
Some Improvements on Multipartite Table Methods

Florent de Dinechin , Arnaud Tisserand
École Normale Supérieure de Lyon - INRIA

46 allée d’Italie, 69364 Lyon, France
fFlorent.de.Dinechin, Arnaud.Tisserandg@ens-lyon.fr

Abstract

This paper presents an unified view of most previ-
ous table-lookup-and-addition methods: bipartite tables,
SBTM, STAM and multipartite methods. This new defini-
tion allows a more accurate computation of the error en-
tailed by these methods. Being more general, it also allows
an exhaustive design space exploration which has been im-
plemented, and leads to tables smaller than previously pub-
lished ones by up to 50%. Some results have been synthe-
sised for Virtex FPGAs, and are discussed in this paper.

1 Introduction

Table-lookup-and-addition methods, such as the bipar-
tite method, have been the subject of much recent atten-
tion [4, 1, 5, 6, 3]. They allow to compute commonly used
functions with low accuracy (currently up to 24 bits) with
significantly lower hardware cost than that of a straightfor-
ward table implementation, while being faster than shift-
and-add algorithms à la CORDIC or polynomial approxi-
mations. They are particularly useful in digital signal or im-
age processing, and also for providing initial seed values to
iterative methods such as the Newton-Raphson algorithms
for division and square root [2] which are commonly used
in the floating-point units of current processors.

This paper clarifies some of the cost and accuracy ques-
tions which are incompletely formulated in previous papers.
It also unifies two complimentary approaches to multipar-
tite tables, by Stine and Schulte [6], and Muller [3]. It
completely defines the implementation space for multipar-
tite tables, which allows us to provide a methodology for
selecting the best implementation that fullfills arbitrary ac-
curacy and cost requirements. This methodology has been
implemented and is demonstrated on a few examples.

After some notations and definitions in Section 2, Sec-
tion 3 presents previous table-lookup-and-addition meth-
ods, and unifies them as a general multipartite method. Sec-
tion 4 shows how to explore the design space in order to se-

lect the best multipartite implementation full-filling a given
accuracy requirement. Section 5 defines the content of ta-
bles. Section 6 presents our implementation and its results.
Section 7 discusses the results and concludes.

2 Generalities

2.1 Notations

Throughout this paper, we discuss the implementation of
a function with inputs and outputs in fixed-point format. We
shall use the following notations.

� We note f : [a; b[! [c; d[the function to be evaluated
with its domain and range. The reader should keep
in mind that all the following work can (and must) be
straightforwardly extended to arbitrary closed, semi-
closed or open intervals (the reciprocal, for example, is
typically computed on [1; 2[!]0:5; 1]). A general pre-
sentation would degrade readability without increasing
the interest of the paper. Our implementation, how-
ever, allows such arbitrary combinations.

� We note wI and wO the required input and output size.

In general, we will identify any word of p bits to the inte-
ger in f0; :::; 2p�1g it codes, writing such a word in capital
letters. When needed, we will provide explicit functions to
map such an integer into the (real) domain or range of the
function. For instance, an input word X will denote an inte-
ger in f0; :::; 2wI � 1g, and we will express the real number
x 2 [a; b[that it codes by x = a+ (b� a)X=2wI .

2.2 Errors

Usually, three different kinds of error affect the global
error of an evaluation of f :

� The input discretisation (or quantisation) error mea-
sures the fact that an input number usually represents
a small interval of values centered around this number.

1

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

� The approximation (or method) error measures the
difference between the pure mathematical function f
and the approximated mathematical function (here, a
piecewise affine function) used to evaluate it.

� The output discretisation (or rounding) error measures
the difference between the approximated function and
the closest machine-representable value.

In the following, we will ignore the question of input dis-
cretisation, by considering that an input number only repre-
sents itself as an exact mathematical number. A discussion
about quantisation errors should come before or after the
implementation presented here.

3 Table-and-addition methods

3.1 The bipartite method

First presented by Das Sarma and Matula [4] in the spe-
cific case of the reciprocal function, and generalised by
Schulte and Stine [5, 6] and Muller [3], this method con-
sists in approximating the function by affine segments, as
illustrated on Figure 1.

Figure 1. The bipartite approximation

The 2� segments are selected by the � most significant
bits of the input word. Instead of tabulating the 2wI values
of the function, it is possible, for each segment, to tabu-
late one initial value, and to construct the other values by
adding, to this initial values, an offset defined by the wI��
least significant bits of the input word.

The idea behind the bipartite method is to group the seg-
ments into 2
 (with
 < �) larger intervals (4 on the figure)
such that the slope of the segments is considered constant
on each larger interval. Now there are only 2
 tables of off-
sets, each containing 2� offsets. Altogether, we thus need
to store 2� + 2
+� values instead of 2�+�.

C B

γ β

A

α

Figure 2. Bipartite input word decomposition

In all the following, we will call Table of Initial Values
(TIV) the table that stores the initial points of each segment.
This table will be addressed by a sub-word A of the input
word, made of the � most significant bits. A Table of Offsets
(TO) will be addressed by the concatenation of two sub-
words of the input word: C (the
 most significant bits)
and B (the � least significant bits). Figure 2 depicts this
decomposition of the input word.

Previous authors [3, 6] have expressed the bipartite idea
in terms of a Taylor approximation, which allows a formal
error analysis. They find that for
 � � � �=2, it is possi-
ble to keep the error entailed by this method in “acceptable
bounds” (the error obviously depends on the function under
consideration). We develop in this paper a more geometrical
approach to the error analysis, with the purpose of comput-
ing the approximation error exactly, where Taylor formulas
only give upper bounds.

3.2 Exploiting symmetry

Schulte and Stine have remarked [5] that it is possible
to exploit the symmetry of the segments on each small in-
terval (see Figure 3, which is a zoom view on Figure 1) to
halve the size of the TO: They store in the TIV the value of
the function in the middle of the small interval, and in the
TO the offsets for a half segment. The offsets for the other
half are computed by symmetry. The extra hardware cost
(mostly a few XOR gates) is usually more than compen-
sated by the reduction in the TO size (see the SBTM paper,
for Symmetric Bipartite Table Addition Method [5]).

−3 −2 −1 1−4 0 2 3

curve of f

Value to store
in the TIV

for this segment Values to store
in the TO

Figure 3. Segment symmetry

2

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

3.3 Multipartite methods

In another paper [6], Schulte and Stine have remarked
that the TO can be decomposed into several smaller
tables: What the TO computes is a linear function
TO(CB) = s(C) � B where s(C) is the slope of the
segment. The sub-word B can be decomposed (as seen on
Figure 4) into m sub-words Bi of sizes �i for 0 � i < m:

B = B0 + 2�0B1 + :::+ 2�0+�1+:::+�m�2Bm�1

Let us define p0 = 0, and pi =
Pi�1

j=0 �j for i > 0. The
function computed by the TO is then:

TO(CB) = s(C)�

m�1X
i=0

2piBi =

m�1X
i=0

2pis(C)�Bi

=

m�1X
i=0

2piTOi(CBi): (1)

Thus the TO can be distributed into m smaller tables
TOi(CBi), resulting in much smaller area (symmetry still
applies for the m TOis). This comes at the cost of m � 1
additions. This improvement thus entails two tradeoffs:

� A cost tradeoff, between the cost of the additions and
the table size reduction.

� An accuracy tradeoff: Equation (1) is not an approx-
imation, but it will lead to more discretisation errors
(one per table) which will sum up to a larger global
discretisation error, unless the smaller tables have a
bigger output accuracy (and thus are bigger). We will
formalise this later.

Schulte and Stine have termed this method STAM, for
Symmetric Table and Addition Method. It can still be im-
proved: Note in Equation (1) that for j > i the weight of the
LSB of TOj is 2pj�pi times the weight of the LSB of TOi.
In other terms, TOi is more accurate than TOj . It will be
possible, therefore, to build even smaller tables than Schulte
and Stine by compensating the (wasted) higher accuracy of
TOi by a rougher approximation on s(C), obtained by re-
moving some least significant bits from the input C.

A paper from Muller [3] contemporary to that of Stine
and Schulte indeed exploits this idea in a specific case. The
multipartite method presented there is based on a decompo-
sition of the input word into 2p+1 sub-words X1,...,X2p+1

of identical sizes. An error analysis based on a Taylor for-
mula shows that equivalent accuracies are obtained by a ta-
ble addressed byX2p+1 and a slope determined only byX1,
a table addressed by X2p and a slope determined by X1X2,
and in general a table addressed by X2p+2�i and the i most
significant sub-words.

Muller claims (although without any numerical support)
that the error/cost tradeoffs of this approach are comparable
to Schulte and Stine’s method. His decomposition, how-
ever, is too rigid to be really practical, while his error anal-
ysis doesn’t address the rounding issue.

3.4 A general multipartite method

Investigating what is common to Schulte and Stine’s
STAM and Muller’s multipartite methods leads us to define
a decomposition into sub-words that generalises both:

� The input word is split into two sub-words A and B of
respective sizes � and � with �+� = wI (see Fig. 4).

� The most significant sub-word A addresses the TIV.

� The least significant sub-word B will be used to ad-
dress m � 1 TOs.

– B will in turn be decomposed into m sub-words
B0,..., Bm�1, the least significant being B0.

– A sub-word Bi starts at position pi and consists
of �i bits (see Fig. 4). We have p0 = 0 and
pi+1 = pi + �i.

– The sub-word Bi is used to address the TOi,
along with a sub-word Ci of length
i of A.

� Finally, to simplify notations, we will denote D =
f�; �;m; (
i; pi; �i)i=0:::m�1g such a decomposition.

Bi B0

γi βi pi

A

α

Ci

Figure 4. Multipartite input word decomposition

The maximum approximation error entailed by TOi will
be a function of (
i; pi; �i) which we will be able to com-
pute exactly in Section 4.2. The TOs implementation will
exploit their symmetry, just as in the STAM method.

The reader may check that the bipartite decomposition
is a special case of our multipartite decomposition with
m = 1, � = 2wI=3,
 = wI=3, � = �0 = wI=3. Sim-
ilarly, Schulte and Stine’s STAM [6] is a multipartite de-
composition where all the Ci’s are equal, and Muller’s mul-
tipartite approach [3] is a specific case of our decomposition
where the
i are multiples of constant integers.

It should be clear that general decompositions are more
promising than Stine and Schulte’s in that they allows to re-
duce the accuracy of the slope involved in the TOs (and thus

3

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

their size). They are also more promising than Muller’s, as
they are more flexible (for example the size of the input
word needs not be a multiple of some 2p+1). Our method-
ology will also be slightly more accurate than both in the
error analysis. Section 6 will show these improvements.

3.5 Other table-lookup and addition methods

In addition to the previous works, we should also men-
tion Wong and Goto [7] who have presented a subtle ap-
proximation method which takes into consideration second-
order terms, and leads to an architecture involving additions
before and after the table lookups. Our generalised mul-
tipartite method, however, will prove better both area and
delay, as it will be exposed in Section 6.

Of interest is also the work from Hassler and Tagaki [1],
who have presented a method based on partial product ar-
rays (PPAs) which is radically different from all the previ-
ous methods based on Taylor/linear approximation. Stine
and Schulte show in [6] that their methods are more area
and time efficient, so we do not elaborate here further.

4 Choosing a multipartite decomposition

Having defined in Section 3.4 the space of all the pos-
sible multipartite decompositions, we define in this section
an efficient methodology to explore this space. The purpose
of such an exploration is to select the best decomposition
(in term of speed or area) that full-fills the accuracy require-
ment known as faithful rounding, which will be presented in
the following section. Section 4.2 shows that the approxi-
mation error can be computed accurately with only very few
operations, which allows us to define in Section 4.3 an effi-
cient exploration algorithm for an arbitrary cost function.

4.1 Faithful rounding and guard bits

Like previous authors, we want to implement the func-
tion f with faithful rounding: The computed result should
be one of the two machine numbers closest to the mathe-
matical result. In other words, the result should differ from
the true result by less than one unit in the last place. There-
fore we define the maximum output error as the value of the
least significant bit of the output: �f = (d � c)2�wO . We
thus need to ensure that the total implementation error will
be smaller than �f . For this purpose, we will need to com-
pute with an internal precision which is higher than the final
precision: We will add g “guard” bits to the tables to ensure
this internal precision.

The final error will then be the sum of three terms:

� A mathematical approximation error, whose maximum
value will be noted �approx and will be computed ex-
actly in Section 4.2.

� The rounding error when filling each table, �rt � (m+
1)�t where (m + 1) is the number of tables and �t is
the maximum rounding error when filling one table:
�t = (d� c)2�wO�g�1.

� The rounding error when rounding the sum of the ta-
bles to wO output bits. Its maximum value is �rf =
(d � c)2�wO�1 in a straightforward implementation,
but a trick due to Das Sarma and Matula [4] allows to
improve it to �rf = (d � c)(2�wO�1 � 2�wO�g�1).
This trick will be presented in Section 5.

Finally, the condition to ensure faithful rounding, �rt +
�rf + �approx < �f is rewritten g > �wO � 1 + log2((d �
c)m)� log2((d� c)2�wO�1 � �approx).

As the next section shows, �approx is a function of the
decomposition D of the input word. If �approx � (d �
c)2�wO�1, D is unable to provide the required output accu-
racy. Otherwise the previous inequation gives us the num-
ber g of extra bits that ensures faithful rounding:

g =

�
�wO � 1 + log2

(d� c)m

(d� c)2�wO�1 � �approx

�
(2)

Our experiments show that it is very often possible to de-
crease this value by one and still keep faithful rounding, but
we are unable to provide a solid argument for that.

4.2 Computing the approximation error

Here we consider a monotonic function with monotonic
derivative (i.e. convex or concave) on its domain. This is not
a very restrictive assumption: It is the case, after argument
reduction, of all the functions studied by previous authors.

The error function we consider here is the difference
"(x) = f(x)� ef(x) between the exact mathematical value
and the approximation. Note that other error functions are
possible, for example taking into account the input discreti-
sation. The formulas set up here would not apply in that
case, but it would be possible to set up equivalent formulas.

Using these hypotheses, it is possible to exactly com-
pute, using only a few floating-point operations in double
precision, the minimum approximation error which will be
entailed by a TOi with parameters pi, �i and
i, and also
the exact value to fill in these tables as well as in the TIV to
reach this minimal error.

The main idea is that, for a given (pi; �i;
i), the param-
eters that can vary to get the smallest error are the slope
s(Ci) of the segments, and the values TIV(A). With our
decomposition, several TIV(A) will share the same s(Ci).
Figure 5 (another zoom of Figure 1) depicts this situation.

As the figure suggests, with our hypothesis of a mono-
tonic (decreasing on the figure) derivative, the approxima-
tion error is maximal on the borders of the interval on which

4

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

x
3x

2
x

4

δ

ε2

ε3

ε4

1ε

x
1

i

Figure 5. Computing the approximation error

the segment slope is constant. The minimum �Di (Ci) of this
maximum error is obtained when

"1 = �"2 = �"3 = "4 = �Di (Ci) (3)

with the notations of the figure. This system of equations is
easily expressed in terms of s(Ci), pi, �i,
i, TIV, and f .
Solving this system gives the optimal slope1 and the corre-
sponding error:

sDi (Ci) =
f(x2)� f(x1) + f(x4)� f(x3)

2Æi
(4)

�Di (Ci) =
f(x2)� f(x1)� f(x4) + f(x3)

4
(5)

where (using the notations of Section 2.1)

Æi = (b� a)2�wI+pi(2�i � 1) (6)

x1 = a+ (b� a)2�
iCi (7)

x2 = x1 + Æi (8)

x3 = x1 + (b� a)(2�
i � 2�wI+pi+�i) (9)

x4 = x3 + Æi (10)

Now this error depends on Ci, that is on the interval on
which the slope is considered constant. For the same argu-
ment of convexity, it will be maximum either for Ci = 0
or for Ci = 2
i � 1. Finally, the maximum approximation
error due to TOi in the decompositionD is:

�Di = max(j�Di (0)j; j�
D

i (2

i � 1)j) (11)

In practice, it is easy to compute this approximation er-
ror by implementing equations (5) to (11). Altogether it
represents a few floating-point operations per TOi.

1Not surprisingly, the slope that minimises the error is the average value
of the slopes on the borders of the interval. Previous authors considered
the slope in the midpoint of this interval.

4.3 An algorithm for choosing a decomposition

1. Choose the number of tables m. A larger m means
smaller tables, but more additions.

2. Enumerate the decompositions.

3. For each decomposition D, compute the approxima-
tion errors entailed by each TOi as seen in Section 4.2,
and sum them to get �Dapprox =

Pm�1
i=0 �Di . Keep only a

set of possible decompositions for which this error is
smaller than the maximum admissible error �f .

4. For each possible decomposition, compute the number
g of extra accuracy bits using Equation (2), and eval-
uate the size and speed of the implementation. Sec-
tion 4.4 gives formulas for the memory size in bits.

5. Synthesise the few best candidates to evaluate their
speed and area accurately (with target constraints).

Enumerating the decompositions is an exponential task.
Fortunately, there are two simple tricks which are enough
to cut the enumeration down to less than a minute for 24-bit
operands (the maximum size for which multipartite meth-
ods architectures make sense).

� The approximation error due to a TOi is actually only
dependent on the function evaluated, the input preci-
sion and the three parameters pi, �i and
i of this
TOi. It is therefore possible to compute all these er-
rors only once and store them in a three-dimensional
array �TO[p][�][
]. The size of this small array is at
most 243 double-precision floating-point numbers.

� For a given pair (pi; �i), this error grows as
i de-
creases. There exists a
min such that for any
i �
min

this error is larger than the required output precision.
These
min(pi; �i) may also be computed once and
stored in a table.

Finally, the enumeration of the (pi; �i) is limited by the
relation pi+1 = pi+�i, and the enumeration on
i is limited
by
min <
i < �. Note that we have only left out decom-
positions which were unable to provide faithful rounding. It
would also be possible, in addition, to leave out decompo-
sition whose area is bigger than the current best. This turns
out not to be needed.

4.4 The sizes of the tables

Evaluating precisely the size and speed of the implemen-
tation of a multipartite decomposition is rather technology
dependent, and is out of the scope of the paper. We can,
however compute exactly (as other authors) the number of
bits to store in each table.

5

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

The size in bits of the TIV is simply 2�(wO + g). The
TOis have a smaller range than the TIV: Actually the range
of TOi(Ci; �) is exactly equal to jsi(Ci) � Æij. Again for
convexity reasons, this range is maximum either on Ci = 0
or Ci = 2
i � 1:

ri = max(jsi(0)� Æij; jsi(2

i � 1)� Æij) (12)

The number of output bits of TOi is therefore

wi = dwO + g + log2(ri=(d� c))e (13)

In a symmetrical implementation of the TOi, the size in
bits of the corresponding table will be 2
i+�i�1(wi � 1).

The actual costs (area and delay) of implementations of
these tables and of multi-operand adders are the subject of
current investigation. Section 6 will present some results for
Virtex FPGAs, showing that the bit counts presented above
allows a predictive enough evaluation of the actual costs.

5 Filling the tables

5.1 The mathematical values

An initial value TIV(A) provided by the TIV for an in-
put sub-word A will be used on an interval [xl; xr] defined
(using the notations of Sections 2.1 and 4.2) by:

xl = a+ (b� a)2��A (14)

xr = xl +
m�1X
i=0

Æi (15)

On this interval, each TOi provides a constant slope, as
its Ci is a sub-word of A. The approximation error, which
is the sum of the �Di (Ci) defined by Equation (5), will be
maximal for xl and xr (with opposite signs).

The TIV exact value that ensures that this error bound is
reached is therefore (before rounding) is:

gTIV(A) =
f(xl) + f(xr)

2
(16)

The TOi values before rounding are (see Figure 3):

gTOi(CiBi) = s(Ci) � 2�wI+pi(b� a)(Bi +
1

2
) (17)

5.2 Rounding considerations

This section reformulates the techniques employed by
Stine and Schulte in [6] and using an idea that seems to
appear first in the paper by Das Sarma and Matula [4].

The purpose is to fill our tables in such a way to en-
sure that their sum (which we compute on wO + g bits)
always has an implicit 1 as its (wO + g + 1)-th bit. This

reduces the final rounding error from �rf = 2�wO�1 to
�rf = 2�wO�1 � 2�wO�g�1.

To achieve this trick, we remark that there are two ways
to round a real number to wO + g bits with an error smaller
than �t = 2�wO�g�1. The natural way is to round the num-
ber to the nearest (wO + g)-bit number. Another method
is to truncate the number to wO + g bits, and assume an
implicit 1 in the (wO + g + 1)-th position.

To exploit the symmetry, we will need to compute the
opposite of the value given by a TOi. In two’s complement,
this opposite is the bitwise negation of the value, plus a 1 at
the LSB. This leads us to use the second rounding method
for the TOi. Knowing that its LSB is an implicit 1 means
that its negation is a 0, and therefore that the LSB of the
opposite is also a 1. We therefore don’t have to add the sign
bit at the LSB. We store and bitwise negate the wi + g � 1
bits of the TOi, and assume in all cases an implicit 1 at the
(wO + g + 1)-th position.

Now in order to reach our goal of always having an im-
plicit 1 at the (wO + g + 1)-th bit of the sum, we need
to consider the parity of m, the number of TOis. If m is
odd the first rounding method is used for the TIV, if m is
even the second method is used. This way we always have
bm=2c implicit ones, which we simply add to all the values
of the TIV to make them explicit.

Finally, after summing the TIV and the TOi, we need to
round the sum, on (wO + g) bits with an implicit 1 at the
(wO + g+1)-th bit, to the nearest number on wO bits. This
can be done by simply truncating the sum (at no hardware
cost), provided we have added half an LSB of the final result
to the TIV when filling it.

Summing it up, the integer values that should fill the
TOis are

TOi(CiBi) =

�
2wO+g

d� c
gTOi(CiBi)

�
(18)

and the values that should fill the TIV are, if m is odd:

TIV(A) =

$
2wO+g �

gTIV(A)� c

d� c
+

m� 1

2
+ 2g�1

'
(19)

and if m is even:

TIV(A) =

$
2wO+g �

gTIV(A)� c

d� c
+

m

2
+ 2g�1

%
(20)

6 Implementation and results

The methodology presented above has been imple-
mented in a set of Java and C++ programs. These programs
enumerate the decompositions, choose the best one with re-
spect to accuracy and size, compute the actual values of the
tables and finally generate synthesisable VHDL.

6

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

n f m � � �i �i tables size ref size

16 sin 1 10 6 5 6 17:210 + 7:210 24576 32768

2 8 8 7,4 3,5 19:28 + 10:29 + 8:28 12032 20480

3 8 8 7,6,4 2,3,3 18:28 + 9:28 + 7:28 + 4:26 8960 17920

4 8 8 7,6,4,4 2,2,2,2 19:28 + 10:28 + 8:27 + 6:25 + 4:25 8768 na

2
x 1 10 6 5 6 16:210 + 6:210 22528 24576

2 8 8 7,4 3,5 17:28 + 9:29 + 6:28 10496 14592

3 8 8 7,6,4 2,2,4 17:28 + 9:28 + 7:27 + 5:27 8192 13568

4 8 8 7,6,5,4 2,2,2,2 18:28 + 10:28 + 8:27 + 6:26 + 4:25 8704 na
1

x
1 10 5 7 5 16:210 + 6:211 28672 24576

2 9 6 7,6 3,3 18:29 + 9:29 + 6:28 15360 16896

3 9 6 8,7,5 2,2,2 17:29 + 8:29 + 6:28 + 4:26 14592 15872

24 sin 1 15 9 8 9 25:215 + 10:216 1474560 1474560

2 13 11 10,7 4,7 27:213 + 14:213 + 10:213 417792 581632

3 12 12 11,9,6 3,4,5 27:212 + 14:213 + 12:212 + 8:210 282624 425984

4 12 12 11,10,9,6 2,2,3,5 27:212 + 14:212 + 12:211 + 10:211 + 8:210 221184 360448

5 12 12 11,10,9,8,6 2,2,2,3,3 27:212 + 14:212 + 12:211 + 10:210 + 8:210 + 5:28 212224 356352

Table 1. Best decomposition characteristics and table sizes for 16-bit and some 24-bit operands

Our tools also perform various additional checks. Stor-
ing the gTIV and gTOi, they measure the actual value of
�Dapprox. We find that the predicted values are indeed accurate
to 10�7. They similarly compute the maximal final error,
and check that this error is really smaller than the expected
accuracy (see Figure 6 for an example of output).

The ability to actually fill the tables also helps to char-
acterise the real quality of the final approximation. For in-
stance, we can point some small problems such as the non-
monotonicities (see for instance Fig. 5 around x = x3).
These non-monotonicities are never bigger than one LSB
thanks to faithful rounding, but we have never seen any
mention to this problem in the literature.

-1

-0.5

0

0.5

1

0 256 512 768 1024

Figure 6. Measured error (10-bit sine and m = 2)

6.1 Comparison with previous works

Table 1 presents the best decomposition obtained for 16-
bit and some 24-bit operands for a few functions. In this
table, we compare our results with the best known results
from the work of Schulte and Stine [5, 6]. We can notice a
size improvement up to 50%. The size for 1=x and m = 1

is larger than the reference size. After investigation, this is
due to rounding errors compensating in this specific case
leading to an overestimated g.

Results for 24-bit operands should also be compared to
the ATA architecture published by Wong and Goto for this
specific case [7]. They use 6 tables for a total of 513536 bits,
and altogether 9 additions. Our results are thus both smaller
and faster. However it should be noted that 5 of the 6 tables
in their architecture have the same content, which means
that a sequential access version to a unique table is possible
(provided the issue of rounding is studied carefully). This
sequential architecture would involve only 149376 bits of
tables, but it would be five times slower.

6.2 FPGA implementation results

The target architecture is the Virtex device family from
Xilinx. More precisely, we use a XCV400 FPGA with a
speed grade of -4 (the slowest one). The synthesised opera-
tor is considered as a combinatorial block. No pipelining is
performed in this work (it is a future work). All operators
have been synthesised using Synplify, the place and route
operations are performed using Xilinx tools.

Table 2 presents some implementation results of multi-
partite tables. 16-bit values have been considered for sin
and 2x functions. For each function, all possible values for
the number of TOis m have been considered with respect to
accuracy requirements. The reported metrics are the num-
ber of LUTs (look up tables, the basic cells of the FPGA),
the operator delay, the synthesis time Tsynth and a compres-

7

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

sion factor CF . The compression factor is the ratio number
of bits / number of LUTs, it measures the compression ca-
pabilities of the optimiser. Using the algorithm presented in
Section 4.3, the time required to compute the optimal de-
composition is always negligible compared to Tsynth.

f m #LUTs delay Tsynth CF

sin 1 1375 43 ns 122 s 19.4
2 799 42 ns 50 s 16.4
3 628 39 ns 34 s 15.6
4 664 41 ns 37 s 14.3

2
x 1 1839 43 ns 206 s 16.7

2 959 39 ns 67 s 16.6
3 864 42 ns 52 s 14.5
4 801 39 ns 54 s 14.4

Table 2. Virtex FPGA implementation (16-bit)

These results show that when the number of TOis m in-
creases, the operator size (the number of LUTs) decreases.
The size gain is significant when we use a tripartite method
(m = 2) instead of a bipartite one (m = 1). For larger
values of m, this decrease is less important. Sometimes, a
slight increase is possible for even larger values of m (e.g.
m = 2 to m = 3 for the sine function). This is due to
the extra cost of the adder with an additional input, the XOR
gates and the sign extension mechanism that is not compen-
sated by the tables size reduction. We can notice a similar
behavior for the operator delay.

The synthesis time decreases when m increases. This is
due to the fact that the synthesis tool optimises the tables
size using logical minimisation tools. The compression fac-
tor CF , the number of bits / number of LUTs ratio, is more
or less constant (just a slight decrease). This fact can be
used to predict the size after synthesis on the FPGA from
the table size in bits. From these tables we can deduce that
the synthesiser perform some optimisation inside the table,
because each LUT in a Virtex FPGA can only store 16 bits
of memory (cf Xilinx documentation). We think that com-
mon small sub-words are shared over close words. It can
lead to a compression factor larger than 16. The compres-
sion factor decreases when m increases because the min-
imisation potential is smaller on small tables than on larger
ones. The low level optimisation of tables values will be
one of our future work in this field.

7 Conclusion

We have presented several contributions to table-lookup-
and-additions methods. The first one is to unify and gener-
alise two complimentary approaches to multipartite tables,
by Stine and Schulte, and Muller. The second one is to give
a method for optimising such bipartite or multipartite tables

which is more accurate than what could be previously found
in the literature. Both these improvements have been imple-
mented in general tools that can generate optimal multipar-
tite tables from a wide range of specifications (input and
output accuracy, delay, area). These tools output VHDL
which has been synthesised for Virtex FPGAs. Our method
provides up to 50% smaller solutions than ones of the best
literature results.

Future work includes completing the tools by allowing
more accurate, technology-dependent area and speed es-
timations, reducing non-monotonicities, and investigating
some low-level optimisations in the synthesis of the tables.

There are also functions for which this methodology will
not work. It is easy to see that the square root function on
[0; 1[, for example, although it may perfectly be stored in
a single table, has an infinite derivative in 0 which breaks
multipartite methods. We have never seen any mention of
this problem in the literature. The solution in such cases
is to break the input interval into two intervals [0; 2�� [(on
which the function is tabulated in a single table) and [2�� ; 1[
where the multipartite method is used. The optimal � can
probably be determined by enumeration. Our tool should
accommodate such cases, as well as the case of arbitrary
functions which do not satisfy the convexity hypothesis we
have assumed in this paper.

References

[1] H. Hassler and N. Tagaki. Function evaluation by table
look-up and addition. In S. Knowles and W.H. McAllis-
ter, editors, 12th IEEE Symposium on Computer Arith-
metic, pages 10–16, Bath, UK, 1995.

[2] J.M. Muller. Elementary Functions, Algorithms and
Implementation. Birkhauser, Boston, 1997.

[3] J.M. Muller. A few results on table-based methods. Re-
liable Computing, 5(3):279–288, 1999.

[4] D. Das Sarma and D.W. Matula. Faithful bipartite ROM
reciprocal tables. In S. Knowles and W.H. McAllis-
ter, editors, 12th IEEE Symposium on Computer Arith-
metic, pages 17–28, Bath, UK, 1995.

[5] M.J. Schulte and J.E. Stine. Approximating elementary
functions with symmetric bipartite tables. IEEE Trans-
actions on Computers, 48(8):842–847, August 1999.

[6] J.E. Stine and M.J. Schulte. The symmetric table addi-
tion method for accurate function approximation. Jour-
nal of VLSI Signal Processing, 21(2):167–177, 1999.

[7] W.F. Wong and E. Goto. Fast evaluation of the elemen-
tary functions in single precision. IEEE Transactions
on Computers, 44(3):453–457, March 1995.

8

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

