𝑘 = [𝑥
𝑛]𝑔(𝑥)𝑓(𝑥)𝑘 (4) 

 

where [𝑥𝑛] denotes the coefficient operator of 𝑥𝑛 obtained from 𝑓(𝑥). Using this definition, for any 

sequence {ℎ𝑘} having ℎ(𝑥) as its generating function, we have 

 

∑𝑑𝑛,𝑘ℎ𝑘

𝑛

𝑘=1

= [𝑥𝑛]𝑔(𝑥)ℎ(𝑓(𝑥)). (5) 

 

The above identity is named the fundamental theorem of Riordan arrays. The authors [16-18] studied the 

harmonic numbers with related to Riordan arrays. 

 

In this study, our aim is to get unknown combinatorial properties of the hyperharmonic and the harmonic 

Fibonacci numbers. The paper is formed as follows. In section 2, we give the generating functions of the 

harmonic Fibonacci and hyperharmonic Fibonacci numbers respectively. In section 3, Mezö and Ramirez 

[5] obtained unknown number theoretic identities via 𝑞 −harmonic numbers with help of 𝑞 −symmetric 

algorithm. By using this algorithm, we give several combinatorial identities for the harmonic and 

hyperharmonic Fibonacci numbers which weren't available in literature. Finally, in section 4, with aid of 

concept of Riordan array, we call attention some formulas for these numbers. 

 

2. THE GENERATING FUNCTIONS 

 

A 𝑞 −analogue of logarithm [19] is given by 

 

𝐿{𝑞}(𝑥) = ∑
𝑥𝑛

𝑞𝑛 − 1

∞

𝑛=1

,       |𝑞| > 1,    |𝑥| < |𝑞|.  (6) 

 

And Murty [20] showed that 

 

∑
1

𝐹𝑛

∞

𝑛=1

= (𝛼 − 𝛽)𝐿𝑞(−𝛼) (7) 

 

 

with 𝑞 = −𝛼2 and  𝛼 =
1+√5

2
, 𝛽 =

1−√5

2
. 

 

The following theorem is about the generating function of 𝔽𝑛. 

 

Theorem 1. Let 𝔽𝑛 be the 𝑛 −th harmonic Fibonacci number. Then the generating function of 𝔽𝑛 is 

 

∑𝔽𝑘𝑥
𝑛

∞

𝑛=1

=
𝛼 − 𝛽

1 − 𝑥
𝐿−𝛼2(−𝛼𝑥) (8) 

 

where 𝐿−𝛼2 is as in (6). 

 

Proof. Using the Equations (1), (6) and (7), we can obtain 
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∑𝔽𝑛𝑥
𝑛

∞

𝑛=1

= ∑(∑
1

𝐹𝑘

𝑛

𝑘=1

)𝑥𝑛
∞

𝑛=1

 

= ∑(∑
1

𝐹𝑘

∞

𝑘=1

𝑥𝑛+𝑘)

∞

𝑛=1

 

= ∑𝑥𝑛∑
1

𝐹𝑘

∞

𝑘=1

𝑥𝑘
∞

𝑛=1

 

=
1

1 − 𝑥
(𝛼 − 𝛽)∑

1

𝛼𝑘 − 𝛽𝑘

∞

𝑘=1

𝑥𝑘 

=
𝛼 − 𝛽

1 − 𝑥
∑

(−𝛼)𝑘

(−𝛼2)𝑘 − 1

∞

𝑘=1

𝑥𝑘 

=
𝛼 − 𝛽

1 − 𝑥
𝐿−𝛼2(−𝛼𝑥). 

 

Corollary 1. Let 𝔽𝑛
(𝑟)

 be the 𝑛 −th hyperharmonic Fibonacci number. Then the generating function of 𝔽𝑛
(𝑟)

 

is 

 

∑𝔽𝑛
(𝑟)
𝑥𝑛

∞

𝑛=1

=
𝛼 − 𝛽

(1 − 𝑥)𝑟
𝐿−𝛼2(−𝛼𝑥). (9) 

 

Proof. Using the definition of the hyperharmonic Fibonacci numbers and the properties of generating 

functions, we get 

 

∑𝔽𝑛
(𝑟)
𝑥𝑛

∞

𝑛=1

= ∑(∑ ⋯

𝑛

𝑘𝑟=1

∑
1

𝐹𝑘1

𝑘2

𝑘1=1

)𝑥𝑛
∞

𝑛=1

 

=
1

1 − 𝑥
(𝛼 − 𝛽)𝐿−𝛼2(−𝛼𝑥), 

 

which proves the corollary. 

 

∑𝔽𝑛+1
(𝑟)
𝑥𝑛

∞

𝑛=0

=
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑟
𝐿−𝛼2(−𝛼𝑥). 

 

Shifting indices for 𝑛 and using the Equation (9), the following equation is obtained 

 

∑𝔽𝑛+1
(𝑟)
𝑥𝑛

∞

𝑛=0

=
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑟
𝐿−𝛼2(−𝛼𝑥). (10) 

 

3. SYMMETRIC INFINITE MATRIX 

 

In this section, we obtain some identities involving the hyperharmonic Fibonacci numbers by using the 

symmetric infinite matrix. 

 

Let (𝑎𝑛)  and (𝑎𝑛) be sequences. The symmetric infinite matrix associated with these sequences fixed by 

the formulas 

 

𝑎𝑛
0 = 𝑎𝑛,   𝑎0

𝑛 = 𝑎𝑛     (𝑛 ≥ 0)  
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𝑎𝑛
𝑘 = 𝑎𝑛−1

𝑘 + 𝑎𝑛
𝑘−1      (𝑛 ≥ 1,   𝑘 ≥ 1). (11) 

 

Let 𝑎𝑛
𝑘 be any entries, where 𝑘 and 𝑛 are row and column respectively. Then using the symmetric relation 

𝑎𝑛
𝑘 can be obtained in terms of the first row's and the first column's elements as 

 

𝑎𝑛
𝑘 =∑(

𝑛 + 𝑘 − 𝑖 − 1

𝑛 − 1
)𝑎0

𝑖

𝑘

𝑖=1

+∑(
𝑘 + 𝑛 − 𝑗 − 1

𝑘 − 1
)𝑎𝑗

0

𝑛

𝑗=1

 (12) 

 

(see [3] for more details). 

 

Now we apply the symmetric infinite matrix method for 𝔽𝑛
(𝑟)

 numbers. We start with 𝑎𝑛
0 = 𝔽𝑛+1

(𝑚)
 and 𝑎0

𝑛 =

𝔽1
(𝑚+𝑛)

= 1 ( 𝑛 ≥  1, 𝑚 ≥  0) in (3.1). Then the following matrix 

 

(

 
 
 
 

𝔽1
(𝑚)

𝔽2
(𝑚)

𝔽3
(𝑚)

𝔽4
(𝑚)

⋯

𝔽1
(𝑚+1)

𝔽2
(𝑚+1)

𝔽3
(𝑚+1)

𝔽4
(𝑚+1)

⋯

𝔽1
(𝑚+2)

𝔽2
(𝑚+2)

𝔽3
(𝑚+2)

𝔽4
(𝑚+2)

⋯

𝔽1
(𝑚+3)

𝔽2
(𝑚+3)

𝔽3
(𝑚+3)

𝔽4
(𝑚+3)

⋯

⋮ ⋮ ⋮ ⋮ ⋱ )

 
 
 
 

 (13) 

 

is the corresponding infinite matrix. 

 

Theorem 2. Let 𝑛 ≥  1, 𝑚 ≥  0 and 𝑟 > 0. We have 

 

𝔽𝑛
(𝑚+𝑟)

=∑(
𝑛 + 𝑟 − 𝑠 − 1

𝑟 − 1
)𝔽𝑠

(𝑚)
.

𝑛

𝑠=1

 (14) 

 

Proof. Let us take 𝑎𝑛
0 = 𝔽𝑛+1

(𝑚)
 and 𝑎0

𝑛 = 𝔽1
(𝑚+𝑛)

= 1  (𝑛 ≥  1)  in (11). From (12), we obtain 

 

𝑎𝑛+1
𝑟+1 =∑(

𝑛 + 𝑟 − 𝑖 + 1

𝑛
) 𝑎0

𝑖

𝑟+1

𝑖=1

+∑(
𝑛 + 𝑟 + 1 − 𝑠

𝑟
) 𝑎𝑠

0

𝑛+1

𝑠=1

 

=∑(
𝑛 + 𝑟 − 𝑖

𝑛
) 𝑎0

𝑖+1

𝑟

𝑖=0

+∑(
𝑛 + 𝑟 − 𝑠

𝑟
) 𝑎𝑠+1

0

𝑛

𝑠=0

 

=∑(
𝑛 + 𝑟 − 𝑖

𝑛
)

𝑟

𝑖=0

+∑(
𝑛 + 𝑟 − 𝑠

𝑟
) 𝔽𝑠+2

(𝑚)

𝑛

𝑠=0

 , 

 

where 𝑘 = 𝑟 − 𝑖 and 𝑏 = 𝑛 − 𝑠. Using the equation ∑ (𝑡
𝑎
)𝑐

𝑡=𝑎 = (𝑐+1
𝑎+1
) , we get 

 

𝑎𝑛+1
𝑟+1 =∑(

𝑛 + 𝑘

𝑛
)

𝑟

𝑘=0

+∑(
𝑟 + 𝑏

𝑟
)𝔽𝑛−𝑏+2

(𝑚)

𝑛

𝑏=0

 

= (
𝑛 + 𝑟 + 1

𝑛 + 1
) +∑(

𝑟 + 𝑏

𝑟
)𝔽𝑛−𝑏+2

(𝑚)

𝑛

𝑏=0

 

= ∑(
𝑟 + 𝑏

𝑟
)𝔽𝑛−𝑏+2

(𝑚)

𝑛+1

𝑏=0

. 

 

Shifting indices for 𝑛 and 𝑟, we obtain 
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𝑎𝑛−1
𝑟 = ∑(

𝑟 + 𝑏 − 1

𝑟 − 1
)𝔽𝑛−𝑏

(𝑚)

𝑛−1

𝑏=0

 

=∑(
𝑛 + 𝑟 − 𝑠 − 1

𝑟 − 1
)𝔽𝑠

(𝑚)

𝑛

𝑠=1

. 

 

From the definition of matrix in (13) 

 

𝑎𝑛−1
𝑟 = 𝔽𝑛

(𝑚+𝑟)
 

hence we have 

 

𝔽𝑛
(𝑚+𝑟) =∑(

𝑛 + 𝑟 − 𝑠 − 1

𝑟 − 1
)𝔽𝑠

(𝑚)

𝑛

𝑠=1

. 

 

We retrieve following corollary which is obtained in [12] by using the symmetric infinite matrix method. 

 

Corollary 2. Let 𝔽𝑛
(𝑟)

 be the 𝑛 −th hyperharmonic Fibonacci number. Then the following equation hold 

 

𝔽𝑛
(𝑟) =∑(

𝑛 + 𝑟 − 𝑠 − 1

𝑟 − 1
)
1

𝐹𝑠

𝑛

𝑠=1

. (15) 

 

Proof. This is proved by setting 𝑚 = 0 in (14). 

 

The following corollary is about the harmonic Fibonacci numbers. 

 

Corollary 3. Let 𝔽𝑛 be the harmonic Fibonacci number, and let 𝑠 be nonnegative number. Then 

 

∑(
𝑛 + 𝑟 − 𝑠 − 1

𝑟 − 1
)𝔽𝑠

𝑛

𝑠=1

= 𝔽𝑛
(𝑟+1). (16) 

 

Proof. The same proof remains valid for 𝑚 = 1 in Theorem 2. 

 

Corollary 4. For the hyperharmonic Fibonacci numbers, we have 

 

∑𝑠𝔽𝑠
(𝑚)

𝑛

𝑠=1

= 𝑛𝔽𝑛
(𝑚+1) − 𝔽𝑛−1

(𝑚+2). (17) 

 

Proof. Let 𝑟 = 2 in (14). We have 

 

∑(𝑛 + 1 − 𝑠)𝔽𝑠
(𝑚)

𝑛

𝑠=1

= 𝔽𝑛
(𝑚+2). (18) 

 

Then using the Equation (2), we get 

 

∑(𝑛 + 1 − 𝑠)𝔽𝑠
(𝑚)

𝑛

𝑠=1

= (𝑛 + 1)∑𝔽𝑠
(𝑚)

𝑛

𝑠=1

−∑𝑠𝔽𝑠
(𝑚)

𝑛

𝑠=1
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= (𝑛 + 1)𝔽𝑛
(𝑚+1)

−∑𝑠𝔽𝑠
(𝑚)

𝑛

𝑠=1

. 

 

Using (18) and recurrence relation for the hyperharmonic Fibonacci number (see Lemma 1 of Tuglu et al 

[12]), we obtain 

 

∑𝑠𝔽𝑠
(𝑚)

𝑛

𝑠=1

= (𝑛 + 1)𝔽𝑛
(𝑚+1)

−∑(𝑛 + 1 − 𝑠)𝔽𝑠
(𝑚)

𝑛

𝑠=1

 

= (𝑛 + 1)𝔽𝑛
(𝑚+1)

− 𝔽𝑛
(𝑚+2)

 

= (𝑛 + 1)𝔽𝑛
(𝑚+1)

− (𝔽𝑛−1
(𝑚+2)

+ 𝔽𝑛
(𝑚+1)

) 

= 𝑛𝔽𝑛
(𝑚+1)

− 𝔽𝑛−1
(𝑚+2)

, 
 

which completes the proof. 

 

Specially, if we take 𝑚 = 1 in (17), we get 

∑𝑘𝔽𝑘

𝑛+1

𝑘=1

= (𝑛 + 1)𝔽𝑛+1
(2) − 𝔽𝑛

(3). (19) 

 

Theorem 3. Let 𝔽𝑛
(𝑟)

 be the 𝑛 −th hyperharmonic Fibonacci number, and let 𝐹𝑛 be 𝑛 −th Fibonacci number. 

Then 

 

∑𝔽𝑛
(𝑘)

𝑟

𝑘=1

= 𝔽𝑛+1
(𝑟)

−
1

𝐹𝑛+1
. (20) 

 

Proof. By considering the Equation (15), we have 

 

∑𝔽𝑛
(𝑘)

𝑟

𝑘=1

=∑∑(
𝑛 + 𝑘 − 𝑡 − 1

𝑘 − 1
)
1

𝐹𝑡

𝑛

𝑡=1

𝑟

𝑘=1

 

=∑
1

𝐹𝑡
∑(

𝑛 + 𝑘 − 𝑡 − 1

𝑘 − 1
)

𝑟

𝑘=1

𝑛

𝑡=1

 

=∑(
𝑛 + 𝑟 − 𝑡

𝑟 − 1
)
1

𝐹𝑡

𝑛

𝑡=1

 

= ∑(
𝑛 + 𝑟 − 𝑡

𝑟 − 1
)
1

𝐹𝑡

𝑛+1

𝑡=1

−
1

𝐹𝑛+1
 

= 𝔽𝑛+1
(𝑟) −

1

𝐹𝑛+1
 

 

which completes the proof. 

 

 

4. RIORDAN ARRAYS 

 

In this section, observing the triangle which is obtained from (𝔽𝑛
(𝑟)) given by (2) holds a Riordan array, we 

get some properties of (𝔽𝑛
(𝑟)). Also, we indicate how (𝔽𝑛

(𝑟)) numbers may be represented with aid of 

Riordan array. 
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Lemma 1. Let 𝔽𝑛
(𝑟)

 be the 𝑛 −th hyperharmonic Fibonacci number, and let ℱ = [ 𝑓𝑛,𝑘]𝑛,𝑘≥ 0 be infinite 

matrix, defined by 

 

𝑓𝑛,𝑘 = {
𝔽𝑛−𝑘+1
(𝑟)

     𝑛 − 𝑘 + 1 ≥ 0,

0         𝑛 − 𝑘 + 1 < 0.
 

 

The Riordan representation of ℱ is 

 

ℱ = (
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑟
𝐿−𝛼2(−𝛼𝑥), 𝑥). (21) 

 

Proof. The matrix ℱ can be written as 

(

 
 
 
 

𝔽1
(𝑟)

0 0 0 ⋯

𝔽2
(𝑟)

𝔽1
(𝑟)

0 0 ⋯

𝔽3
(𝑟)

𝔽2
(𝑟)

𝔽1
(𝑟)

0 ⋯

𝔽4
(𝑟)

𝔽3
(𝑟)

𝔽2
(𝑟)

𝔽1
(𝑟)

⋯

⋮ ⋮ ⋮ ⋮ ⋱ )

 
 
 
 

. 

 

Using (10), we can see that 0𝑡ℎ column is accounted for coefficients 
𝛼−𝛽

𝑥(1−𝑥)𝑟
𝐿−𝛼2(−𝛼𝑥). Then from the 

rule of Riordan group, we get Riordan representation of this matrix 

 

(
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑟
𝐿−𝛼2(−𝛼𝑥), 𝑥) 

 

which proves the lemma. 

 

The Equation (14) can be proved by another way by using the Riordan array. 

 

Another Proof. Let ℎ(𝑥) =
1

( 1−𝑥)𝑠
= ∑ (𝑠+𝑛−1

𝑠−1
)∞

𝑛=0 𝑥𝑛. From (5) and (21), we have 

 

∑(
𝑠 + 𝑘 − 1

𝑠 − 1
)𝔽𝑛−𝑘+1

(𝑟)

𝑛

𝑘=0

= [𝑥𝑛]
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑟
𝐿−𝛼2(−𝛼𝑥)

1

(1 − 𝑥)𝑠
 

= [𝑥𝑛]
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑟+𝑠
𝐿−𝛼2(−𝛼𝑥) 

= [𝑥𝑛]∑ 𝔽𝑛+1
(𝑟+𝑠)𝑥𝑛

∞

𝑘=0

 

= 𝔽𝑛+1
(𝑟+𝑠). 

 

Also we have 

 

∑(
𝑠 + 𝑘 − 1

𝑠 − 1
)𝔽𝑛−𝑘+1

(𝑟)

𝑛

𝑘=0

= ∑(
𝑠 + 𝑛 − 𝑘

𝑠 − 1
)𝔽𝑘

(𝑟)

𝑛+1

𝑘=1

 

 

then we obtain 

∑(
𝑠 + 𝑛 − 𝑘

𝑠 − 1
)𝔽𝑛

(𝑟)

𝑛+1

𝑘=1

= 𝔽𝑛+1
(𝑟+𝑠). 
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Lemma 2. Let 

 

ℱ = (
𝛼 − 𝛽

𝑥(1 − 𝑥)
𝐿−𝛼2(−𝛼𝑥),  

𝑥

1 − 𝑥
). (22) 

 

be a Riordan matrix. The generic element 𝑓𝑛,𝑘 of ℱ is 𝔽𝑛−𝑘+1
(𝑘+1)

. 

 

Proof. From (4) and (10), we get 

 

𝑓𝑛,𝑘 = [𝑥
𝑛]

𝛼 − 𝛽

𝑥(1 − 𝑥)
𝐿−𝛼2(−𝛼𝑥) (

𝑥

1 − 𝑥
)
𝑘

 

= [𝑥𝑛]
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑘+1
𝐿−𝛼2(−𝛼𝑥)𝑥

𝑘 

= [𝑥𝑛−𝑘]
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑘+1
𝐿−𝛼2(−𝛼𝑥) 

= [𝑥𝑛−𝑘]∑𝔽𝑛+1
(𝑘+1)𝑥𝑛

∞

𝑘=0

 

= 𝔽𝑛−𝑘+1
(𝑘+1) . 

 

Theorem 4. Let 𝔽𝑛
(𝑟)

 be the 𝑛 −th hyperharmonic Fibonacci number. We have 

 

∑(−1)𝑛−𝑘+1𝔽𝑘
(𝑛−𝑘+2)

𝑛+1

𝑘=1

=
1

𝐹𝑛+1
. (23) 

 

Proof. Let ℎ(𝑥) =
1

1+𝑥
= ∑ (−1)𝑛𝑥𝑛∞

𝑛=0 . From (5), (7) and (22), we obtain 

 

∑(−1)𝑘𝔽𝑛−𝑘+1
(𝑘+1)

𝑛

𝑘=0

= [𝑥𝑛]
𝛼 − 𝛽

𝑥(1 − 𝑥)
𝐿−𝛼2(−𝛼𝑥) ℎ (

𝑥

1 − 𝑥
) 

= [𝑥𝑛]
𝛼 − 𝛽

𝑥(1 − 𝑥)
𝐿−𝛼2(−𝛼𝑥)(1 − 𝑥) 

= [𝑥𝑛]
𝛼 − 𝛽

𝑥
𝐿−𝛼2(−𝛼𝑥) 

= [𝑥𝑛]∑
1

𝐹𝑛+1
𝑥𝑛

∞

𝑛=0

 

=
1

𝐹𝑛+1
. 

 

And 

 

∑(−1)𝑘𝔽𝑛−𝑘+1
(𝑘+1)

𝑛

𝑘=0

= ∑(−1)𝑛−𝑘+1𝔽𝑘
(𝑛−𝑘+2)

𝑛+1

𝑘=1

. 

 

So, we have 

∑(−1)𝑛−𝑘+1𝔽𝑘
(𝑛−𝑘+2)

𝑛+1

𝑘=1

=
1

𝐹𝑛+1
. 
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Theorem 5. Let 𝔽𝑛
(𝑟)

 be the 𝑛 −th hyperharmonic Fibonacci number, and let 𝑠 be nonnegative number. 

Then 

 

∑(
𝑠

𝑛 − 𝑘 + 1
)𝔽𝑘

(𝑛−𝑘+2)

𝑛+1

𝑘=1

= 𝔽𝑛+1
(𝑠+1)

. (24) 

 

Proof. Let ℎ(𝑥) = (1 + 𝑥)𝑠 = ∑ (𝑠
𝑛
)𝑥𝑛∞

𝑛=0 . From (5) and (22), we have 

 

∑(
𝑠

𝑘
)𝔽𝑛−𝑘+1

(𝑘+1)

𝑛

𝑘=0

= [𝑥𝑛]
𝛼 − 𝛽

𝑥(1 − 𝑥)
𝐿−𝛼2(−𝛼𝑥) ℎ (

𝑥

1 − 𝑥
) 

= [𝑥𝑛]
𝛼 − 𝛽

𝑥(1 − 𝑥)
𝐿−𝛼2(−𝛼𝑥)

1

(1 − 𝑥)𝑠
 

= [𝑥𝑛]
𝛼 − 𝛽

𝑥(1 − 𝑥)𝑠+1
𝐿−𝛼2(−𝛼𝑥) 

= [𝑥𝑛]∑𝔽𝑛+1
(𝑠+1)

𝑥𝑛
∞

𝑛=0

 

= 𝔽𝑛+1
(𝑠+1). 

 

Also, we get 

 

∑(
𝑠

𝑘
)𝔽𝑛−𝑘+1

(𝑘+1)

𝑛

𝑘=0

= ∑(
𝑠

𝑛 − 𝑘 + 1
)𝔽𝑘

(𝑛−𝑘+2)

𝑛+1

𝑘=1

. 

 

Finally, we obtain that 

 

∑(
𝑠

𝑛 − 𝑘 + 1
)𝔽𝑘

(𝑛−𝑘+2)

𝑛+1

𝑘=1

= 𝔽𝑛+1
(𝑠+1)

. 

 

Corollary 5. For the hyperharmonic Fibonacci numbers, we get 

 

∑(
𝑛

𝑘 − 1
)𝔽𝑘

(𝑛−𝑘+2)

𝑛+1

𝑘=1

= 𝔽𝑛+1
(𝑛+1). 

 

Proof. It can be simply seen that taking 𝑠 = 𝑛 in (24). 
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