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Abstract. In this paper we study secret sharing schemes for access structures 
based on graphs. A secret sharing scheme enables a secret key to be shared among 
a set of participants by distributing partial information called shares. Suppose we 
desire that some specified pairs of participants be able to compute the key. This 
gives rise in a natural way to a graph G which contains these specified pairs as 
its edges. The secret sharing scheme is called perfect if a pair of participants 
corresponding to a nonedge of G can obtain no information regarding the key. 
Such a perfect secret sharing scheme can be constructed for any graph. In this paper 
we study the information rate of these schemes, which measures how much infor- 
mation is being distributed as shares compared with the size of the secret key. We 
give several constructions for secret sharing schemes that have a higher informa- 
tion rate than previously known schemes. We prove the general result that, for 
any graph G having maximum degree d, there is a perfect secret sharing scheme 
realizing G in which the information rate is at least 2/(d + 3). This improves the 
best previous general bound by a factor of almost two. 

Key words. Secret sharing, Ideal secret sharing, Perfect secret sharing, Informa- 
tion rate. 

1. Introduction and Definitions 

Informally, a secret sharing scheme is a method of sharing a secret key K among  a 
finite set of participants in such a way that certain specified subsets of participants 
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can compute a key. Suppose that P is the set of participants. Denote by F the set 
of subsets of participants which we desire to be able to determine the key; hence 
F _~ 2 P. F is called the access structure of the secret sharing scheme. It seems 
reasonable to require that F be monotone, i.e., 

if B ~ F  and B ~ C c P ,  then C ~ F .  

For  any F o ___ 2 P, define the closure o f f  o to be 

cl(Fo) = {C: B E F o and B ~ C _ P}. 

Note that the closure of any set of subsets is monotone. 
Let K be a set of q elements called keys, and let S be a set of s elements called 

shares. Suppose a dealer D wants to a share the secret key K E K among the 
participants in P (we assume that D ¢ P). He does this by giving each participant a 
share. We say that the scheme is a perfect scheme with access structure F if the 
following two properties are satisfied: 

(1) If a subset B of participants pool their shares, where B ~ F, then they can 
determine the value of K. 

(2) If a subset B of participants pool their shares, where B ¢ F, then they can 
determine nothing about the value of K (in an information-theoretic sense), 
even with infinite computational resources. 

We depict a secret sharing scheme as a matrix M, as was done in [51. This matrix 
is not secret, but is known by all the participants. There are [PI + 1 columns in M. 
The first column of M is indexed by D, and the remaining columns are indexed by 
the members of P. In any row of M, we place the key K in the column D, and a 
possible list of shares corresponding to K in the remaining columns. When D wants 
to distribute shares corresponding to a key K, he will choose uniformly at random 
a row of M having K in column D, and distribute the shares in that row to the 
participants. 

With this matrix representation, we can give a mathematically precise definition 
for conditions (1) and (2) above. Condition (1) becomes 

(1') If B E F and M(r, b) = M(r', b) for all b E B, then M(r, D) = M(r', D). 

Realizing condition (2) is more complicated, and there are at least two reasonable 
ways to proceed. For  reasons that will become evident, we refer to the first formula- 
tion as weakly perfect. The condition is as follows: 

(2') If B ¢ F, ro is any row and K is any key, then 

I{r: M(r, b) = M(r o, b) for all b ~ B, M(r, D) = K}[ > 0. 

The second formulation was termed "having no probabilistic information regarding 
the key" by Brickell and Davenport [51. Here, we call it strongly perfect, or, more 
briefly, perfect. This condition is the following: 

(2") I fB  ¢ F and f :  B ~ S is any function, then there exists a nonnegative integer 
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2(f,  B) such that  

I{r: {(b, M(r, b)): b E B} = {(b,f(b)): b ~ B} and M(r, D) = K}I = 2(f,  B), 

independent  of the value of  K. 

Some explanat ion and discussion is certainly in order. First, it is obvious  that  
perfect implies weakly perfect. However,  we need to explain how these definitions 
relate to the security of  the secret sharing scheme. The not ion of  security is made  
rigorous in terms of  probabil i ty distributions as follows. We assume that  there is a 
fixed a priori probabil i ty distribution on the set of keys K, that  is known to all the 
participants. Suppose a subset B of  participants pool  their shares. They Can then 
compute  a condit ional  probabil i ty distr ibution on the set of  keys, given the informa- 
tion that they hold as shares. We illustrate this in the following example. 

E x a m p l e  1.1. Let  P = {a, b} and let F = { {a, b} }. K = {0, 1} and S = {0, 1, 2}. Let 
M be the following matrix: 

D a b 

0 0 1 
0 0 2 
0 1 1 
0 2 0 
1 0 0 
I 1 0 
1 2 2 
1 2 1 

This secret sharing scheme is weakly perfect but not  perfect. We compute  the 
condit ional  probabi l i ty  distribution on K, given a value for s, or  sb. Suppose that  
the two keys are equiprobable,  i.e., p(K = O) = p(K = 1) = 1/2. These condi t ional  
probabil i ty distributions are as follows: 

p(K = OIs. = O) = 2/3, p(K = l ls .  = O) = 1/3, 

p(K = Ols. = 1) = 1/2, p(K = l l s  a = 1) = 1/2, 

p(K = 0Is, = 2) = 1/3, p(K = lls . = 2) = 2/3, 

p(K = 0]sb = 0) = 1/3, p(K = llsb = 0) = 2/3, 

p(K = Olsb = 1) = 2/3, p(K = llsb = 1) = 1/3, 

p(K = Olsb = 2) = 1/2, p(K = l ls~ = 2) = 1/2, 

Let us consider what  happens in general. First we consider the case of  a weakly 
perfect scheme. Suppose B ~ F and SB = (Sb: b e B) is a possible distr ibution of 
shares to the participants in B (i.e., there is at least one row of M such that  
M(r, b) = sb for all b e B). I f K  0 is any key, then p(K = KolSB) > 0. Hence, no key 
can be eliminated. 
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On the other hand, in a perfect scheme, we have the following stronger result. 

Theorem 1.1. Suppose M is a perfect secret sharing scheme for an access structure 
F. Suppose B ¢ F and SB = (Sb: b ~ B) is a possible distribution of  shares to the 
participants in B. I f  K o is any key, then the conditional probability p(K = KolSn) 
equals the a priori probability p(K = Ko). 

Proof. First we observe that there are the same number  of rows of M, say 2, 
corresponding to each key K. This can be seen from property (2") with B the empty 
set. 

Now let B ¢ F and let Sn = (sb: b e B) be a possible distribution of shares to the 
participants in B. Define f :  B ~ S to be the function such that f(b) = sb for every 
b e B. Let K o be any key. Then property (2") implies that p(SBIK = Ko) = 2 ( f ,  B)/2. 

Now, we can compute p(K = KoISB) as follows: 

p(K = Ko)P(SsIK = Ko) 
p(K = Ko[SB)= 

p(SB) 

p(K = Ko)(2(f,  B)/2) 

p(S~) 

p(K = Ko)(~.(f, B)/~.) 

Y,k~ , p ( K  = k)p(SBIK = Ko) 

p(K = Ko)(2(f,  B)/2) 

= (~(f, B)/~)Y~k, ~p(K = k) 

p(K = Ko) 

~k  ~ K p(K = k) 

= p(K = Ko) 

as desired. [ ]  

The information rate of the secret sharing scheme is defined to be 

log2 q 
P - log2 s" 

It is not difficult to see that q < s in a perfect scheme, so the information rate 
satisfies p < 1. If a secret sharing scheme is to be practical, we do not want to have 
to distribute too much secret information as shares. Consequently, we want to make 
the information rate as close to 1 as possible. A perfect secret sharing scheme with 
information rate p --- I is called ideal. In Example 1.2 we depict an ideal secret 
sharing scheme. It is interesting to note that, for connected ideal schemes, Brickell 
and Davenpor t  proved in [5] that conditions (2') and (2") are equivalent. 

We use the notation PS(F, p, q) to denote a perfect secret sharing scheme with 
access structure F and information rate p for a set of q keys. 

In the special case where the access structure F = {B _ P: IBI >-- t}, then the 
secret sharing scheme is called a (t, w)-threshold scheme, where w = IPI. Threshold 
schemes have been extensively studied in the literature; see [ 11] for a comprehensive 
bibliography. 
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Secret sharing schemes for general access structures were first studied by I to et al. 
in [8]. They proved that any monotone access structure can be realized by a perfect 
secret sharing scheme. A more efficient construction was given by Benaloh and 
Leichter in [1]. In both these constructions, however, the information rate is 
exponentially small as a function of IPI. 

Some constructions for ideal schemes were given by Brickell [4]. More recently, 
ideal schemes were characterized by Brickell and Davenpor t  I-5] in terms of 
matroids. 

Example 1.2. Let P = {a, b, c} and let r = { {a, b}, {b, c}, {a, b, c} }. The following 
is a PS(F, 1, 3): 

D a b c 

1 1 2 1 
1 2 0 2 
1 0 1 0 
2 1 0 1 
2 2 1 2 
2 0 2 0 
0 1 I 1 
0 2 2 2 
0 0 0 0 

Note that if a has share s, and b has share sb, then they can compute the key as 
s b - s, (modulo 3). Similarly, b and c can compute the key as sb - sc (modulo 3). 
However, a and c together have no information regarding the key, since s, = sc in 
every row. 

2. Ideal Secret Sharing Schemes  

In this section we discuss ideal secret sharing schemes in the case where the access 
structure consists of the closure of a graph. In this paper graphs do not have loops 
or multiple edges; a graph with multiple edges is termed a multigraph. If G is a graph, 
we denote the vertex set of G by V(G) and the edge set by E(G). G is connected if 
any two vertices are joined by a path. The complete graph K ,  is the graph on n 
vertices in which any two vertices are joined by an edge. The complete multipartite 
graph K . . . .  2 ....... is a graph on ~ = 1  ni vertices, in which the vertex set is parti t ioned 
into subsets of size nl (1 < i _< t), such that vw is an edge if and only if v and w are 
in different subsets of the partition. An alternative way to characterize a complete 
multipartite graph is to say that the complementary graph is a vertex-disjoint union 
of cliques. 

For  a graph G, define PS(G, p, q) to be PS(F, p, q), where F = cl(E(G)). The 
following result characterizing which graphs admit ideal secret sharing schemes was 
proved in [5]. 

T h e o r e m  2.1 [5, Theorems 4 and 5]. Suppose G is a connected graph. Then there 
exists a PS(G, 1, q) for some q if and only if G is a complete multipartite graph. 
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Theorem 2.1 requires that G be connected. The cases when G is not connected 
are easily handled by the following easy observation. 

Theorem 2.2. Suppose G is a graph having as its connected components Gi, 1 < i < t. 
Suppose that there is a PS(G~, p, q), 1 < i < t. Then there is a P S ( G ,  p, q). 

We can easily prove the constructive half of Theorem 2.1 by using a couple of 
simple constructions. Suppose G is a graph and v ~ V(G). We define a graph G(v) 
by replacing v by two nonadjacent vertices vl and v2, such that v~w is an edge of 
G(v) if and only if vw is an edge of G (i = 1, 2). We say that G(v) is constructed from 
G by splitting v. 

Theorem 2.3. Suppose G is a graph and there exists a PS(G, p, q). Then, f o r  any 
vertex v of  G, there exists a PS(G(v), p, q). 

Proof. Replace column v of the matrix M by two identical columns v x and v2. []  

The next theorem generalizes the Shamir construction for a (2, 2)-threshold 
scheme 1-10]. It uses a structure from combinatorial design theory called an ortho- 
gonal array. An orthogonal array OA(k, n) is an n 2 x k array, with entries chosen 
from a symbol set of n elements, such that any pair of columns contains every 
ordered pair of symbols exactly once. It is well known that an OA(k, n) is equivalent 
to k - 2 mutually orthogonal Latin squares of order n. 

Theorem 2.4. Suppose t is a positive integer, and there exists an orthogonal array 
OA(t + 1, q). Then there is a PS(Kt, 1, q). 

Proof. We use the OA(t + 1, q) as the matrix M representing the secret sharing 
scheme. The first column is indexed by/9, and the remaining t columns are indexed 
by the participants. Let P~ and P~ be two participants. In the two corresponding 
columns, every ordered pair of shares occurs exactly once. Hence, property (1') is 
satisfied. If we consider any one participant P~, any share s = f(Pi), and any key K, 
there is a unique row of M such that s occurs in column Pi and K occurs in column 
D. Hence, property (2") is satisfied with 2(f, P~) = 1. []  

Corollary 2.5. Suppose t is a positive integer, q is a prime power, and q >_ t. Then 
there is a PS(K t, 1, q). 

Proofi It is well known that an OA(t + 1, q) exists ifq is a prime power and q > t 
(e.g., see [2]). [ ]  

We can now prove the constructive half of Theorem 2.1 as a corollary of these 
constructions, 

Corollary 2.6 [5, Theorem 5]. Suppose q is a prime power and q >_ t. Then there is 
a PS(K ............ ,1, q). 



Improved Bounds on the Information Rate of Perfect Secret Sharing Schemes 159 

Proof. Start with a PS(K,, 1, q) and split vertices until Kn,.n ~ ....... is obtained. [ ]  

If we consider the possible graphs on at most four vertices, we find that all of 
them admit ideal secret sharing schemes, with two exceptions. We have the follow- 
ing consequence of the Theorems 2.1 and 2.2. 

Theorem 2.7. I f  G is a graph and lV(G)l < 4, then there exists a PS(G, 1, q) for some 
q, unless G is isomorphic to one of the following two graphs: 

P3 H 

Remark. It was first shown by Benaloh and Leichter [1] that there does not exist 
a PS(P 3, 1, q), where P3 is the path of length 3, for any q. 

In fact, we can be more precise about the values of q admitted in Theorem 2.7. 

Theorem 2.8. I f  G is a connected graph, IV(G)I ~ 4, and G is not isomorphic to P3 
or H, then there exists a PS(G, 1, q) for all integers q ~ Q(G), where Q(G) is defined 
in Table 1. 

Proofi It is known that there exists an OA(5, q) if q _> 4, q -¢: 6, 10; there exists 
an OA(4, q) if q > 3, q :~ 6; and there exists an OA(3, q) if q > 2 (see [2] for 
proofs). [ ]  

Table 1 

G I V(G)I G ~ Q(G) 

4 { q : q > 4 ,  q # 6 ,  10} 

4 K 2 {q:q >_ 3, q # 6} 

4 K 2 u K 2 {q: q >__ 2} 

4 K 3 {q: q >_ 2} 

:J 3 {q: q > 3, q ~ 6} 

~" 3 K z {q: q _ 2} 

~. ¢. 2 {q:q > 2} 
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3. Improved Lower Bounds on the Information Rate 

We now turn to  the construction of perfect secret sharing schemes in the cases where 
ideal schemes do not exist. First we give a construction that shows that the existence 
of a secret sharing scheme PS(F, p, q) for a single value of q implies the existence 
of an infinite class of schemes with the same information rate. 

Theorem 3.1. Suppose there is a PS(F, p, qx) and a PS(F, p, q2)" Then there is a 
PS(F, p, ql q2)" 

Proof. Suppose Mi is the matrix representing PS(F, p, qi), i = 1, 2. Let Ki denote 
the set of keys, and let Si denote the set of possible shares, i = 1, 2. Define K --- 
Kx x K 2 and S = S 1 x $2. Define a matrix M as follows: for every row r~ of Mt 
and for every row r 2 of M 2, define a row (r i, r2) of M by the rule 

M((r l, r2), c) = (Ml(r l, c), M2(r2, c)). 

It is not difficult to see that M represents a PS(F, p', qtq2) for some p',  but 

log2 ql q2 p'-- 
logz sis2 ' 

where s 1 = [Si[ and s 2 = IS2[. Since 

log2 qi _ log2 q2 

p - log 2 si log2 s 2'  

we see that 

p, - log2 qlq2 

log2 s is  2 

log2 ql + log2 q2 

log2 si + log2 s2 

P log2 si + p log2 s2 

tog2 Sl + log2 s 2 

= p .  []  

Corollary 3.2. Suppose there is a PS(F, p, q). Then, for any positive integer n, there 
is a PS(F, p, q"). 

If  G is a graph, then G1 is said to be a subgraph of G if V(G) _ V(G1) and 
E(G) _ E(Ga). If I/1 ~_ V(G), then we define the graph GIVe] to have vertex set V1 
and edge set {uv e E(G), u, v e V1}. We say that G[V1] is an induced subgraph of G. 
The following theorem is obvious. 

Theorem 3.3. Suppose G is a graph and G 1 is an induced subgraph of  G. I f  there is 
a PS(G, p, q), then there exists a PS(G i, p, q). 
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Next,  we prove  some powerful "decompos i t ion"  constructions.  

Theorem 3.4. Suppose G is a graph, and G~ and G 2 a re  connected subgraphs of 
G such that E ( G ) =  E ( G I ) ~ E ( G 2 ) .  Suppose that there is a PS(GI,pl,  q) and a 
PS(G2, jO2, q). Then there is a PS(G, jO, q), where 

Pi P2 
- -  , 

P Pl + P2 

Proof.  Suppose  Mi is the matr ix  represent ing PS(Gi, p~, q), i = 1, 2. Let  K denote  
the set of keys (which we can assume is the same for the two schemes), and  let S~ 
denote  the set of  possible shares, i = 1, 2. F o r  i = 1, 2, choose an a rb i t ra ry  share 
x~ e S~. Define S = $1 x $2. Define a matr ix  M as follows: for every row r~ of M I  
and for every row r2 of M2 such that  Mt(r~, D) = M2(r 2, D), define a row (r~, r2) of  
M by the rule 

M((r 1, r2), c) -- (Ml(r 1, c), M2(r2, c)) 

M((rl, ra), c) = (Ml( r l ,  c), x2) if 

M((rl, rz), c) = (xl, M2(r 2, c)) if 

if  c e V(G1)  ~ V(G2)  , 

c e V(G1)\V(G2), 

c e V(G~)\V(Gt) ,  

M((rl, r2), D) = Ml(r 1, D) ( =  M2(r2, D)). 

It  is not  difficult to see that  M represents  a PS(G, p ' ,  q) for some p' ,  but  

log2 q 

iog2 s~ s2 

where sl = ISal and s2 = [$2]. Since 

log2 q 
Pl - log z sl 

and 

we see that  

log2 q 
jOE log  2 s2 

log2 q 
j O  t - -  _ _  

log 2 sl S2 

log2 q 

log2 sl + log2 s:  

log2 q 

(log2 q)/Pl + (logz q)/Pz 

PiP2 

Pl + P2 

as desired. [ ]  
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This theorem can be generalized as follows. 

Theorem 3.5. Suppose G is a graph and G1 . . . .  , Gt are connected subgraphs o f  G, 
such that each edge o f  G occurs in at least one o f  the G~'s. For 1 < i <_ t, suppose that 
there is a PS(Gi, Pi, q). For every vertex v, define 

1 
p(v) = 0/p , )"  

Then there is a PS(G, p, q), where p = min{p(v): v e V(G)}. 

Proof. Suppose M i is the matrix representing PS(Gi, pi, q), i = 1, 2 . . . . .  t. Let K 
denote the set of keys (which we can assume is the same for all the schemes), and 
let Si denote the set of possible shares, i = 1, 2 . . . . .  t. For  each v e V(G), define the 
Cartesian product  

So = I-I Si. 
{i:veai} 

Let S be a set of shares of size max{ISvl: v e V(G)}, and for each v e V(G), let 
fig: So ~ S be any injective function. Then define a matrix M as follows: for every 
key K, and for every t-tuple of rows (r~: 1 < i < t) such that r~ is a row of M~ 
(1 < i < t) and Mi(r i, D) = K (1 <_ i < t), we define a row (ri : 1 < i < t) of M by the 
rule 

M((r l ,  rz, . . . ,  r,), c) = ¢,(M~(r~, c) : c ~ V(Gi) ), 

M((rl, r2, . . . ,  rt), D) = K. 

The verifications are straightforward; we leave them to the reader. [ ]  

Corollary 3.6. Suppose G is any graph with maximum degree d, and q > 2 is any 
integer. Then there is a PS(G, l/d, q). 

Proof. Define each G i to be an edge of G, and apply Theorem 3.5. []  

Remark.  Corollary 3.6 can also be proved by the "monotone circuit" construction 
of Benaloh and Leichter [1]. 

We can now obtain schemes for the two graphs 1°3 and H from the previous 
constructions. 

Corollary 3.7. There exist schemes PS(P 3, 0.5, q) and PS(H, 0.5, q) for  all q > 2. 

Proof. Existence of a scheme PS(P3, 0.5, q) follows from Corollary 3.6. Exist- 
ence of PS(H, 0.5, q) follows from decomposing H into two edge-disjoint paths 
of length 2, each of which admits an ideal secret sharing scheme, and applying 
Theorem 3.5. [ ]  

We now establish a general lower bound improving that of Corollary 3.6. 
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Theorem 3.8. Suppose G is a 9raph o f  maximum de#tee d, and denote e = [d/2]. 
Then there is a constant p > l/(e + 1) such that there exists a PS(G, p, q) f o r  all q >_ 2. 

n o = ~-  

Proof.  Let  x~ (1 < i < 2t) be the vertices in V(G) having odd degree (any g raph  has 
an even n u m b e r  of  vertices of  odd  degree). Const ruc t  G' f rom G by adding  t new 
edges x2~-ix2~ (1 < i < t). Observe  tha t  G' m a y  contain edges of  mult ipl ici ty two, 
in which case it is a mul t igraph.  Every vertex of G' has even degree; hence G' is 
Eulerian. Let  C be a (directed) Eulerian tour  of  G'. For  every vertex v e V(G) define 
G o to consist  of  the edges of  C n E(G) for which v is the head. Then the subgraphs  
Gv (v ~ V(G)) form an edge-decompos i t ion  of G. Also, each Gv is i somorph ic  to a 
complete  bipart i te  g raph  Kx,,o, where 

do 
if v has degree do in G and do is even, 

.o=I¢1 or [¢1 if  as e ree 0inOa.  oiso   
Hence, each Gv admits  an ideal secret sharing scheme for any q > 2 (Corol la ry  2.6). 
N o w  apply  Theo rem 3.5. F o r  every vertex v e V(G), we have 

1 do 
p(v) - eo + 1 if v has even degree d o in G and eo = ~- ,  

1 1 
- -  or  if v has odd degree d o in G and eo = • 

p(v) = eo e o + 1 

It follows that  the resulting secret sharing scheme has rate p = 1/e or  1/(e + 1), 
where G has m a x i m u m  degree d and e = I'd/2]. Such a scheme can be cons t ruc ted  
for any  q > 2. [ ]  

We now show, for certain classes of  graphs,  that  Theorem 3.8 is the best possible 
result that  can be ob ta ined  by means  of edge-decomposing a graph into complete  
mult ipar t i te  graphs  and then applying Theorems  2.1 and 3.5. F o r  a g raph  G, let 
H = {G1, . . . ,  G,} be a collection of subgraphs  of G such that  every edge of G is 
contained in at least one of  the Gi's. H is called a complete multioraph coverin9 (or 
CMC)  of G. Fo r  any vertex v of  G, define rv.n to be the number  of Gi's in H that  
contain vertex v. Let r n = max{rv, n : v e V(G)} and let ra = min{r  n : I I  is a C M C  
of G}. By Theo rems  2.1 and 3.5, there exists a PS(G, 1/r G, q) for some q. In  the case 
where G is a d-regular  g raph  (d > 2) of  girth at least 5 (i.e., G contains  no cycles of 
length 3 or  4) we can determine the value of ro exactly. 

Theorem 3.9. I f  G is a d-regular 9raph (d > 2) of  9irth at least 5, then r G = 
Fd121 + 1. 

Proof. In the special case of  a d-regular  graph, the p roof  of T h e o r e m  3.8 always 
yields a C M C  with r n -- Fd/2] + 1; hence ra < rd/2] + 1. We show tha t  if the girth 
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of G is at least 5, then r~ > I-d/2] + 1. Let H be a C M C  of G. Since G contains  no 
cycles of  length 3 or  4, any Gi in H must  be a star graph, i.e., a complete bipart i te 
graph KI, , ,  for some m > 1. If  any edge is in more  than one of  the Gi's, we can delete 
that  edge f rom all but  one of  the G{s containing it, and we will still have a C M C ,  
say Ha, in which every graph  is a star graph. In  Ha, every edge occurs in exactly 
one of the G{s; we call such a C M C  a complete multigraph partition, or C M P .  Also 
observe that rn = rno. Hence we can assume that  there is a C M P ,  H, such that  

ro = rn. 
N o w  every edge vw occurs in a unique G~. If G~ is a KI, , .  with m > 2, then direct 

the edge v ~ w if w is the center of  the star, and  direct the edge w ~ v if v is the 
center of  the star. I f  Gi is a K1.1, then direot the edge v ~ w arbitrarily. N o w  every 
edge has a direction assigned to it. 

Suppose there is a vertex v such that v is not  the center of any G~ which is a KI , ,  . 
with m > 2. Then  rn > d >_ [d/2] + 1, since d > 2, and we are done. Hence, we can 
assume, for every vertex v of  G, that v is the center of  at least one G, which is a KL ,  . 
with m > 2. Hence, the number  of  directed edges v ~ w is at most  r n - 1 since every 
such edge is in a different G~. Then the number  of directed edges w --* v is at least 
d - r n + 1. If  n is the number  of  vertices in G, then the total number  o f  the edges 
in G is 

dn 
- Z I { w : w ~ v } [ > n ( d - r n + l ) .  

2 wv(o) 

Hence, rn > d/2 + 1. Since rn is an integer, rn >- I-d/2] + 1 and we have the desired 
result. [ ]  

We now give a direct construct ion for a secret sharing scheme for C 6, the cycle 
of  size 6. 

Example 3.1. The following is a PS(C6, log 3 2, 2}, where V(C6) = {a, b, c, d, e, f }  
and E(C6) = { {a, b}, {b, c}, {c, d}, {d, e}, {e, f }, {f,  a}}: 

D a b c d e f 

0 0 0 1 1 2 2 
0 0 0 2 2 1 1 
0 1 1 2 2 0 0 
0 1 1 0 0 2 2 
0 2 2 0 0 1 1 
0 2 2 1 1 0 0 
1 0 1 1 2 2 0 
1 0 2 2 1 1 0 
I 1 2 2 0 0 1 
1 1 0 0 2 2 1 
1 2 0 0 1 1 2 
1 2 1 ! 0 0 2 

Note  that  if a has share sa and b has share sb, then they can compute  the key to be 
0 if sb = sa, and 1 otherwise. However,  a and c together have no information 
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regarding the key, since, for every ordered pair (sb, st) that occurs, there is exactly 
one row where the key is 0 and one row where the key is 1. The analysis for other 
pairs of participants is similar to these arguments. The information rate p = 
logz 2/logz 3 = log3 2 = 0.6309298. 

Remarks. By Theorem 2.1, there is no ideal scheme for C 6. By Theorem 3.9, the 
highest information rate that can be obtained from a C M C  is p = ½. Example 3.t 
also provides us with a PS(P 3, log 3 2, 2), since P3 is an induced subgraph of C6. We 
note that it is proved in [6] that no perfect secret sharing scheme for / ' 3  can have 
an information rate exceeding z = 0.667; and a construction is given in [6] for such 
a scheme with information rate ~. The scheme constructed in [6] has s = 8 and 
q = 4 .  

4. Comments 

First we observe that some of the constructions in this paper for threshold schemes 
based on graphs can be generalized to other access structures in a reasonably 
straightforward manner. 

We also want to discuss briefly the difference between the model of secret sharing 
used in this paper  (and in [4] and [5]) and the model for threshold schemes followed 
in [12], [9-1, and [7]. The two main differences are as follows: 

1. In [12-1, [9], and [7] different participants must receive different shares. 
2. In [12], [9-1, and [7] a key is determined as a function of the shares held by a 

subset of participants. Hence the key computation can be performed by a 
"black box" that does not know the identity of the people inputting the shares. 
In this paper  the key is determined as a function of the shares and the 
participants holding them. 

In the model of [12], [9], and [7] an ideal scheme cannot exist, since it was shown 
in [9] that ISl > IKI in a perfect scheme in that setting. 

Finally, we observe that a secret sharing scheme as described in this paper  can 
be modified in a straightforward way to fit the model of [12-1, [9-1, and [7]. It  suffices 
to define a new set of shares T = P x S, and give the share (P~, s) ~ T to Pi whenever 
the share s e S would be given to P~. With this modification, however, the informa- 
tion rate is lowered. 
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