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SOME IMPOSSIBILITY THEOREMS IN ECONOMETRICS 
WITH APPLICATIONS TO STRUCTURAL AND DYNAMIC 

MODELS 

BY JEAN-MARIE DUFOUR1 

General characterizations of valid confidence sets and tests in problems which involve 
locally almost unidentified (LAU) parameters are provided and applied to several econo- 
metric models. Two types of inference problems are studied: (i) inference about parame- 
ters which are not identifiable on certain subsets of the parameter space, and (ii) 
inference about parameter transformations with discontinuities. When a LAU parameter 
or parametric function has an unbounded range, it is shown under general regularity 
conditions that any valid confidence set with level 1 - a for this parameter must be 
unbounded with probability close to 1 - a in the neighborhood of nonidentification 
subsets and will have a nonzero probability of being unbounded under any distribution 
compatible with the model: no valid confidence set which is almost surely bounded does 
exist. These properties hold even if "identifying restrictions" are imposed. Similar results 
also obtain for parameters with bounded ranges. Consequently, a confidence set which 
does not satisfy this characterization has zero coverage probability (level). This will be the 
case in particular for Wald-type confidence intervals based on asymptotic standard errors. 
Furthermore, Wald-type statistics for testing given values of a LAU parameter cannot be 
pivotal functions (i.e., they have distributions which depend on unknown nuisance param- 
eters) and even cannot be usefully bounded over the space of the nuisance parameters. 
These results are applied to several econometric problems: inference in simultaneous 
equations (instrumental variables (IV) regressions), linear regressions with autoregressive 
errors, inference about long-run multipliers and cointegrating vectors. For example, it is 
shown that standard "asymptotically justified" confidence intervals based on IV estimators 
(such as two-stage least squares) and the associated "standard errors" have zero coverage 
probability, and the corresponding t statistics have distributions which cannot be bounded 
by any finite set of distribution functions, a result of interest for interpreting IV 
regressions with "weak instruments." Furthermore, expansion methods (e.g., Edgeworth 
expansions) and bootstrap techniques cannot solve these difficulties. Finally, in a number 
of cases where Wald-type methods are fundamentally flawed (e.g., IV regressions with 
poor instruments), it is observed that likelihood-based methods (e.g., likelihood-ratio tests 
and confidence sets) combined with projection techniques can easily yield valid tests and 
confidence sets. 

KEYWORDS: Cointegration, confidence set, dynamic model, finite-sample theory, identi- 
fication, structural model, testing, weak instruments. 
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1. INTRODUCTION 

A COMMON PROBLEM IN STATISTIcs and econometrics consists in building confi- 
dence sets for the parameters of a statistical model. Since they report all 
parameter values acceptable at a given level (see Lehmann (1986)), confidence 
sets give considerably more information than significance tests for particular 
parameter values. For a scalar parameter 6, a confidence set often takes the 
form of an interval, such as 16- c1 6, 0 + c2 &_ 6 where 0 is an estimate of 0, 

a "standard error," and cl, c2 are constants obtained from the distribution 
of (0- O)/& to yield the desired level. This approach is justified when the 
latter distribution does not depend on unknown nuisance parameters or can be 
approximated by such a distribution (e.g., the N(0, 1)). When 0 is a vector, one 
would typically find a "covariance matrix" for 0 and build a confidence ellipsoid. 
Below we call such confidence sets Wald-type confidence sets. More generally, 
confidence set construction depends on the availability of pivotal functions (i.e., 
functions 4(Y, 6) of both the data Y and the parameter vector 0 whose 
distributions do not depend on unknown parameters), or at least of boundedly 
pivotal functions (i.e., functions b(Y, 6) whose distribution can be bounded over 
the parameter space by probabilities in the open interval (0, 1)). The notion of 
pivotal quantity was introduced by Fisher (1934) and lies at the heart of 
"classical" hypothesis testing and confidence set methods. 

Many models in econometrics are not identified over the full parameter space, 
i.e., they contain subsets of observationally equivalent parameter values. Promi- 
nent examples include structural models, such as simultaneous equation models 
and errors-in-variables models, various nonlinear regression models, ARMA 
models (univariate or multivariate), and models of cointegrating relations. For 
general discussions of identification, see Rothenberg (1971), Bowden (1973), 
Fisher (1976), Deistler and Seifert (1978), Hsiao (1983), Breusch (1986), Heck- 
man and Robb (1986), and Prakasa Rao (1992). Problems similar to nonidenti- 
fication also occur when a discontinuous transformation of a parameter vector 
(e.g., a parameter ratio) is considered. 

The typical approach to identification problems is to assume them away by 
imposing "identification restrictions" and then derive the asymptotic theory for 
the fully identified case. Although this leads to distributional simplifications, it 
also hides many important complications. "Identifiability restrictions" can be 
very real and rule out plausible data distributions: in no way can they be taken 
as granted (see Sims (1980)). Furthermore, both finite sample and asymptotic 
distributions for estimators and tests can be strongly affected if identifiability 
conditions are not satisfied (see Sargan (1983), Phillips (1984, 1985, 1989), Hillier 
(1990), Choi and Phillips (1992), Staiger and Stock (1997), McManus, Nankervis, 
and Savin (1994)), which suggests that asymptotic approximations can be very 
unreliable under conditions close to nonidentification. In particular, when 
appropriate identification conditions do not hold, certain parameters of interest 
(although not necessarily all of them) may not be "estimable" (see Bowden 
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(1973), Bunke and Bunke (1974), Deistler and Seifert (1978), Phillips (1989), and 
Hillier (1990)), and hypotheses about possibly nonidentifiable parameters (al- 
though not necessarily all hypotheses of interest) may not be "testable" in the 
sense that they are not "refutable" (see the discussion of Breusch (1986)). For 
equations estimated by instrumental variables (IV) methods, the distributional 
complications associated with (near) nonidentification are especially relevant 
because of the serious possibility of "weak instruments," a problem which has 
received renewed attention recently; see, e.g., Nelson and Startz (1990a, 1990b), 
Buse (1992), Maddala and Jeong (1992), Angrist and Krueger (1994), Staiger and 
Stock (1997), Bound, Jaeger, and Baker (1995), and Hall, Rudebusch, and 
Wilcox (1996). 

Although the available analytical results indicate that distributions of IV-based 
estimators and test statistics can be strongly affected in nonidentified models, 
they do not throw much light on the properties of confidence procedures, in 
particular on whether we can bound the distributions of test statistics to obtain 
valid tests and confidence sets, even if identifying restrictions are imposed. The 
main purpose of this paper is to throw more light on these issues by extending 
finite-sample results and methods due to Gleser and Hwang (1987, henceforth 
GH) and Koschat (1987) in a number of special problems. For inference on 
errors-in-variables models, principal components and ratios of regression param- 
eters, GH showed that no valid confidence interval for a parameter can have 
finite expected length if this parameter is not identifiable on a subset of the 
parameter space. Koschat (1987) independently gave a similar result for confi- 
dence intervals on the ratio of the means of two normal distributions (the Fieller 
(1954) problem). 

Here we extend the results of GH, e.g., by allowing for less restricted models 
(including possibly discrete distributions, parameters in general metric spaces, 
and less restricted "troublesome" parameter subsets), and we apply them to 
some important econometric models. We consider first a general setup with a 
parameter vector 0 and a parametric function of interest qfr(0). The parameter 
space contains a subset Q0 near which the function qfr(0) can take any value in 
a (typically large) set to. This setup covers both cases where qf(6) has disconti- 
nuities at Q0 and where the points in Q0 correspond to the same data 
distribution (in which case Q0 is a nonidentification subset). When such condi- 
tions obtain, we say qfr(0) is locally almost unidentified (LAU) near Q0. The main 
facts demonstrated here under general conditions include: (i) when qf(6) is 
LAU near Q0 and 0 E Q0, a level 1 - a confidence set C,,(Y) for qfr(0) must 
cover with probability 1 - a (at least) any value in the set I'o of all the values of 
qfr(0) that can be met "near" &O; (ii) C,,(Y) must have a diameter as large as the 
diameter of 1fo with probability 1 - a (or greater); in particular, if To is 
unbounded, C,(Y) must be unbounded with probability 1 - a (or greater); (iii) 
by continuity, similar properties must also hold outside &0, at least in the 
neighborhood of QO; (iv) when the model has a density with the same support 
for all 0, CQ(Y) must have diameter as large as the one of To with positive 
probability for all 0. If these properties do not hold for a proposed confidence 
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set, its true level is zero: it is impossible to build a valid confidence set which is 
bounded with probability one. In particular, most Wald-type confidence sets in 
such models have zero confidence level, irrespective of their stated nominal 
levels, because they are almost surely bounded. 

As a result, any approximation for the null distribution of a Wald-type 
statistic (e.g., an asymptotic approximation) for testing a hypothesis of the form 

(0)= fro must be arbitrarily bad for some qf0 (unless it depends on 0). In 
other words, Wald statistics do not constitute valid pivotal functions in such 
models and it is even impossible to bound their distribution over the parameter 
space (except by the trivial bounds 0 and 1). Furthermore, there is no way of 
producing "corrected standard errors" that would avoid this problem. Expansion 
methods (e.g., Edgeworth expansions) and "bootstrap" techniques will also fail 
in such contexts, as long as they lead to almost surely bounded confidence sets. 
This of course supports earlier work on the unreliability of Wald tests because 
of noninvariance problems (see Breusch and Schmidt (1988), Dagenais and 
Dufour (1991), and Nelson and Savin (1990)). 

These results are then applied to discuss inference in the context of more 
specific econometric models and problems, including: (i) ratios of regression 
coefficients; (ii) simultaneous equations models and IV regressions; (iii) linear 
regressions with autoregressive errors; (iv) inference about long-run multipliers; 
(v) cointegrating vectors. For example, in simultaneous equations and similar 
models, it is shown that usual "asymptotically justified" confidence intervals for 
structural coefficients based on IV estimators, such as two-stage least squares 
(2SLS), and their asymptotic standard errors have zero coverage probability, and 
the corresponding t statistics have distributions which cannot be bounded by a 
finite set of distributions. By contrast, for the same model, we show that LR 
statistics have null distributions which can be bounded by a nuisance- 
parameter-free distribution (derived from the Wilks A distribution), and so the 
inference methods based on such statistics do not have these problems. Further- 
more we show that projection techniques can be used in such contexts to obtain 
valid tests for a large variety of hypotheses. 

The basic notations, definitions, and assumptions used in the paper are 
presented in Section 2. The main results on confidence sets for LAU parameters 
are presented in Section 3. Section 4 discusses implications for testing and the 
validity of Wald-type confidence sets, while the applications to specific econo- 
metric models and problems are presented in Section 5. We conclude in Sec- 
tion 6. 

2. FRAMEWORK 

Consider a family of probability spaces {( P,, 1): 0 E D}, where 2 is a 
sample space, A6, is a or-algebra of subsets of 2, and P. is a probability 
measure on the measurable space (K,.?) indexed by a parameter 0 in D. The 
sets 2, A6, and Q2 are all nonempty. Further, we are interested by a transfor- 
mation qf: 2Q -> IF, defined on a nonempty subset d2l of X2, on which we wish 
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to test hypotheses and build confidence sets. We assume also the sets D and t 

possess metric space structures. Inferences about 0 will be based on an 
AW,-measurable observation (vector) Y in a space y. For future reference, we 
summarize these assumptions as follows, where R' refers to the set of the 
nonnegative real numbers. 

(A) BASIC AsSUMPTIONS. (A.1): {P(: 0 E Q2} is a family of probability measures 
on a measurable space (Y,4), and (Q, p) is a metric space with the metric 
p:Q x Q-> R'. (A.2): f:Q1- > T is a function on D such that (T, p) is a 
metric space with the metric p: T x T --> Rl, where n, is a nonempty subset of ?2. 

(A.3) Y: Y > ' is an A6s-measurable function. The complete measurable space 
(,', a) induced by Y on 7 is the same for all 0 E 12, and the probability measure 
determined by Po on (,V, A) is denoted by P0 = P,(y), for any 0 E D. Furthermore, 
there is a metric py RX > - + such that all the corresponding open sets of 
(p, py) are A4-measurable. 

Let FO be a nonempty subset of l, Q20 = {6 E l1: :q() E Fo} and O < a < 1. 
Following the classical terminology of hypothesis testing (Lehmann (1986, Sec- 
tions 3.1, 3.5)), we say that a subset R of % is a critical region with level a for 
testing the hypothesis Ho: 0e no if and only if Po[YER] < a, VOE no (or 
equivalently, supo E Q 0 Po[YEER] < a); if supH,EQO Po[YER] = a, R has size a. 
Correspondingly, a random subset C,,(Y) of T is a confidence set with level 
1- a for qfr(0) if and only if infE n 1 P0[41(0) E C,,(Y)] ? 1-ca; C,,(Y) has size 
(or coverage probability) 1 - a when inf0 E n PO[ fr(0) E C4,(Y)] = 1 - a. We 
study here situations where the following conditions hold. Below limp an = 6 
means M(O 0)66 n- 0. 

(B) INDETERMINACY OF g(4) IN A NEIGHBORHOOD. For some nonempty subset 
To of 1, there is a subset Q0 of ?2 such that, for each qlo0 E lio, we can find a 
sequence (On)n= 1 with the following properties: (a) On E 1 \ Q0, V n; (b) qf(On) = 

qf0, V n; (c) limn 6c On = 0 for some 0 E Q0. The set of sequences which satisfy the 
conditions (a), (b), and (c) above will be denoted S(QO, Q1). 

(C) OBSERVATIONAL EQUIVALENCE ON 00. If the set Q0 contains more than 
one point, the measures Po are identical for all 0 E( 00. In this case, the set 00 will 
be called an observational equivalence (or nonidentification) subset of Q. 

Assumption B states that any value fo0 E To can be met near 00. To will 
typically be a large set (e.g., To = T the set of all possible values). By 
Assumption C, if Q0 has more than one element, the parameter vectors in Q0 
are observationally equivalent. When B and C hold with T0 containing more 
than one distinct value, we say the parametric function qfr(0) is locally almost 
unidentified (LAU) near Q0. In addition (Assumption D below), we shall assume 
that the probability measures Po enjoy a continuity property, in the sense of 
weak convergence (see Billingsley (1968, Chapter 1)) with respect to the se- 
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quences in S(QO, ?2j). This condition holds in particular if Y has a density 
which is continuous in 0 (Assumption E). 

(D) WEAK CONVERGENCE WITH RESPECT TO S(Q0, ?2). For any +1 E- Ifo 
there is a sequence (0n)= 1 in S(QO, ?l) such that lfr(On) = qlf, for all n, and P0 
converges weakly to Po, where 0= lim n , w n 

(E) EXISTENCE AND CONTINUITY OF DENSITIES FOR THE MEASURES Po. (E.1): 
The probability measures PH(y), 0 E ?2, are absolutely continuous with respect to a 
a-finite measure d,u(y) on (%,,), with densities f(y I 0), 0 E X, where y e) . 
(E.2): For any qf1 E !Io, there is a sequence (on)'=1 in S(QO, ?2) such that 
lim n --f(y I On) = f(y I 0), a.e. A, where 0 = lim,M an. 

3. CONFIDENCE SETS FOR ALMOST UNIDENTIFIED PARAMETERS 

Consider a confidence set CQ,(Y) for qfr(0) whose level (or coverage probability) 
is 1 - a, at least on the set ?21 \ Q0, according to the following assumptions. 

(F) CONFIDENCE SET WITH LEVEL 1 - a. (F.1): C,Q,(Y) is a confidence set for 
q,( 0) such that the event qf1 E Co,(Y) is _y-measurable, Vqf1 E T. 

(F.2) Po[d(A(qf1))] = 0, Vqf1 E t, VOe Q0, where A(f1) = {y E : y E Y(2) 
and f1 E CE-,(y)} and d(A(qf 1)) is the boundary of the set A(qfl) in W'. 

(F.3) Po[[+(0) EC,,(Y)] > 1- a, VO E I1 \ Q0, where 0 < a < 1. 

Assumption F.2 means there is no probability mass on the boundary of A(Gf1), 
where A(fl1) is the acceptance region for the hypothesis qfr(0) = qf1 (in the 
definition of A(Gf1), y E Y(2") simply means y belongs to the set Y(2") 
containing all possible values of the observable random vector Y(Z), while 
f1 E CE,(y) means qf1 is deemed to be acceptable by the confidence set C,,(y)). 

In the sequel, the symbol A() will refer to the boundary of a set. F.2 will 
typically be met when the distributions P0 are absolutely continuous (Assump- 
tion E). Then, we can show the following proposition, where N(6) = {( e 
?2: p(6, 0) < 8}, with 8 > 0, refers to an open neighborhood of 0 E ?2. 

PROPOSITION 3.1: Let the Assumptions A, B, C, D, and F hold. Then, for every 
qf1 E 4'o and every sequence (on)= 1 in S(QO, ?2), we have 

(3.1) Po[ f1 E C+(Y)] = lim Pon[fl E C+(Y)] ? 1 -a, VO EQ, 
n -> oc 

and sup6 E N() Po[ fl E C,1,(Y)] 2 1-a, for every neighborhood N(O) of 0= 

limn,? on, where N(6) = N(6) n (?21 \ Q0). Furthermore, the above conclusions 
hold a fortiori if Assumption D is replaced by the stronger Assumption E. 

The proofs of the propositions and theorems are given in the Appendix. When 
Y follows the distribution associated with Q0 (which is unique by definition), the 
latter proposition entails that any point qf1 E 4'o must be covered by C,1,(Y) with 
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probability at least 1 - a. Furthermore, the probability of the event ifl Ee Cq,(Y) 
must get arbitrarily close to 1 - a (or larger) at points in N() n (f2l \ 60), 
even if P, is identified everywhere in the domain n, \ 00. 

Now, for any qf/ E T and any subset A c l, define 

(3.2) pu[A, fl1]=supP(f1,l f2): f2 eA}, 
D[A] = sup{ P('fr1, I2): 'fl Ifr2 EA}. 

Pu[ A, qfl1] is the maximal "distance" between any point of A and qf1, while 
D[A] is the "diameter" of A (the maximal distance between two points of A). 
After making appropriate measurability assumptions, we will now establish some 
general properties of the variables pu[CP,(Y), if1] and D[C,,(Y)]. Note Pu[ ] and 
D[*] take their values in RD U { +cc}, so D[C,,,(Y)] = oo is a well-defined event. 

(G. 1) Pu Measurability: The event pu[C,Co(Y), YlfI] 2 x is _4-measurable, for 
any x E [O,oo] and qf1 E T. 

(G.2) Diameter Measurability: The event D[Cq,(Y)] ? x is s&-measurable, for 
any x E [O, oo]. 

We first show that the distance pu[CC,p(Y), qf1] will not be inferior to pu[lIo, qIl ] 
with probability at least 1 - a when 0 is close to Q0, for any 1qf E T. 

PROPOSITION 3.2: Under the assumptions of Proposition 3.1 (A, B, C, D, F) and 
G.1 let (0n)n be any sequence in S(QO, 124), fl E IF, and Ro- pu[Io, qf1 ]. Then, 
VE E (0, cc), VA E (0, cc), 

(3.3) PO [ pu[CO(Y)~ ql] 2 Ro] 2 1 - a, VO E= @0, 

liminfP, [ pu[CP(Y),fri d] >Ro e] 2 1 , f o 

liminfP0[ Pu[C,(Y), qf,] 2A] ? 1- a, ifR0= Roo n --- o 

If furthermore P, d ( pu[C C,(Y), fr1] 2 R0)] = 0, Vo E 00, then 

(3.5) lim PO,,I pu[C(Y), q1] R0] =Po[ P rC,(Y), q'1l 2Ro0] 1 - a, 

VOE= Q0. 

We can now study how the diameter of CQ,(Y) behaves under similar condi- 
tions. 

THEOREM 3.3: Under the assumptions of Proposition 3.1 and G.2, let (6nt, 1 be 
any sequence in S(O), n 1). Then Ve E (0, cc), VA E (0, cc), 

Pa PO[D[Cqr(Y)] 2D=cto] 2 1-a2, , VO c=E Q, if D[ t I]c < o, 

P,[D[CX,(Y)] = oo] 2 1- a, VdOEO90, if D[To]=?o, 
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lim infP.,,[D[C(Y)] 2D[If,] - e] ? 1- 2a, if D[Io] < oo, 

1im infP.n[D[C C(Y)] > A] > 1-2a, if DE Po ] = ??. 

If furthermore Po[ d(D[C1,(Y)] ? D['I0])] = 0, VO E Q0, then 

(3.8) lim P' n[D[C,C(Y)] 2DEI'0 ]] =P4[D[C,,(Y)] ?DEI%]l], VOE O. 

The latter theorem shows the confidence set CQ(Y) must be as "large" as the 
entire domain tI' with probability near (or greater than) 1 - 2 a, at least when 
the distribution of Y is close to Q0. Further, on combining (3.6) and (3.8), if '1o 
is unbounded and the "continuity" condition P0[ d(D[CQ(Y)] ? D[1o ])] = 0 holds 
for 0 EQ 0, CQ,(Y) must also be unbounded with probability near 1 - a in the 
neighborhood of Q0. Contrariwise, if this property does not hold, we can 
conclude (keeping the other assumptions of Theorem 3.3) that the confidence 
set CQ,(Y) cannot have level 1 - a (Corollary 3.4). In particular, if D[To1] = 00 
and CQ,(Y) is almost surely bounded, C,1,(Y) has zero coverage probability. 

COROLLARY 3.4: Under the assumptions of Theorem 3.3 with the exception of 
F.3 (i.e., A, B, C, D, F.1, F.2, and G.2), suppose P0[D[C,(Y)] 2 D[Blo]] < 1 - 2a, 
VO E Q0, for some a E [0,0.5). Then, inf E Qi\o P0[ fr(0) E CY/(Y)] < 1 - a. Fur- 
thermore, when D[ToI] = x, the property 

(3.9) P0[D[CO(Y)]=oo]=0, for OeOQ, 

entails infH E Q1\&a P[ (0) E[ C+Y)] = 

We will now show that C,1,(Y) must be unbounded with nonzero probability 
everywhere (i.e., under all the distributions Po, 0 E 12), provided the support of 
P0(y) for 0 E Q0 is included in the support of PH(y) for all 0 E 12 (e.g., when all 
the distributions P0(y), 0 E ?2, have common support). This result is obtained by 
using the following lemma (implicit in GH). 

LEMMA 3.5: Under the Assumptions A and E.1, suppose that the probability 
measures P0(y), 0 e ?2, have densities f(y I 0) with support 5(6), which may 
depend on 0, and let 00 E ?. If 5(6d) c 9() for all 0 E ?, then, for any event 
A in _,, Po(A) > 0 = Po(A) > 0, ?2O E D 

This suggests considering the following assumption. 

(H) MINIMAL SUPPORT ON &0: For any 00 E Q0, we have S(00) c AO(), for 
all 0 E D \ Qo, where AO(6) is the support of the density f(y I 0) defined in E. 1. 
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This condition obviously holds when the densities f(y I 0) have common 
support. It is then straightforward to see that the following extensions of 
Theorem 3.3 and Corollary 3.4 must hold for models with density functions. 

THEOREM 3.6: Under the assumptions of Theorem 3.3, suppose that E and H 
also hold. Then, provided 0 < a < 0.5, 

(3 .10) PO [D [ Cyf(Y)] 2 D[ TJ ] > O, adO . 

If furthermore D[To ] = oo and 0 < a < 1, then P,[D[Co(Y)] = oo] > 0, VO E Q. 

COROLLARY 3.7: Under the assumptions of Theorem 3.3 with the exception of 
F.3 (A, B, C, D, F.1, F.2, G.2), let E and H also hold, D[TO] = oo and suppose 

(3.11) P[D[C Co(Y)] =o] = 0, for some0en. 

Then info E n 1\ 00 P,[ (0) E Co (Y)] = O. 

Theorem 3.6 and Corollary 3.7 include as a special case the Theorem of 
Gleser and Hwang (1987). By Corollary 3.7, it is sufficient to show that (3.11) 
holds at a single point 0 in n (possibly not in 00) to conclude that the 
confidence set CQ,(Y) has zero coverage probability. This will be the case in 
particular when tI' is unbounded (D[To]=?c) but CQ(Y) is almost surely 
bounded. 

4. TESTING AND WALD CONFIDENCE SETS 

The results of the previous section have important implications for the 
properties of tests associated with a given confidence procedure. Any confidence 
set for a parameter can be interpreted as the result of a collection of tests for 
each possible value of the parameter: the confidence set simply reports all the 
values of the parameter which cannot be rejected at a given level (see Lehmann 
(1986, Chapter 3)). In particular, the confidence set C,/(Y) can be interpreted as 
resulting from tests for a null hypothesis of the form Ho(qfo): fr(0) =fo, where 
qfo0 E If. The tests themselves can be defined as follows: p(Y; r0)= 1, if qfo0 X 
C,,(Y), and qp(Y; qf0) = 0, if r0 E C,1,(Y), where p(Y; qf0) = 1 means HO(qf0) is 
"rejected" and qp(Y; qf0) = 0 means it is "accepted." 

Let 0 = Q2l \ Q0. From the identity 

inf Pfo [(0) E Co(Y)] = 1 - sup P[(0) r ( C,(Y)], 

we see that inf 0 EE PO 0D,&(0) E Co,(Y)] = 0 < sup0, , Pq[ i(0) 0 C4,(Y)] = 1, and 
for 0< a<1, inf EPo[(0)ECOM]<l-a supo EY 

a. Consequently, when (3.9) or (3.11) holds, we can infer that, for any 0 < ao < 1, 
there exists a parameter vector 0 (E f2 \ Q0 and a hypothetical value qfo = qfr(00) 
such that E0j[ cp(Y; 4'o)] = P0o[ o 0 C+(Y)] > ao. In other words, for the family of 
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tests p(Y; +&), 0 E- +(e), we can always find a hypothesis H(qi() such that the 
level of the corresponding test will exceed any nominal level. As a result, the 
statistics sr(Y; q(()) cannot be pitvotal functions for the family of distributions 
{Po: 0 E D}, i.e., the distribution of sc(Y; 44(9)) depends on 0. More importantly, 
for any significance level O < a < 1, there is no way of bounding the probability 
of the event s(Y; gA(I)) = 1 uniformly over 0 e 0 (except trivially, by 0 and 1). 
Note also f2Q may be a fairly restricted subset of Q. Furthermore, from (3.9), 
the presence of such problems can be assessed by looking at the properties of 
C,,(Y) when 0 EQ O. 

It is straightforward to see that the above results apply quite generally to 
Wald-type confidence sets. For example, suppose q&(() is a scalar function of 0 
such that T4 is unbounded, let 0 be an estimate of 0 and A an estimate of the 
"standard error" of gi(() which is positive with probability one. Then any 
confidence interval of the form [ ) - c1 lk,, 4(6) + c26,j, ],where c l and c2 are 
constants which depend on the "nominal level" of the interval, has true level 
zero. Similarly, when 44(9) is a vector in Rk, any confidence ellipsoid [4(0)- 

1 [ 1 )-0) -4] ? c where c is a finite constant, will have true level zero 
whenever 1, is almost surely nonsingular. Correspondingly, the Wald statistic 

W )= [(() - ) (0)1]' l[ ( 0 - 0)] cannot be a pivotal function. No 
distribution independent of the unknown parameter vector 0, e.g. an asymptotic 
distribution, can provide tests whose true levels would not deviate arbitrarily 
from their nominal levels. Or equivalently, there is no way to find a finite critical 
value c( a) (e.g., one derived from an approximating distribution, like an 
asymptotic distribution) such that all the hypotheses H(f(r), f(r E C>(e)), would 
be testable at level a using a critical region of the form W(qj(;) > c( a). 
Furthermore, no useful maximum value over a set of possible (approximating) 
distributions can be found. For example, if the supports of the distributions of 
the W(qi,) statistics are the positive real line, the only critical value that can 
ensure a valid test of level a for all t E(= (0) is c(a) = oo. Approximations 
based on expansion methods, such as Edgeworth expansions where unknown 
parameters have been replaced by estimates, will also face a similar problem 
because they would lead to confidence sets that are almost surely bounded. For 
similar reasons, "bootstrapping" the distribution of W(qQr) cannot solve the 
problem either. 

5. ECONOMETRIC APPLICATIONS 

In this section, we apply the above results to a number of problems and 
models relevant to econometric practice and discuss possible solutions, including 
inference about parameters of simultaneous equations and dynamic models. 
Before studying those, however, we shall look at the problem of building a 
confidence set for the ratio of two regression coefficients in a linear regression. 
Even though this problem has been studied by GH, it will be illuminating to see 
how the more general results of Sections 3 and 4 apply to this relatively simple 
problem. 
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5.1. Ratios of Parameters in Linear Regressions 

Consider the linear regression 

(5.1) y =Xf + u, u-N[0, O2IT] 

where X is a T x k full-column rank fixed matrix (2? k < T), o- and /3= 

( 81 ... /3k)' are unknown coefficients (a > 0). We wish to build a confidence set 
for the ratio q( A) = ,82/,31 where 0 = (1 .... 8k, a )' E ? = WRk X R+. By def- 
inition, q~(O) is the solution of the equation /2 = ~(0)f1, unique except when 
'81 =0. 

Here q (0) has a discontinuity at every point of the set {( eQ 2: /31 = 01. 
Consider the following (restricted) domain for qt(6): Q1 = {( e Q : /31 0 0, O. = 

~ ,f = #j, j = 3, ... ., k}, where ;, /3j, j = 3,.. ., k are fixed constants. Let also 
0 = {O E f: 1 = 82 = O, f = 

a,i = #j, j 
= 3, . . ., k}. Since Q0 contains only 

one vector, condition C is trivially satisfied. For any q~0 E RO, we can define 
6n= ( (n), lf0 /(n) 133..., /3k a)S, n = 1, 2,..., where ,B(n) is chosen so that 
f (n) -o 0 and : (n) # 0, for all n. We see immediately that: 

n --*o 

(a) OneQ1\Q, Vn; 
(b) qf (On) = qfo' V n; 
(c) lim . 6a 6, where 0 = (O, 33?,3** k 0) E Q. 

Conditions A, B, C, and E are clearly satisfied here with I'Tr = RO. For 
0 < ae < 1, Theorems 3.3 and 3.6 entail that any level 1 - a confidence set for 
,82/,81 must have nonzero probability of being unbounded irrespective of the 
true value of 0, a probability that must get as high as 1 - a when 0 = 0. By 
varying (/33,..., /3k' 5)', we see also this property must hold whenever /31 = 

/32 =0. 
As a result any confidence interval of the form [(327/381) ? c( a/2)A ,], where 

(say) A= G( 3)E^G( I3)', G(,/)= aq(0)/1,8' 
I =s2(X'X)- [1 = 

and s2 = (y - X,/)'(y - X,)/(T -k), has zero coverage probability. Further- 
more, as shown in Section 4, we can always find a value tr0 such that the 
distribution of the Wald statistic W(fq)= [q( 0 - _'o ]2/5i,2 deviates arbitrarily 
from any "approximating distribution" (such as the X 2() distribution). 

By contrast, a valid confidence set for /82/,81 follows on "inverting" LR tests 
for the hypothesis H0(q0): /32/,31 = o Since H0(60) is equivalent to 
HO(0)': 82 - /',81 = 0, the LR test of Ho0Gfo) is equivalent to the Fisher test 
of H0(q0)' based on F(q0) =(2 - /O a)2/( 0/ - 2512 '0 +22). Since 
F(60) F(1, T-k) under H0(60), Cq,(a; y) = {q0: F(q0) < FJ(1, T-k)} is a 
level 1 - a confidence set for /2/7/1. This set can be put in explicit form by 
solving the quadratic inequality 

(5.2) AqJ2+BqoI+C<0 

where AO=/1-Fa511, B= -2 a`- F 2),C C 2 _Fa 5`22, and Fa= 

FJ1, T -0k). This confidence set is unbounded when A < 0, an event with 
probability P,[A <0]=P o[,/3 1<Fa]= 1-a when /1 =0. C,(a;y) is a 
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generalization of the well-known Fieller's (1954) confidence set for the ratio of 
two means (see Rao (1973, Section 4b)). The basic reason for the "smooth" 
behavior of tests and confidence sets based on this method is that the statistic 
F( q) is a proper pivotal function for this problem, in contrast with Wald-type 
statistics. 

5.2. Simultaneous Equations and Instrumental Variables Regressions 

Let us now consider the following structural model: 

(5.3a) y=Y/3+X1y1 +u, 

(5.3b) Y=XH+ V=X1H1 +X2H2 + V, 

where y is a T x 1 random vector, Y a T x G matrix of endogenous variables, 
X1 and X2 are Txkl and Txk2 matrices of fixed (or strictly exogenous) 
variables, X= [X1, X2] with rank(X) = k, + k2 = k, ,B and yj are G X 1 and 
k, x 1 vectors of unknown coefficients, H1 and H2 are k, x G and k2 x G 
matrices of unknown coefficients, u and V are T x 1 and T x G matrices of 
random disturbances; furthermore, we assume that the rows of the matrix [u, V] 
are i.i.d. NG+ [0, ] where det(C) = 0 and X does not depend on ,B, Yj, and H. 
Equation (5.3a) can be viewed as a typical relationship that would be estimated 
by IV methods. 

Substituting (5.3b) into (5.3a), we obtain the reduced form equation for y: 

(5.4) y =Xgv-l +X2T2 + V, 

where v = u + V,B and 7T = H,1 , + -yl, W2 = 172 /. If no restriction is imposed 
on y1 (which is typically the case), /3 is identifiable if and only if rank( 2) = G. 
In other words, if the equation W2 = H2/ has a solution / , it is unique if and 
only if rank( H2) = G holds. The set of all possible solutions of 1r2 = H2 /3 iS 

(T2, 7H2) = {,(/ E R G: = /3 + 8, 8 E ker(H2)}, where ker(H2) is the set of all 
vectors 8 E R G such that H2 8 = 0 (rank( H2) = G if and only if ker( H2) = {01). 
Instruments may be described as "weak" when the rank condition rank( H2) = G 
fails to hold or almost does not hold, a problem recently emphasized by several 
authors (e.g., Angrist and Krueger (1994), Bound, Jaeger, and Baker (1995), 
Hall, Rudebusch, and Wilcox (1996), Maddala and Jeong (1992), Nelson and 
Startz (1990a, 1990b), Staiger and Stock (1997)). 

For any k2 x G matrix H2 whose rank is less than G, we can find a sequence 
H2(n))1=1 of k2 x G matrices such that rank(H2(n)) = G, Vn, and 7(n) _ 2. 

If ker(H2) contains a vector whose jth component is unbounded (1 <j < G), 
this jth component is also unbounded in -A&2, H2). In particular, if H2 = 0, we 
have _Aw2, H2) = 0RG, i.e., /3 is completely unrestricted. Further, in such a case, 
the same will hold for yj provided the corresponding row of H1 is nonzero (for 

H11 /3 + Y1) 
Here the complete parameter vector is 0 = vec( ,/, y1, H1, H2, 1). We denote 

by p the dimension of 0 and by Q the subset of DRP whose elements 0 satisfy 
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the restrictions entailed by model (5.3). Taking , = (0) as the parametric 
function of interest, we have a case where q,(6) is a continuous function of 0 
but the parameter space contains subsets inside which the different parameters 
are observationally equivalent. Many different such subsets do exist. Define the 
(G + 1) x (G + 1) matrix 

A( ;3)[ 3] 

which is easily seen to be nonsingular for all values of ,B. Then, for any given 
vector 0 = vec( /,By, HII, H2, 1) such that rank(H2) < G, we have the following 
observational equivalence subset: Q0 = {( E R P: H1 = H1, H72 = H2, H2 /3 = 72 

H1l83+y1=r, A(i3)EA(/3)'=A(i3)XA(/3)'}, where V2= H2/ and 7-= 

H1 /3 + 5' The condition A( /3 ) EA( ,/)' = A( 3) EA( ,/ )' ensures that the distur- 
bances of the reduced form model associated with (5.3) have identical covari- 
ance matrices: /3, yl, and X move together (in 00) to ensure that the 
conditional distribution of [y,Y] given X remains the same. Thus the set Q0 is 
a subset of DRP defined by imposing nonlinear constraints on 0, a case clearly 
not covered by the results of GH. 

From Theorem 3.3, any confidence set for the vector /3 must be unbounded 
with probability 1 - a (at least) when rank( H2) < G. For components of /3, the 
same will hold when 0 belongs to a subset Q0 over which this component is 
unbounded. Again unbounded confidence sets must occur with probabilities 
close to 1 - a (or greater) in the neighborhood of these sets, and since the 
model has a density function, the probability of getting an unbounded confi- 
dence set is different from zero for any 0. Consequently, confidence sets which 
are bounded with probability one have zero coverage probability. In particular, 
this will be the case for any Wald-type confidence interval based on the 2SLS 
estimator of /3, the usual 2SLS standard errors and a normal asymptotic 
distribution. Despite considerable theoretical work on the finite sample proper- 
ties of 2SLS and other simultaneous equations estimators, as well as the 
associated inference procedures, this important property has not apparently 
been pointed out before (e.g., see the survey of Phillips (1983)). 

It is of interest to note here that a valid confidence set for /3 in model (5.3) 
can be obtained by a method suggested long ago by Anderson and Rubin (1949, 
henceforth AR). Consider first the problem of testing Ho(,8/): / = /3. On 
observing 

(5.5) y-Y/30 = Xl7 + X2X2+U* 

where <T = y1+H1(3 -30), 7T* = HI2(/, -,30), and u u + V(/3 -/30), we 
see that Ho(,/0) can be tested by testing w* = 0 in the linear regression (5.5). 
This test can be interpreted as the LR test of w* = 0 in the regression (5.5) 
against the same regression with w* and w* unrestricted. An exact confidence 
set of level 1 - a for /3 is then provided by C,,( a; y,Y) = { /0: F( /0) < Fag(k2, 
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T- k1 - k2)} where 

(y - Y,f0)'[M(X1) -M(X)](y - Yf30)/k2 
(5 .6) F(f/3?)= (y-Y,f0)'M(X)(y-Yf3)/(T-k, -k2) 

where, for any nonsingular matrix A, we define M(A) = IT -A(A'A) 1A'. The 
confidence set C,3( a; y, Y) is similar at level 1 - a irrespective of the true value of 
H (it is not conservative) and so does not require an identifiability assumption, a 
remarkable feature. C,3(a; y, Y) is not generally an ellipsoid and, by the results 
of Section 3, we can conclude it is unbounded with positive probability (a 
property not apparently pointed out before). In particular, an unbounded 
confidence set will occur with probability at least 1 - a when the rank of H is 
deficient (so ,B is not identifiable), a natural outcome in this case. Note also 
C,3( a; y, Y) could be empty: specifically, this will occur when the smallest root of 
the usual LIML determinantal equation exceeds some constant. Since the 
probability that ,B E C,3( a; y, Y) is 1 - a, the probability this occurs cannot be 
greater than a under the model. Thus the occurrence of an empty confidence set 
can be interpreted as a rejection of the model itself, e.g., because of overidentify- 
ing restrictions (i.e., a test of the restriction rank([2, 1H2]) = rank( 2), or 
equivalently a test of the fact that V2 = H2 / for some vector /). We thus have 
a specification test. 

C,3( a; y, Y) is a valid confidence set for /3 because F( /3) is a proper pivotal 
function for the model considered. More generally, any LR-type statistic for 
testing a hypothesis about some transformation 8 = g( /3, Yl H1, H12) E RV of /, 
y1, and H is boundedly pivotal. This can be shown by using an argument similar 
to the one in Dufour (1989) for bounding the distributions of LR statistics for 
nonlinear hypotheses in linear regressions. More precisely, consider the hypoth- 
esis 

(5.7) Ho: g( ,(3, -y1, H1, HO2) E O, 

where A0 is a nonempty subset of Rv, let LR(HO) be the LR statistic for testing 
Ho against (5.3), and consider the multivariate linear regression model: 

(5.8) Z=XB+W 
where Z=[y,Y], W=[u,V], and the rows of W are i.i.d. N[O4,1] with 
det(.E*) # 0. Model (5.3) is equivalent to a restricted version of (5.8) where B 
belongs to the set F1 = {B E M(k, G + 1): B = B( /3,y1, H1, 172), E= RG 
Rk1, H1 E M(k1, G), H2 E M(k2, G)}, 

(5.9) B( /3 yl, Hl H2) [X1 =1 Hi 7 / + )'Yi Y 17 83 

and the symbol M(m, n) denotes the set of the m X n real matrices. F1 
represents the restrictions imposed by the structural model (5.3) on the corre- 
sponding reduced form (5.8). Then the problem of testing Ho against (5.3) is 
equivalent to testing 
(5.10) Ho: B E FO against H': B E F1 
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where FO = {B E M(k, G + 1): B = B( /, y1,1, HH2), g(f3, y1,H H1, 2) EA0}. If 
we denote by L(Z I B, L) the likelihood function of the regression (5.8) and 

(5.11) L(F)=sup{L(ZIB,438 ):BErF4, ESG+1}, 

0 F FcM(k, G + 1), 

where SG+ 1 is the set of the (G + 1) x (G + 1) positive definite matrices, we can 
establish the following theorem on the distribution of LR(HO). 

THEOREM 5.1: Under the_assumptions and notations (5.3) and (5.7)-(5.11), 
suppose B( ,3, 'Yl, H1, H2) -B. Then the likelihood ratio statistic LR(HO) for testing 
Ho against (5.3) satisfies the inequality 

(5.12) LR(Ho) = L(F1)/L(FO) < L(M(k, G + 1))/L({B}) - LR 

where LR [V1V2 .. VG+1LT/2 and V, V2,..., VG+1 are independent random 
variables such that Vi follows a beta distribution with parameters 

((T-k-G-1 +i)/2,(k/2)), 1 <i<G+ 1. 

The bound LR has a distribution which does not depend on B nor any 
nuisance parameter, and no identification condition is required. LR is a mono- 
tonic transformation of a Wilks A statistic, whose distribution has been exten- 
sively studied (see Anderson (1984, Chapter 8)). It can also be determined easily 
by simulation (see Dufour and Khalaf (1996a,b)). For any hypothesis Ho, e.g., a 
hypothesis of the form H0(80): g( ,3, Yl H1, H2) = 50, we have P[LR(HO) ?x] 
<P[LR2?x], Vx, so that the critical values of LR(HO) can be bounded from 
above by the quantiles of LR. We do not claim this bound is very tight, but it 
shows clearly that LR-type statistics in simultaneous equations are boundedly 
pivotal, a property not shared by Wald-type statistics. 

The AR procedure may be interpreted as an IV method in which the 
exogenous variables excluded from a structural equation of interest are added 
directly to the equation instead of being used to replace the endogenous 
explanatory variables by fitted values. The above discussion suggests this is a 
much sounder way of making inferences on structural coefficients than the more 
usual methods based on IV estimators and standard errors. Note also the AR 
statistic can yield "asymptotically valid" tests and confidence sets under much 
weaker assumptions on X and [u, V]; see, for example, Staiger and Stock (1997) 
and Dufour and Jasiak (1994). An important feature here is that finite and large 
sample validity results for the AR procedure are unaffected by the presence of 
identification problems. Further, the evidence available on the power of AR 
tests indicates their performance is excellent; see Maddala (1974) and Dufour 
and Jasiak (1994). 

An apparent shortcoming of AR tests and confidence sets comes from the fact 
that they are designed to consider the complete vector /3. When G > 2 (non- 
scalar ,B), we may still wish to build confidence sets for individual components of 
,B or for some transformation g(,B) E R'. This can be done by using a 
projection approach similar to the one used in Dufour (1990) for a different 
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problem. For any confidence set C,3(a) such that P0[ /3 E C,3(a)]> 1 - a, 
VOEQ, e.g. Cp,3(a)=C,3(a;y,Y), take the image set g[C,3(a)]={g(,8) EEm: 
/3 E C. (a)}. Since ,3 E C,3((a) entails g(,B) eg[C.3,(a)], we have 

(5.13) Pa[g(/3)Eg[C,3(a)]] 2P,a[4E C',(a)] 21-a, VGEQ, 

so that the confidence set g[C,3( a)] has level 1 - a. Note there is no restriction 
on the dimension of g( ,3). When g( ,3) = 3,i, an individual element of (3, 
g[C1a( a)] can be interpreted as the projection of C,3 (a) on the i31-axis. For a 
scalar function g(,B), this confidence set does not necessarily take the form of 
an interval, although this could easily be the case (e.g., if g(0) is continuous and 
the set C,3a(a) is bounded and connected). If one wishes to have a confidence 
interval for any scalar function g(,/3), this can be done by considering the 
variables gL(a) = inf{g(,30): /30 E C,3(a)} and gu(a) = sup{g(,30): 30 E C'(aW)} 
which are obtained by minimizing g( /30) subject to the restriction F( /30) < 
Fa(k2,T-kl--k2). Since /3E C,8(a)= gL(a)<g(83)<gu(a), we see again 
that 

(5.14) P9[gL(a) <g(/3) <gu(a)] 2 i-a, VOEE Q. 

The confidence sets g[CQ3(a)] and [gL( a), gu( a)] are obtained by first finding a 
joint confidence set for / and then deducing the corresponding set of g(/8) 
values. We call such sets projection-based confidence sets. These will typically be 
nonsimilar and conservative (at least at certain points of the parameter space), 
but no other valid procedure appears to exist in finite samples. 

5.3. Dynamic Models 

We will now examine a few dynamic models. As a first example, consider a 
linear regression with AR(1) disturbances: 

(5.15) Yt =/,80 +Xp + Ut, U=pu1+ , p1? (t T), 

where xl, ... , XT are fixed k x 1 vectors of explanatory variables, ,30, /3, p, and 
o are unknown coefficients, el,..., IT are i.i.d. with a continuous distribution 
(say) which does not depend on the regression coefficients, and yo is taken as 
fixed (i.e., we consider the conditional distribution of Yl, . . ., YT given yo). For 
such a model, there is ample Monte Carlo evidence showing that usual asymp- 
totic t and F tests based on generalized least squares (to correct serial 
correlation) can be quite unreliable in finite samples, especially when p is close 
to one and for inference about the intercept coefficient; see, for example, Park 
and Mitchell (1980) and Miyazaki and Griffiths (1984). Indeed, if we rewrite the 
model in the form 

(5.16) yt = ,(3o - p) + (xt- pxt- 1)',8 + pyt- 1 + St (t =1...,T), 

we see that /30 is not identified when p = 1. So by the results of Sections 3 and 
4, any valid confidence set for /30 must be unbounded with positive probability, 
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and Wald-type tests for hypotheses on 80 have distributions that will deviate 
arbitrarily from any uniform approximation. The same problems will occur even 
if we impose the restriction p PI < 1. For an example of a valid confidence set for 
the regression coefficients of the model just discussed (with normal distur- 
bances), see Dufour (1990). 

As a second example, consider inference on a long-run multiplier, which 
measures the long-run effect of a permanent unit change of an exogenous 
variable on some dependent variable. Take the simple first-order dynamic 
model: 

(5.17) yt=Ayt,-+x8+8t, IAI<1 (t=l, T), 

where x1,.. ., XT, e=(i, ..., 8T)0, andyO are defined as in (5.15). Then the long- 
run multiplier for the jth component of xt = (x1t, ... , xkt) is PL] = Pi/(l - A) 
Since 8Lj is a parameter ratio that becomes undefined (nonidentified) when 
A = 1, the problem is similar to the one studied in Section 5.1 and the results of 
Sections 3 and 4 apply again. For an example of a valid confidence procedure for 

fLk see Dufour and Kiviet (1994). 
Thirdly, consider inference on the coefficients of a cointegrating relationship 

(for reviews, see Engle and Granger (1991) and Banerjee, Dolado, Galbraith, 
and Hendry (1993)). It is well known that such relationships can be uniquely 
determined only through identification restrictions (see Johansen and Juselius 
(1994)). Difficulties here are quite similar to those met in static simultaneous 
equations, but it will be useful to spell them out for a special case. 

Take a bivariate time series Xt = (X1t, X2t)' which follows an autoregressive 
model of order p (p ? 1), written in error-correction form: 

p-l 

(5.18) AXt + E FJXtj + HXt- p+ut (tuT), 
j=l 

where Au is a constant vector, ul, ... ., UT are i.i.d. N[0, ]with det(X) 0 O, and 
the initial values XO,.. ., X_p+ 1 are fixed. By the Engle-Granger representation 
theorem, Xlt and X2t are cointegrated if and only if H can be written H = 8,/', 
where 8 and /3 are nonzero vectors of dimension two. The first step for 
identifying ,B is to impose a normalization constraint on ,B, e.g., by setting its 
first component equal to 1: ,B = (1, 81). Then model (5.18) can be rewritten as 

p-l 

(5.19) AXt =,+ E FJAXtj + (X1 t_p + 1X2, tp) +ut (t= 1,.T), 
j=l 

and we see that /31 cannot be identified when 8 = 0. The results of Sections 3 
and 4 thus apply to inference about /31. Note 8= 0 corresponds to the usually 
quite plausible case where X1t and X2t are not cointegrated and a regression of 

Xlt on X2t would be a "spurious regression." 
Recent simulation experiments (Gonzalo (1994)) have shown that maximum 

likelihood in a fully specified error correction model (as suggested by Johansen 
(1988)) appears to be the best method for estimating cointegrating vectors. 
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Correspondingly, in the same context, our results suggest that more reliable 
tests and confidence sets for cointegrating vectors will be obtained by using 
LR-type tests and by building confidence sets through the inversion of such 
tests. 

6. CONCLUSION 

The results presented in this paper have important implications for economet- 
ric theory and practice. First, it is essential to remember that confidence sets 
should be based on proper pivotal functions, or at least on boundedly pivotal 
functions. 

Second, the most commonly used method for building confidence sets, which 
is based on "inverting" Wald-type tests, does not rely on proper pivotal func- 
tions in situations involving LAU parameters: standard errors and covariance 
matrices largely lose their usual interpretation. 

Thirdly, asymptotic arguments can be especially misleading in the models 
studied here. Even though a Wald-type statistic may be asymptotically pivotal at 
every point outside the nonidentification subset, convergence to the asymptotic 
distribution has to be arbitrarily slow at points outside the nonidentification 
subset (nonuniform convergence). Monte Carlo evidence strongly supporting this 
view is available in Dufour and Jasiak (1994), Hall, Rudebusch, and Wilcox 
(1996), and Nelson, Startz, and Zivot (1996). 

Fourth, it appears that LR statistics behave relatively smoothly in the pres- 
ence of identification problems, so that they have better chances of being 
bounded pivotal (for other illustrations of this phenomenon, see Dufour (1989)). 
Indeed, this is not surprising in view of the fact that the likelihood function is 
flat on a nonidentification subset. In the context of a standard simultaneous 
equations model, we showed explicitly that LR statistics for testing hypotheses 
about structural coefficients are boundedly pivotal, while Wald-type statistics are 
not. For Monte Carlo evidence showing that LR-type tests are indeed more 
reliable in such contexts, see Dufour and Jasiak (1994) and Nelson, Startz, and 
Zivot (1996). 

Fifth, given a valid confidence set for a parameter vector, it is always possible 
to derive valid confidence sets for individual elements of the vector, or for any 
function of this vector, by using projection methods. 

The examples analyzed in Section 5 by no way constitute an exhaustive list of 
the cases to which our general results apply. Other cases include: various 
nonlinear regressions, ARMA models both univariate and multivariate (e.g., 
because of common factors problems), inference in "structural" models derived 
from dynamic optimization models which are often estimated by the generalized 
method of moments, inference about structural change break dates, etc. To 
keep our exposition within limits, we emphasized here parametric models, i.e., 
models for which a finite-dimensional vector 0 completely determines the data 
generating process. The results of Sections 2-4 however are sufficiently general 
to cover nonparametric models. Such models raise even stronger indetermina- 
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cies and "impossibilities." For example, on testing unit root hypotheses in time 
series models which allow for general forms of serial dependence, Blough (1992) 
and Cochrane (1991) showed that any test with level a should have power that 
does not exceed its level against any stationary alternative. Our results thus 
strongly concur with theirs by stressing the importance of finite-sample consider- 
ations for model formulation and inference. 

Finally, it is important to remember not all Wald-type tests are problematic: 
when a Wald-type statistic is a pivotal function, as occurs for example when 
testing linear restrictions on the coefficients of linear regressions, there is no 
difficulty. The problems discussed above appear in models which contain LAU 
parameters. A question of interest here is whether it is possible to "salvage" 
Wald-type tests and confidence sets in such cases. We saw above it is totally 
insufficient to exclude the regions of the parameter space where the coefficient 
vector 0 or the transformation ti(O) is not identifiable. Whether there is then a 
practical way of modifying Wald-type procedures remains doubtful. For exam- 
ple, in models estimated by IV, one may try to find methods for selecting "good" 
instruments. However, as the simulation results of Hall, Rudebusch, and Wilcox 
(1996) show, such procedures do not appear to work and may even make matters 
worse from the point of view of test reliability. Further, when it is possible to 
find alternative procedures that behave "smoothly" in the presence of identifi- 
cation difficulties (like the Anderson-Rubin procedure in simultaneous equa- 
tions), there appears to be little motivation for sticking with Wald-type methods. 
Accepting the possibility of an unbounded confidence set for a structural 
coefficient is simply a matter of logic and scientific rigor: the data may simply be 
uninformative about such coefficients. Note this does not at all mean that the 
practice of building confidence sets should be abandoned for potentially uniden- 
tified models. Unbounded confidence sets do not necessarily occur for particular 
data sets and may indeed be very unlikely: if the data generating process is "far" 
from those cases where the structural parameter vector is not identified, we can 
expect any reasonably powerful confidence set procedure will yield unbounded 
confidence sets only with low probability. But unbounded confidence sets must 
occur with high probability when the parameters considered are not identified or 
are close to being so: the occurrence of such a set may be interpreted as a 
symptom of the fact that the parameter cannot be precisely evaluated from the 
available data. 
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APPENDIX 

PROOF OF PROPOSITION 3.1: For any /'l E T0, we can find a sequence (on)'=1 in S(0O, Q12) such 
that qi(Qn) = /l', Vn, and P0 converges weakly to P.. Since C,(Y) is a level 1 - a confidence set for 
0 E f2l \ Q0 (Assumption F), we have Pj, [ E E C,(Y)] 2 1 - a, Vn. From B, D, F, and the 
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portmanteau theorem for weak convergence (see Billingsley (1968, Chapter 1, Theorem 2.1)), we 
also have: P.[Jqil E C,(Y)] -n ,ooPo-[ 1 E Co(Y)], where 0 = limp G,, an E 00. Then, using the fact 
that Po is the same for all 0E 0 (Assumption C), we see P.[ il1 E Cp(Y)] = P[i1 eCpMl, 
VO E Qo, and (3.1) follows. 

The inequality sup2 N(8) P0[4f1 E Cp(Y)] 2 1 - a is a direct consequence of (3.1) and the fact 
that N(0) contains all the elements (except possibly a finite number) of any sequence in S(QO, ?2l). 
To complete this proof, we note that E entails D by the portmanteau theorem for weak convergence 
jointly with Scheff6's theorem (see Billingsley (1968, Appendix II)). Q.E.D. 

PROOF OF PROPOSITION 3.2: To prove (3.3)-(3.4), we shall consider in turn three cases: (a) 
Ro= 0; (b) 0 <Ro <oo; (c) Ro=0?. 

(a) Ro = 0: The result is obvious since pu[C+(Y), if1] 2 0. 
(b) 0 <R0 <cc: For any e E (0, oo), we can find 'fI2 C such that p(-rE,f2)?R0-E. Since 

2 E C(Y) => pPUC(Y), 11] 2 P(02, qfl) 2 Ro - E, where = is the implication operator, we see 
that 

P0[ pu[Cp(Y), qf1] 2Ro - E] >PO[ 02 E C,(Y)], Ve. 

Then, for any e > 0 and 0 E Q0, we see from Proposition 3.1 that 

Po[ PU[Cp(Y), 'fll] 2 Ro -E] ?1 - a, 

which entails P. [ pu[Co (Y), /1] R0 - Em] ? 1-oa, for any sequence (Em)Ci such that Em > 0, 
Em+ i < Em, and limm Em = 0; hence 

Po[ pu[C4(Y), f1] Rol] 1- a, VOe &0. 

Similarly, for all n and E> 0, we also have Po"[ pu[C4,(Y), fl] 2 Ro - E] 2 P0JD/2 E C+,(Y)]; hence 
using again Proposition 3.1, 

liminfPo[ pU[Co (Y), 1] 2 RO-E] 2 liminfPJ02 E=C(Y)] 1-a. 

(c) Ro = ?c: For any A E (O,oo), we can find f2 E 0 such that p(f, '2) 2 A; hence 

P0[ PU IC(Y), a] 2 A] PO f 02 E C,(Y)], VO. Thus, for any A > 0 and 0 E 

Po[ PU[C(Y), l] > A] 2 1 - a; 

hence 

Po[ pu[C4(Y), afl] = GO] =Po[ pu[C4(Y), fl] >Rol] 1 - a, VG E Q0. 

Similarly, P.n[ pu[Cq,(Y), pf] 2 A] ?POJ0D2 E Cd,(Y)], Vn; hence 

liminfP9 [ pu[C4,(Y), 'p,] 2 A] 2 liminfP, [ 02 E C+(Y)] 2 1 -a, VA (0, c). 

(3.3) and (3.4) are thus established. (3.5) follows on applying the portmanteau theorem for weak 
convergence. Q.E.D. 

PROOF OF THEOREM 3.3: Using the Boole-Bonferroni inequality, we first note 

(A.1) PO{ f1, qf2} C C, C(Y)] 2 1 - POIs 1 C4(Y)] - PO I2 0 C+(Y)]>, V, 

for any qfl, f2 E 1'P. Further, from Proposition 3.1, Po[ 0, E Cq,(Y)] ? 1 - a, i = 1, 2, when 0 E 00, 
so that P.Ibfl1, 02} C C4,(Y)] ? 1 - 2a, VG E- 0. Now let D1 = D[ToI]. To prove (3.6) and (3.7), 
we proceed as in the proof of Proposition 3.2 and distinguish again three cases: (a) D1 = 0; 
(b) 0 < D1 < oo; (c) D1 = oo. 

(a) D1 = 0: In this case, P,[D(Y) 2 D1] = P,[D(Y) 2 0] 2 1 -2a. 
(b) 0 < D1 < oo: For any E E (0, oo), we can find l, '2 E /0 such that P('P1, 'P2) 2 D1-E. Then 

1, '2 E C+,(Y) D[Cq,(Y)] 2 P(f1, f2) 2 D1 - e => -D[C,(Y)] 2 -D1 + E, and using (A.1), 

P0[-D[C~,(Y)] < -D1 + E] ?P0[{01, '2} cC,,(Y)] 21 - 2a, VOGe 00. 
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Then, by the right continuity of distribution functions, 

PO[D[CO(Y)] > D1] = lim P.[-D[C(Y)l < -D1 + e] 1 - 2a, VO E 0 

Similarly, for all n and fe (O,oo), we also have P89[D[Cq,(Y)] >Dj - ]>?Pjt{q1, f2} CC(Y)] > 

1 - P,1J C+(Y)] - Po[j'2 0 C+(Y)], VE E (0, cc); hence using Proposition 3.1, 
liminfn , PO [D[C4,(Y)I >D1 -,E ? 1 - 2a. 

(c) D1 = oo: For any A > 0, we can find I2 E= t'o such that P(AfI, /2) > A. Thus, 

P0[D[C,(Y)] > A] P[{lfr, f2}C tC(Y)] 2 1-2a, VOE Q0. 

Since the latter inequality holds for any A E (0, oo) however large, we must have: 

P0[D[C+(Y)]2D1]-=P[D[C4,(Y)]=m]l21-2a, VO E d. 

lim infn Poj[D[C,(Y)] ? A] 2 1 - 2a follows from (A.1) and Proposition 3.1. 
Consequently, (3.6)-(3.7) are established. (3.8) follows on applying Proposition 3.2 and noting 

D[C4(Y)] c= oo < pu[C+(Y)p,1] = ]?, where qfrI EC T. Q.E.D. 

PROOF OF LEMMA 3.5: If P69(A) > 0, we have 

P9(A) = f dP9(y) = ff(y I 0) dY=f f(yI )dy 

IAn3y(0O1 Y )Y ACVd(0 )f (Y IO )Ol(Y 00) dy > 0 

where the last inequality follows on observing that POO(A) = JA n (O) f(y I 00) dy > 0 and 
f(y I 6)/f(y I On) > 0 for y EA nYO50). Q.E.D. 

PROOF OF THEOREM 5.1: The fact that LR(HO) = L(F1)/L(Fo) follows from the invariance of 
LR test statistics to model reparameterizations (see, for example, Dagenais and Dufour (1991)) and 
the observation that model (5.3) is equivalent to H{ (model (5.8) with B E F1) while the hypothesis 
Ho is equivalent to HQ (model (5.8) with B E FO). Consider now the hypothesis Hoo: B E {B} and 
H11 : B E M(k, G + 1). HQO is the reduced form model (5.8) restricted to the single "true" value 
B=B, while H11 corresponds to a completely unrestricted reduced form. Under HO, we have 
{B} J 

rO 5 r, s M(k, G + 1), so that L({B) < L(F) < L(Fl) < L(M(k, G + 1)) and 

LR(HO) = L(F1)/L(F0) < L(M(k, G + 1))/L({B}) = LR(H00 I H11), 

where LR(H00 IH1) is the LR statistic for testing HOO against H1I. The null distribution of 
LR(HOO I H11) is well known from the literature on multivariate statistical analysis, since it is a 
monotonic transformation of Wilks A statistic with parameters (G + 1, T - k, k). Hence we have 

LR(HOO I H 1) = A T/2 where A VIV2 ... VG + 1 and the variables V, i = 1,..., G + 1, are indepen- 
dent with beta distributions: V- Beta((T - k - G - 1 + i)/2, (k/2)), i = 1. G + 1; see Rao (1973, 
Ch. 8, pp. 540-541 and 551) or Anderson (1984, Ch. 8). Q.E.D. 
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