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1. Introduction and statement of results. An entire function/(z) is said to be of

exponential type a if either f(z) is of order 1 and type âa or it is of order < 1.

It has been proved by Plancherel and Pólya [9, p. 124] that if f(x) eLp(-oo, co)

for some pi I, i.e.

(l.i) n \f(x)\"dx
J — 00

exists, then/(x) -> 0 as x -*■ ±oo. Hence/(z) is bounded on the real axis. In fact,

a more precise statement can be made.

Theorem A. Iff(z) is an entire function of exponential type a and if (I.I) exists,

then

(1.2) \f(x+iy)\* S Ap{[m |/(x)|* dx) ™*fZ

with

(1.3) ^a=7r-1,    A, = 2k(/"r)-1 < n-1        (2k < p S 2k + \   k = 0, 1, 2, . . .).

The above theorem is due to J. Korevaar [7] and the bound in (1.2) is known

to be precise for p = 2. For example, the function

/i a\ sr \ i sinoc(z—z0)    , .   .
(1.4) /o(z) = const. —v (z0 = Xo + ijo)

Z—Zq

satisfies the conditions of the theorem and

(1.5) |/o(zo)|2 = ¿ {£ \Mx)\2 dx] ™^.

In fact, (1.5) holds only if/0(z) is [7, p. 59] a constant multiple of

(z-z0)_1 sin a(z-z0).

The form of the extremal function in the case p = 2 suggests that for functions

which are real for real z we should hope to get better estimates at nonreal points.

It is equally clear that for functions which do not vanish in the upper half plane

inequality (1.2) can be refined for points in the lower half plane. We prove
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Theorem 1. If f(z) is an entire function of exponential type a which is real on the

real axis, and if (1.1) exists, then for 2k<pS2k + 1, k = 0, 1,2,...

(1.6) \Ax+iy)\> S ¿ {J*^ \f(x)\* dx} J"^ (cosh yt)*2" dt.

In particular, for p = 2, we have

(1.7) |/(x+z»|2 S ¿ {£ |/(x)|2 dx] \ (^l + 2a).

For large values of | v| the right-hand side of (1.7) is asymptotically

¿ {/.*>>!
dx

2e|j/l

4|v|

which is better by a factor of 1/2 than the corresponding asymptotic bound

e2

¿{j"-">*>l
2a|y|

2dx) "
2|v|

given by (1.2).

For v = 0 the two inequalities (1.2) and (1.6) give the same estimate. This is just

the thing one should expect (see (1.4)). However, if/(z) is nonnegative on the real

axis then the bound can be considerably improved. In fact, we have

Theorem 2. Iff(z) is an entire function of exponential type a which is nonnegative

on the real axis, and if (I.I) exists then for 2k'1<pS2k, k—0, 1, 2,...

(1.8) \f(x)\"S ±- 2ka r   \f(x)\*dx.

The bound in (1.8) is precise for p = 1. The function

m = c^ifK-^y,       c > o, x, real

satisfies the conditions of Theorem 2 and

i/i(*i)i=f r i/iwi dx.
¿■rr J_„o

An entire function/(z) of exponential type is said to be asymmetric if it does not

vanish in the upper half plane and «/(it/2) = lim sup^..«, log |/(z»|/v = 0. Such

functions have been studied by R. P. Boas, Jr. [2].

Theorem 3. Let f(z) be an asymmetric entire function of exponential type a.

Iff(x)eLp(-ca, oo) then for y<0, 2k<pS2k + 1, k = 0, 1, 2,...

(1.9) |/(x+z»|p S -^ e*"1"1'2 (cosh yt)"12" dt \f(x)\p dx.
2.T J -2k'1a J-»
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By applying this result to the function eiazf(z) below we obtain the following

Theorem 3'. Letf(z) be an entire function of exponential type a such that hf(n/2)

= a. Iff(z) does not vanish in the upper half plane and if (I.I) exists then for y <0,

2k<pS2k + 1,k = 0, 1,2,...

1      r2"a /«oo

(1.6') \ftx+iy)\v£J-\       (coshyty2*dt        \f(x)\"dx.

Asymmetric entire functions were introduced by the consideration [2, p. 94]

that if P(z) is a polynomial of degree n then P(eiz) is an entire function /(z) of

exponential type n such that h¡( — it/2) = n and f(x) is bounded for real x. If P(z)

has no zeros in \z\ < 1, then/(z) has no zeros in y>0, and moreover (since P(O)^O)

h¡{n¡2) = 0, i.e. f(z) is asymmetric.

Clearly, P(eiz) is periodic on the real axis with period 2rr. As a consequence

P(eiz) cannot belong to V(—oo, co) for any^^ 1. However, (1.9) is trivially satisfied

for such asymmetric entire functions. Since in this case the right-hand side is +oo

and the left-hand side finite, an inequality like (1.9) is of no value. It is more appro-

priate to take norms over (0, 2tt).

Theorem 4. Letf(z) be an entire function of exponential type a. Iff(z) is periodic

on the real axis with period 2n, and does not vanish in the upper half plane, then for

al,   Wl+I>)|. s (¿ j;vwl^) >p|^+(2„+I)

where n is the integral part of a. More generally, for 2k<pS2k + 1, k = 0, 1,2,..

«271 \        JL

(1.11)    \Ax + iy)\>ú(±j*\f(x)\*ax)   2   (cosh .y)"'2*,       N = [2ka

Since an entire function of exponential type which is periodic on the real axis

with period 2tt is necessarily a trigonometric polynomial (Lemma 4) we shall not

prove Theorem 4 but the following more general

Theorem 4'. If the entire function /(z) = 2î= -m aveivz does not vanish in the upper

half plane, then for y <0, 2k<pS2k + 1, k = 0, 1, 2,...

\f(x + iy)\* S (^ j2* \f(x)\> dxy*-mWM   2   Uosh(^-^i-v\y
pl2le

N = 2kn, M = 2km.

Corresponding to Theorem 1, we have :

Theorem 5. Letf(z) be an entire function of exponential type a. Iff(z) is periodic

on the real axis with period 2n and is real for real z, then for 2k<pS2k + 1,

k=0,l,2,...

(1.12)    \f(x+iy)YS (¿ £" l/MI" <**)   2   (cosh ,y)»'2*,       N = [2ka
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The analogue of Theorem 2 for periodic entire functions is the following:

Theorem 6. Let f(z) be an entire function of exponential type a. If f(z) is non-

negative on the real axis where it is periodic with period 2-n, then for 2k~1<pS2k,

k = 0,l,2,...

(1.13) \f(x)\> S (N+1)(¿ ÇJ \f(x)\" ¿x),       N = PH

The function/2(z) = (2?=-„efV2)2 satisfies the hypotheses of Theorem 6 with

a = 2n and for this function equality holds in (1.13) forp = 1 and certain x.

The following theorem stands in analogy with Theorem A.

Theorem 7. Iff(z)=2í- -m aveivz then

\f(x + iy)\'S £P{¿ £" \f(x)\'dx

with

_ ,,        v   „,sinh{(n + m+l)y/2}
Bi = exp {(« - m)yJ2} -

Bp = exp{(n-m)py/2}

sinh ( v/2)

sinh {(« + m + 2 " fc)j?v/2}

sinh(2-fc->v)

(2k <p ^ 2,t + 1, * = 0, 1,2,...).

F/zmj, in particular, if P(z) = 2ï= o ßvZv ö a polynomial of degree « í«en for

2k<pS2k + 1,k=0, 1,2,...

Cn2'l: -I- 1   r2" "I 1/p
max |P(Z)| g j2f-±i.        |F(e'9)|^4   ,
|z|=l I     ¿"       Jo J

or

||F|U á^+iP'HPL,

Wzere the norms are taken over \z\ = 1.

We may take norms over an arbitrary piecewise differentiable curve C and seek

to maximize ||P|| oo/||P||p when P varies inside the class of all polynomials of degree

at most «. Here we only consider the case when C is the unit interval — 1 S x S 1,

and prove:

Theorem 8. IfP(z) is a polynomial of degree «^ 1, then for every p>l

(1.14)    ||/»||. =    max^ |F(x)| S K(p)n2l"(^ Ç   \P(t)\> dtj'* = K(p)n2'»\\P\\p

where K(p) is a constant which depends only on p, but not on P(z) or on n.
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We have a feeling that in (1.14) n2lv cannot be replaced by any function of n

tending to oo more slowly. For p = 2 it is definitely so. Mr. G. Labelle has worked

out the following precise estimate in this case (see also [4, p. 245]).

Theorem 8'. IfP(z) is a polynomial of degree n, then

max^ |F(x)| S (n+l)^^ \P(t)\2 díj'''•

This estimate is sharp but unfortunately the method of proof is limited in scope

so much so that it does not give anything if p is other than 2.

The problem of estimating the coefficients of a polynomial F(z) = 2ï=o ovzv in

terms of

(sfjWtf)1",     F ̂  1

is closely connected with the above. For example a0 is nothing but F(0), ai is

F'(0) and av is 1>! P<v)(0). We prove

Theorem 9. If P(z) = J,l=0avzv is a polynomial of degree n then for OS^Sn,

p>\

^ w < ¿ H1+n)'RL,„ Ä1L|PW|P *
lip

where Ifp +l/q=l and$i + 1;„ is the ellipse whose foci lie at ± 1 and the sum of whose

semi-axes is 1 + 1/n.

An estimate for jV1 + 1Jörz|/|z|(v + 1>Q. The semi-axes of the ellipse cf1 + i/„ are

(1.16) ^ = i+_L_,   b=   2n+l
2(n2 + n) 2(n2+n)

We clearly have

f tfc f2n       \-A sin 4> + iB cos (f>\    _   ,,
j*i+m izi(v+1"= Jo (^2 cos2 ¿+ß2 sin2 <f>yv+vq12

Ç"» sin<j>d<f> r'2 cos <f> d<f>
Jo    (F2 + cos2cir+1>"2 + 4jöJ0 (/42-sin2<¿)<v+1)a/2

= 4A C —È—— + 4B I" dt
Jo (F2 + i2)(v + 1)9'2 Jo 'A2-t2yv + 1*12

f1        a"? f1 ar<   4,0<v + l)«/2 "' I   /ID _"'

Jo (F+i)'^1" Jo (A2-iy + 1*>i2

Dl-(v + l)iJ

(v+l)q-l

-*k 2(v + D«/2 _|_ i Igi - (v + Da

v+l)q-l
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where A and B are given by (1.16). There is no doubt that the above estimate can

be considerably improved without any difficulty. The fact that \av\ = 0(nv + llp) is

obvious, but the above estimate gives a kind of an upper bound for |av|/«v + 1/p.

2. Lemmas.

Lemma 1. If g(x) e L"(-co, oo), 1 <pS2, then g(x) has a Fourier transform G(t)

defined by (limit in the L" metric)

(2.1) G(t) = lim (LOO)-1'2 i" g(x)eitxdx,
Tl-*co J - n

where p ~x+q "1 = 1. The integral of \ G(t ) \q satisfies the inequality

( /•<» 'S 1/4 C (-co N 1/p

(2.2) JO)"1'2]  JG(t)\«dtj     S \(2n)-"2 j   Jg(x)\p dxj

(with equality ifp—q = 2).

For a proof of the above result on Fourier integrals see [10].

Definition. An entire function is said to belong to the class A if [8, p. 479]

I Im I < oo,

where the zn are all the zeros of this function. For an entire function /(z) of ex-

ponential type to belong to the class A, it is necessary and sufficient [1, Theorem

6.3.14] that

f*x-alog\f(x)f(-x)\dx

is bounded (or bounded above). In particular, an entire function of exponential

type belongs to the class A if it is bounded on the real line.

The following lemma which implies that an entire function of exponential type

a, bounded and nonnegative on the real axis, can be expressed as the square of the

absolute value of a function of exponential type a/2 with its zeros in the closed upper

half plane is due to N. I. Ahiezer [8, pp. 437-439].

Lemma 2. For an entire function f(z) of exponential type a to have the representa-

tion f(z)=<j>(z)f(z) where <f>(z) is an entire function of exponential type a/2 with zeros

in one of the half planes Imz^Oorlmz^O, it is necessary and sufficient that f(z)

belong to the class A and be nonnegative on the real axis.

Lemma 3. Iff(z) is an asymmetric entire function of exponential type a and

w(z) = eiazf(z)

then for Im z<0, |/(z)| S \oj(z)\.
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Proof. The function g(z)=f(z)e~iazl2 has no zeros for y = Im z>0, and hg(ir/2)

= a\2~^hg( — TT¡2). A theorem of Levin [1, p. 129] states that if g(z) is an entire

function of exponential type having no zeros for y > 0 then

hg(0) = lim supr-Moglgíz-e'9)! è  lim sup r'1 log \g(re-ie)\ = hg(-0)
r-*oo r-* oo

for some 9, 0 < 8 < it, if and only if | g(z) | ^ | g(z) | for y > 0. Hence for v > 0

|/(z)e-ia2/2| ä |/(z)e-teS/2|.

Replacing z by z we conclude that for y < 0

|/(z)e-ia5/2| ä |/(z)e-fTC/2|

or

|/(z)etes/2| ^ |/(z)e-ia2/2|.

On multiplying both sides by \eiaz,2\ the lemma follows.

Lemma 4. Letf(z) be an entire function of exponential type a, periodic on the real

axis with period 2n. Thenf(z) has the form

n

/(z) =   2  flv^,      " = «.
v= -n

Lemma 4 is a well-known result. For a proof see [3],

Lemma 5 (Hausdorff-Young inequality [11, p. 101]). Let l<pS2. Suppose

that f(t) e Lp(0, 2tt) and

1   f2"
Cn = r       f(t)e-intdt       (« = 0, ±1, ±2,...).

Irr J0

Then

I      » X1'« /  1      f2JI \l/p

where q_1=l —p'1.

Let i be the unit interval -1 ^ x ^ 1. The function z = i(w+w "1) maps the com-

plement of I with respect to the extended complex plane conformally into the

exterior of the unit circle |w| = 1 in the w-plane. The image in the z-plane of the

circle \w\ = R is the ellipse SE whose foci lie at ± 1 and the sum of whose semi-axes

is R. With this the following lemma becomes an immediate consequence of a result

due to E. Hille, G. Szegö and J. D. Tamarkin ([6], see Lemma 2.2 and the remark

which follows the proof of the lemma).

Lemma 6. IfP(z) is any polynomial of degree n, then for every p>0

f   \P(z)\p\dz\ S 2Rnp + 1 f   \P(x)\pdx.
JS-R J-l
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3. Proofs of the theorems.

3.1. Proof of Theorem 1. The case l<pS2. As f(x) eV (-co, oo), f(x) has a

Fourier transform F(t). Since/(z) is of exponential type a the Fourier transform

vanishes [1, pp. 103-107] almost everywhere for \t \ >a and/(z) has the represen-

tation

f(z) = (27T)-1'2 f  F(t)e~^dt,
J -a

F(t) eLq(—a, a), a_1 = 1 —p'1. The function/(z) being real for real z,

F(-t) = F(t).
Hence

(2^'2\f(x+iy)\ S  f   \F(f)\é»dt
J -a

=  f°   \F(t)\eytdt+f" \F(t)\e^dt
J -a JO

=  f° ̂ (-Ole-i* dt+ f \F(t)\eyt dt
Jo Jo

= j" \F(t)\(e^ + e-^)dt

= 2 i" iFÍOlcoshj'faT.

(      ra \ XIq (      ra -\ Xlp

S \ 2      |F(r)|« dtV   -j 2      (cosh yt)" dt [

C fa > 1/« ( ¡>a > 1/p

= |J a\F(t)\"dtj   |J ^ (cosh y7)*a7J

^ ^Tr)1'2}'«-1-"-1^  J/(x)|"axj   |J     (coshytydtj

by (2.2). This gives (1.6) for 1 <pS2, namely:

(3.1) \f(x+iy)\» < ± {J*^ 1/(01" dtjj"^ (cosh yt)" dt.

The case p>2. Let 2k<pS2lc+1, k a positive integer. If the entire function/(z)

of exponential type a belongs to V on the real axis, then the entire function

g(z)={f(z)}2" of exponential type 2fco¡ belongs to V (p'=p¡2k) on the real axis,

l<p'S2. By (3.1)

1     f poo "\     /•2'ca

ig(x+/»ip'g^u j*(or*jj A (cosherdt
or

1     f foo "n     (•2ka

|/(x + /»|" ^ ¿{J_œ 1/(01" ¿'j J_A (cosh yty2*dt,

which proves Theorem 1 completely.
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Proof of Theorem 2. By Lemma 2 there exists a function <f>(z) of exponential

type a/2 with zeros in Im z = 0 such that /(z) = <z>(z)$z). In particular,

f(x) = \<f>(x)\2,       -co < x < oo.

Thus, if/(x)eLp(-oo, oo), %<pS\, then <j>(x) eL2p(-ao, oo), l<2p£2. From

Theorem 3' it follows that for —oo<x<oo

l^)|2p^2(«/2) P   \<f>(x)\2pdx
Z7T J_ «,

or

Z7T J_ a,

This proves Theorem 2 for ^<p= 1. By applying this special case to the function

{f(z)}2k we get the result for 2k ~1 <p S 2k, k = 1, 2,....

Proof of Theorem 3. It is clear that if f(z) is an asymmetric entire function of

exponential type a belonging to IP on the real line, with l<pS2, then it has the

representation

/(z) = O)-1'2 f°  F(t)e-^dt,
J -a

F(t)eL"(-a, 0). By Lemma 3 it follows that for v<0

l/(*+/>0| = 2-{Hx+iy)\ + \f(x + iy)\}

S K27r)-1/2jf°   \F(t)\e-*a+ndt+C   \F(t)\e"dt\

= (2Tr)-ll2e-*<"2 f    \F(t)\ cosh v(a/2 + i) dt
J -a

or
i i/p

(27r)1'2|/(x+z»| S e-"a/2|f°   \F(t)\«dt\llqH°  cosh"y(a/2 + t)dt

( poo -slip

S e - ""«{O)1'2}« " ' - " " N I      \f(x) | ' dx j-

x j (cosh vi)p<#

by (2.2). Hence for v<0 and l<pS2,

|/(x+z»| g <r*i»i'a{(27r)1'a}-a'»|J      |/t*)lp<frj   {J       (coshj*)'*}

or

|/(x+z»|p ^ i-e-pM/a f2  (cosh yt)pdt f"   |/(x)|p¿x.
277 J-o/a J-»

^ i/p
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This is (1.9) for 1 <pS2. lf2k<pS2k + 1 where k is a positive integer then we may

consider {/(z)}2\

Proof of Theorem 4'. We can write eimzf(z) in the form eimzf(z)=P(eiz) where

P(z) = 2kío ckzk is a polynomial of degree m + n having no zeros in |z| < 1. If

Q(z) = zm + nP(lfz)

then the function Q(z)/P(z) is analytic in \z\ S 1 and \Q(z)/P(z)\ = l for |z| = l.

As a consequence | Q(z)\ S \P(z)\ for |z| < 1. Since

zm + nQ(l/z) = P(z)

it follows that |F(z)|^|g(z)| for \z\il. Hence for every y<0

\P(e-»ew)\ S i{|F(e-V9)| + |ß(e_V9)|}

1 f   m + n m + n |\

<    2 cke'kveike   +    2 cke-(m+n-k)yeKm + n-k)e   I

I   fc=0 fc=0 Jfc=0

m + n

2 \ck\e-*»+ 2 W ,-(m + n-te)3/

= e-(»+»)»'a 2" |cfc| cosh p±5-JfcV

Consequently, for y < 0 and 1 </> S 2 we get

max   |/(x+ry)|p = e-(n-m)P!"2   max   |e-i«m+»)'2»e+<*>F(e<(fl+(1'>)|''
0Sx<2Jt 0S6><2;i

2 le»!4)   2 coshPP^_Â:k
fc = o /      )c = o \    2 /

¿ e-(»-m)w/a/^. r2" |y(x)|P ¿^ "2 cosh" pi^-fc) y,

by Lemma 5

= r(«-«wii p,I|/(x)|!,ö'x)   2  cosh*fc^-vW.

This proves Theorem 4' for 1 <p S 2. The case p > 2 can be treated as in Theorem 1.

Proof of Theorem 5. Since f(z) is periodic on the real axis with period 27r it

has the representation

f(z) =  2 a^lvz'     n = H-
v= -tl

The fact that it is real valued implies a_v = äv. Hence

\f(x+iy)\ = 2 a*,iv(x + iy) * 2 aJe-

= \a0\+ 2 \<h\(e-™ + é")
v = l

n n

= |a0|+2 2 lavl coshvy =   2   lav| coshvy.
v = l v= -n
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It follows that if 1 <p S 2, then

(n \PlQ     n

2 km   2 coshPvy
v= -n /       v= -n

-(¿F'/W^) 2 cosh^v.

The remaining details of the proof are omitted.

Proof of Theorem 6. By a well-known theorem of Fejér and Riesz the function

f(z) which by Lemma 4 is a trigonometric polynomial of degree « = [a] can be

expressed in the form

f(x) = |5(x)|2       (-co < x < oo),

where S(x) = Jiô bkeikx. The trigonometric polynomial S(x) can be chosen so that

all its zeros are in the closed lower half plane. From Theorem 4' it follows that

for 1 <p S 2

\S(x)\pS(N+l)(±£\S(x)\pdx}.

This gives (1.13) for £ <p S 1. To obtain the general result we may consider {f(z)}2k.

Proof of Theorem 7. The case l<pS2. We have

\f(x + iy)\p =      2   a^iX +
| v= -m

(n \pIq    'n

2 W'    2
v=-m /       v=-

= (¿f l/(x)He<n

PlQ    ' n

evpy

-m)pyl2 sinh((n + m+l)/2)py

sinh (py/2)

Hence the theorem is proved for 1 <p S 2. By making p \ 1 in (3.2) we get the

result for p = 1. The case p > 2 can be dealt with by considering {/(z)}2".

Proof of Theorem 8. It follows from Lemma 6 that if i?=l + l/« then for

every p > 0

(3.3) j   \P(z)\p\dz\ < 2(l +iy £ \P(x)\p dx.

A theorem of Gabriel [5] states that if Y is any convex closed curve in a complex

z-plane and y any convex curve inside Y, and if <//(z) is regular inside and on Y,

then

(3.4) j\m\'\dz\ S G jr\<P(z)\p\dz\.

Here p is any number ^ 0 and G an absolute constant.
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Let us denote by Ci the circle \z-11 = l/(2(n2+n)). We take<f1 + 1/n as T and the

circle Ci as y. From (3.3) and (3.4) we get

(3.5) jc \P(z)\'\dz\ < 2(l +l)e»Gi J"^ |P(x)|" dx,   p>0

where Gy depends on p but not on P(z) or on n.

By Cauchy's integral formula

2mJClz-\

Hence if p> 1 then by Holder's inequality

,,a>,S¿{jjWI<U¿¥''

where l/p + l/q=l. We use (3.5) to deduce

w)i < ¿ {2(1+JK £ iw *}"{£, li^pf
(3.6) = {i (l -r-^Gi £ |P(x)|> ax}1/P{2("2+«)}1/p

<F1(/?)n2"-(J1i|F(x)|"i/x)1"'-

where Ki(p) is a constant which depends only on p but not on P(z) or on n.

Let i<a^ 1. Applying (3.6) to P(az) we get

|F(a)| < F1(p)n2'^J°jP(x)|*£/x)1,P

(3.7) <2ll"Ki(p)n2",i[a |P(x)|"ax)

S 21'"Ki(p)n2"'(C  |P(x)|"ax)

uv

Up

Now let us suppose that 0 S a S i- An elementary discussion gives the following

expression for the shortest distance D = D(a) of a fromcf1 + 1/n:

n, ,       2n+l   ,,      „.,,,       2n+l     .,
D(a) - >u 2 1   M-a2)112 > A, * ,   \ V3.

2(«2+n) 4(n2 + n)

If Ca denotes the circle with centre a and radius D then Cauchy's integral formula

and Holder's inequality yield

z—a
\dz\

dz\  V"
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where \jp + \lq= 1. On using Gabriel's result (loc. cit) and (3.3) we get

\P(a)\ < ¿{2(1 +l)epG2 J^ |P(x)|> dxY'WD-1»

where G2 depends on p but not on P(z) or on n. Hence for 0 S a S \

(3.8) \P(a)\ < K2(p)n^Y l^)lP tf"'•

Just like G2 the constant K2(p) depends only on p.

By considering P(-z) we conclude that (3.7), (3.8) hold also for -1 Sa< -\,

— ̂SaSO respectively. Hence the desired result follows from (3.7) and (3.8).

Proof of Theorem 9. Using Cauchy's integral formula and Holder's inequality

in succession we get

,   ,     |F(V)(0)|_| 1   f        P(z) dz

p> l,    l/p+l/q= 1.
Theorem 9 follows if we now use (3.3).

I am thankful to Professor J. Korevaar for suggesting to me the use of the

Hausdorff-Young inequality.
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