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SOME INEQUALITIES FOR CONVEX FUNCTIONS OF
SELFADJOINT OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

Abstract. Some inequalities for convex functions of selfadjoint operators in

Hilbert spaces under suitable assumptions for the involved operators are given.
Applications for particular cases of interest are also provided.

1. Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space (H; 〈., .〉) .
The Gelfand map establishes a ∗-isometrically isomorphism Φ between the set
C (Sp (A)) of all continuous functions defined on the spectrum of A, denoted Sp (A) ,
an the C∗-algebra C∗ (A) generated by A and the identity operator 1H on H as
follows (see for instance [6, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f) Φ (g) and Φ

(
f̄
)

= Φ (f)∗ ;
(iii) ‖Φ (f)‖ = ‖f‖ := supt∈Sp(A) |f (t)| ;
(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for t ∈ Sp (A) .
With this notation we define

f (A) := Φ (f) for all f ∈ C (Sp (A))

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),

then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e. f (A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A) then
the following important property holds:

(P) f (t) ≥ g (t) for any t ∈ Sp (A) implies that f (A) ≥ g (A)

in the operator order of B (H) .
For a recent monograph devoted to various inequalities for functions of selfadjoint

operators, see [6] and the references therein. For other results, see [13], [7] and [9].
The following result that provides an operator version for the Jensen inequality

is due to Mond & Pečarić [11] (see also [6, p. 5]):

Theorem 1 (Mond-Pečarić, 1993, [11]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp (A) ⊆ [m,M ] for some scalars m,M with
m < M. If f is a convex function on [m,M ] , then

(MP) f (〈Ax, x〉) ≤ 〈f (A)x, x〉
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for each x ∈ H with ‖x‖ = 1.

The following result that provides a reverse of the Mond & Pečarić has been
obtained in [3]:

Theorem 2 (Dragomir, 2008, [3]). Let I be an interval and f : I → R be a convex
and differentiable function on I̊ (the interior of I) whose derivative f ′ is continuous
on I̊ . If A is a selfadjoint operators on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I,
then

(1.1) (0 ≤) 〈f (A) x, x〉 − f (〈Ax, x〉) ≤ 〈f ′ (A)Ax, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉

for any x ∈ H with ‖x‖ = 1.

Perhaps more convenient reverses of the Mond & Pečarić result are the following
inequalities that have been obtained in the same paper [3]:

Theorem 3 (Dragomir, 2008, [3]). Let I be an interval and f : I → R be a convex
and differentiable function on I̊ (the interior of I) whose derivative f ′ is continuous
on I̊ . If A is a selfadjoint operators on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I,
then

(1.2) (0 ≤) 〈f (A) x, x〉 − f (〈Ax, x〉)

≤


1
2 · (M −m)

[
‖f ′ (A)x‖2 − 〈f ′ (A)x, x〉2

]1/2

1
2 · (f

′ (M)− f ′ (m))
[
‖Ax‖2 − 〈Ax, x〉2

]1/2

≤ 1
4

(M −m) (f ′ (M)− f ′ (m))

for any x ∈ H with ‖x‖ = 1.
We also have the inequality

(1.3) (0 ≤) 〈f (A) x, x〉 − f (〈Ax, x〉) ≤ 1
4

(M −m) (f ′ (M)− f ′ (m))

−


[〈Mx−Ax, Ax−mx〉 〈f ′ (M) x− f ′ (A) x, f ′ (A)x− f ′ (m) x〉]

1
2 ,∣∣〈Ax, x〉 − M+m

2

∣∣ ∣∣∣〈f ′ (A) x, x〉 − f ′(M)+f ′(m)
2

∣∣∣
≤ 1

4
(M −m) (f ′ (M)− f ′ (m))

for any x ∈ H with ‖x‖ = 1.
Moreover, if m > 0 and f ′ (m) > 0, then we also have

(1.4) (0 ≤) 〈f (A) x, x〉 − f (〈Ax, x〉)

≤


1
4 ·

(M−m)(f ′(M)−f ′(m))√
Mmf ′(M)f ′(m)

〈Ax, x〉 〈f ′ (A)x, x〉 ,

(√
M −

√
m

) (√
f ′ (M)−

√
f ′ (m)

)
[〈Ax, x〉 〈f ′ (A) x, x〉]

1
2 ,

for any x ∈ H with ‖x‖ = 1.
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For generalisations to n-tuples of operators as well as for some particular cases
of interest, see [3].

The main aim of the present paper is to provide more general vector inequalities
for convex functions whose derivatives are continuous.

2. Some Inequalities for Two Operators

The following result holds:

Theorem 4. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. If A and B

are selfadjoint operators on the Hilbert space H with Sp (A) , Sp (B) ⊆ [m,M ] ⊂̊I,
then

(2.1) 〈f ′ (A) x, x〉 〈By, y〉 − 〈f ′ (A) Ax, x〉
≤ 〈f (B) y, y〉 − 〈f (A)x, x〉 ≤ 〈f ′ (B)By, y〉 − 〈Ax, x〉 〈f ′ (B) y, y〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have

(2.2) 〈f ′ (A) x, x〉 〈Ay, y〉 − 〈f ′ (A)Ax, x〉
≤ 〈f (A) y, y〉 − 〈f (A) x, x〉 ≤ 〈f ′ (A) Ay, y〉 − 〈Ax, x〉 〈f ′ (A) y, y〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and

(2.3) 〈f ′ (A) x, x〉 〈Bx, x〉 − 〈f ′ (A) Ax, x〉
≤ 〈f (B) x, x〉 − 〈f (A)x, x〉 ≤ 〈f ′ (B)Bx, x〉 − 〈Ax, x〉 〈f ′ (B) x, x〉

for any x ∈ H with ‖x‖ = 1.

Proof. Since f is convex and differentiable on I̊, then we have that

(2.4) f ′ (s) · (t− s) ≤ f (t)− f (s) ≤ f ′ (t) · (t− s)

for any t, s ∈ [m,M ] .
Now, if we fix t ∈ [m,M ] and apply the property (P) for the operator A, then

for any x ∈ H with ‖x‖ = 1 we have

(2.5) 〈f ′ (A) · (t · 1H −A) x, x〉
≤ 〈[f (t) · 1H − f (A)]x, x〉 ≤ 〈f ′ (t) · (t · 1H −A) x, x〉

for any t ∈ [m,M ] and any x ∈ H with ‖x‖ = 1.
The inequality (2.5) is equivalent with

(2.6) t 〈f ′ (A) x, x〉 − 〈f ′ (A) Ax, x〉 ≤ f (t)− 〈f (A) x, x〉 ≤ f ′ (t) t− f ′ (t) 〈Ax, x〉
for any t ∈ [m,M ] and any x ∈ H with ‖x‖ = 1.

If we fix x ∈ H with ‖x‖ = 1 in (2.6) and apply the property (P) for the operator
B, then we get

(2.7) 〈[〈f ′ (A) x, x〉B − 〈f ′ (A)Ax, x〉 1H ] y, y〉
≤ 〈[f (B)− 〈f (A) x, x〉 1H ] y, y〉 ≤ 〈[f ′ (B) B − 〈Ax, x〉 f ′ (B)] y, y〉

for each y ∈ H with ‖y‖ = 1, which is clearly equivalent to the desired inequality
(2.1).
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Remark 1. If we fix x ∈ H with ‖x‖ = 1 and choose B = 〈Ax, x〉 · 1H , then we
obtain from the first inequality in (2.1) the reverse of the Mond-Pečarić inequality
obtained by the author in [3]. The second inequality will provide the inequality (MP)
for convex functions whose derivatives are continuous.

The following corollary is of interest:

Corollary 1. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ whose derivative f ′ is continuous on I̊. Also, suppose that A is a
selfadjoint operator on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I. If g is nonin-
creasing and continuous on [m,M ] and

(2.8) f ′ (A) [g (A)−A] ≥ 0

in the operator order of B (H) , then

(2.9) (f ◦ g) (A) ≥ f (A)

in the operator order of B (H) .

Proof. If we apply the first inequality from (2.3) for B = g (A) we have

(2.10) 〈f ′ (A) x, x〉 〈g (A)x, x〉 − 〈f ′ (A) Ax, x〉 ≤ 〈f (g (A))x, x〉 − 〈f (A) x, x〉
any x ∈ H with ‖x‖ = 1.

We use the following Čebyšev type inequality for functions of operators estab-
lished by the author in [4]:

Let A be a selfadjoint operator with Sp (A) ⊆ [m,M ] for some real numbers
m < M. If h, g : [m,M ] −→ R are continuous and synchronous (asynchronous) on
[m,M ] , then

(2.11) 〈h (A) g (A) x, x〉 ≥ (≤) 〈h (A) x, x〉 · 〈g (A) x, x〉
for any x ∈ H with ‖x‖ = 1.

Now, since f ′ and g are continuous and are asynchronous on [m,M ] , then by
(2.11) we have the inequality

(2.12) 〈f ′ (A) g (A) x, x〉 ≤ 〈f ′ (A)x, x〉 · 〈g (A) x, x〉
for any x ∈ H with ‖x‖ = 1.

Subtracting in both sides of (2.12) the quantity 〈f ′ (A) Ax, x〉 and taking into
account, by (2.8), that 〈f ′ (A) [g (A)−A]x, x〉 ≥ 0 for any x ∈ H with ‖x‖ = 1, we
then have

0 ≤ 〈f ′ (A) [g (A)−A]x, x〉 = 〈f ′ (A) g (A) x, x〉 − 〈f ′ (A) Ax, x〉
≤ 〈f ′ (A) x, x〉 · 〈g (A) x, x〉 − 〈f ′ (A) Ax, x〉

which together with (2.10) will produce the desired result (2.9).

We provide now some particular inequalities of interest that can be derived from
Theorem 4:

Example 1. a. Let A,B two positive definite operators on H. Then we have the
inequalities

(2.13) 1−
〈
A−1x, x

〉
〈By, y〉 ≤ 〈lnAx, x〉 − 〈lnBy, y〉 ≤ 〈Ax, x〉

〈
B−1y, y

〉
− 1

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have

(2.14) 1−
〈
A−1x, x

〉
〈Ay, y〉 ≤ 〈lnAx, x〉 − 〈lnAy, y〉 ≤ 〈Ax, x〉

〈
A−1y, y

〉
− 1
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for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and

(2.15) 1−
〈
A−1x, x

〉
〈Bx, x〉 ≤ 〈lnAx, x〉 − 〈lnBx, x〉 ≤ 〈Ax, x〉

〈
B−1x, x

〉
− 1

for any x ∈ H with ‖x‖ = 1.
b. With the same assumption for A and B we have the inequalities

(2.16) 〈By, y〉 − 〈Ax, x〉 ≤ 〈B lnBy, y〉 − 〈lnAx, x〉 〈By, y〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have

(2.17) 〈Ay, y〉 − 〈Ax, x〉 ≤ 〈A lnAy, y〉 − 〈lnAx, x〉 〈Ay, y〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and

(2.18) 〈Bx, x〉 − 〈Ax, x〉 ≤ 〈B lnBx, x〉 − 〈lnAx, x〉 〈Bx, x〉

for any x ∈ H with ‖x‖ = 1.

The proof of Example a follows from Theorem 4 for the convex function f (x) =
− lnx while the proof of the second example follows by the same theorem applied
for the convex function f (x) = x lnx and performing the required calculations.
The details are omitted.

The following result may be stated as well:

Theorem 5. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. If A and B

are selfadjoint operators on the Hilbert space H with Sp (A) , Sp (B) ⊆ [m,M ] ⊂̊I,
then

(2.19) f ′ (〈Ax, x〉) (〈By, y〉 − 〈Ax, x〉) ≤ 〈f (B) y, y〉 − f (〈Ax, x〉)
≤ 〈f ′ (B)By, y〉 − 〈Ax, x〉 〈f ′ (B) y, y〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have

(2.20) f ′ (〈Ax, x〉) (〈Ay, y〉 − 〈Ax, x〉) ≤ 〈f (A) y, y〉 − f (〈Ax, x〉)
≤ 〈f ′ (A) Ay, y〉 − 〈Ax, x〉 〈f ′ (A) y, y〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and

(2.21) f ′ (〈Ax, x〉) (〈Bx, x〉 − 〈Ax, x〉) ≤ 〈f (B) x, x〉 − f (〈Ax, x〉)
≤ 〈f ′ (B)Bx, x〉 − 〈Ax, x〉 〈f ′ (B) x, x〉

for any x ∈ H with ‖x‖ = 1.

Proof. Since f is convex and differentiable on I̊, then we have that

(2.22) f ′ (s) · (t− s) ≤ f (t)− f (s) ≤ f ′ (t) · (t− s)

for any t, s ∈ [m,M ] .
If we choose s = 〈Ax, x〉 ∈ [m,M ] , with a fix x ∈ H with ‖x‖ = 1, then we have

(2.23) f ′ (〈Ax, x〉) · (t− 〈Ax, x〉) ≤ f (t)− f (〈Ax, x〉) ≤ f ′ (t) · (t− 〈Ax, x〉)

for any t ∈ [m,M ] .
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Now, if we apply the property (P) to the inequality (2.23) and the operator B,
then we get

〈f ′ (〈Ax, x〉) · (B − 〈Ax, x〉 · 1H) y, y〉
≤ 〈[f (B)− f (〈Ax, x〉) · 1H ] y, y〉 ≤ 〈f ′ (B) · (B − 〈Ax, x〉 · 1H) y, y〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1, which is equivalent with the desired result
(2.19).

Remark 2. We observe that if we choose B = A in (2.21) or y = x in (2.20) then
we recapture the Mond-Pečarić inequality and its reverse from (1.1).

The following particular case of interest follows from Theorem 5

Corollary 2. Assume that f,A and B are as in Theorem 5. If, either f is increas-
ing on [m,M ] and B ≥ A in the operator order of B (H) or f is decreasing and
B ≤ A, then we have the Jensen’s type inequality

(2.24) 〈f (B) x, x〉 ≥ f (〈Ax, x〉)

for any x ∈ H with ‖x‖ = 1.

The proof is obvious by the first inequality in (2.21) and the details are omitted.
We provide now some particular inequalities of interest that can be derived from

Theorem 5:

Example 2. a. Let A,B be two positive definite operators on H. Then we have
the inequalities

(2.25) 1− 〈Ax, x〉−1 〈By, y〉 ≤ ln (〈Ax, x〉)− 〈lnBy, y〉 ≤ 〈Ax, x〉
〈
B−1y, y

〉
− 1

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have

(2.26) 1− 〈Ax, x〉−1 〈Ay, y〉 ≤ ln (〈Ax, x〉)− 〈lnAy, y〉 ≤ 〈Ax, x〉
〈
A−1y, y

〉
− 1

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and

(2.27) 1− 〈Ax, x〉−1 〈Bx, x〉 ≤ ln (〈Ax, x〉)− 〈lnBx, x〉 ≤ 〈Ax, x〉
〈
B−1x, x

〉
− 1

for any x ∈ H with ‖x‖ = 1.
b. With the same assumption for A and B, we have the inequalities

(2.28) 〈By, y〉 − 〈Ax, x〉 ≤ 〈B lnBy, y〉 − 〈By, y〉 ln (〈Ax, x〉)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have

(2.29) 〈Ay, y〉 − 〈Ax, x〉 ≤ 〈A lnAy, y〉 − 〈Ay, y〉 ln (〈Ax, x〉)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and

(2.30) 〈Bx, x〉 − 〈Ax, x〉 ≤ 〈B lnBx, x〉 − 〈Bx, x〉 ln (〈Ax, x〉)

for any x ∈ H with ‖x‖ = 1.
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3. Inequalities for Two Sequences of Operators

The following result may be stated:

Theorem 6. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. If Aj and Bj

are selfadjoint operators on the Hilbert space H with Sp (Aj) , Sp (Bj) ⊆ [m,M ] ⊂̊I
for any j ∈ {1, ..., n} , then

(3.1)
n∑

j=1

〈f ′ (Aj) xj , xj〉
n∑

j=1

〈Bjyj , yj〉 −
n∑

j=1

〈f ′ (Aj) Ajxj , xj〉

≤
n∑

j=1

〈f (Bj) yj , yj〉 −
n∑

j=1

〈f (Aj) xj , xj〉

≤
n∑

j=1

〈f ′ (Bj) Bjyj , yj〉 −
n∑

j=1

〈Ajxj , xj〉
n∑

j=1

〈f ′ (Bj) yj , yj〉

for any xj , yj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 =
∑n

j=1 ‖yj‖2 = 1.
In particular, we have

(3.2)
n∑

j=1

〈f ′ (Aj) xj , xj〉
n∑

j=1

〈Ajyj , yj〉 −
n∑

j=1

〈f ′ (Aj)Ajxj , xj〉

≤
n∑

j=1

〈f (Aj) yj , yj〉 −
n∑

j=1

〈f (Aj)xj , xj〉

≤
n∑

j=1

〈f ′ (Aj)Ajyj , yj〉 −
n∑

j=1

〈Ajxj , xj〉
n∑

j=1

〈f ′ (Aj) yj , yj〉

for any xj , yj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 =
∑n

j=1 ‖yj‖2 = 1 and

(3.3)
n∑

j=1

〈f ′ (Aj)xj , xj〉
n∑

j=1

〈Bjxj , xj〉 −
n∑

j=1

〈f ′ (Aj) Ajxj , xj〉

≤
n∑

j=1

〈f (Bj) xj , xj〉 −
n∑

j=1

〈f (Aj)xj , xj〉

≤
n∑

j=1

〈f ′ (Bj)Bjxj , xj〉 −
n∑

j=1

〈Ajxj , xj〉
n∑

j=1

〈f ′ (Bj) xj , xj〉

for any xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1.

Proof. As in [6, p. 6], if we put

Ã :=


A1 . . . 0

.
.

.
0 . . . An

 , B̃ :=


B1 . . . 0

.
.

.
0 . . . Bn





8 S.S. DRAGOMIR

and

x̃ =


x1

.

.

.
xn

 , ỹ =


y1

.

.

.
yn


then we have Sp

(
Ã

)
, Sp

(
B̃

)
⊆ [m,M ] , ‖x̃‖ = ‖ỹ‖ = 1,

〈
f ′

(
Ã

)
x̃, x̃

〉
=

n∑
j=1

〈f ′ (Aj) xj , xj〉 , 〈Bỹ, ỹ〉 =
n∑

j=1

〈Byj , yj〉

and so on.
Applying Theorem 4 for Ã, B̃, x̃ and ỹ we deduce the desired result (3.1).

The following particular case may be of interest:

Corollary 3. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. If Aj and Bj

are selfadjoint operators on the Hilbert space H with Sp (Aj) , Sp (Bj) ⊆ [m,M ] ⊂̊I
for any j ∈ {1, ..., n} , then for any pj , qj ≥ 0 with

∑n
j=1 pj =

∑n
j=1 qj = 1, we have

the inequalities

(3.4)

〈
n∑

j=1

pjf
′ (Aj)x, x

〉〈
n∑

j=1

qjBjy, y

〉
−

〈
n∑

j=1

pjf
′ (Aj) Ajx, x

〉

≤

〈
n∑

j=1

qjf (Bj) y, y

〉
−

〈
n∑

j=1

pjf (Aj) x, x

〉

≤

〈
n∑

j=1

qjf
′ (Bj) Bjy, y

〉
−

〈
n∑

j=1

pjAjx, x

〉〈
n∑

j=1

qjf
′ (Bj) y, y

〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have

(3.5)

〈
n∑

j=1

pjf
′ (Aj) x, x

〉〈
n∑

j=1

qjAjy, y

〉
−

〈
n∑

j=1

pjf
′ (Aj)Ajx, x

〉

≤

〈
n∑

j=1

qjf (Aj) y, y

〉
−

〈
n∑

j=1

pjf (Aj) x, x

〉

≤

〈
n∑

j=1

qjf
′ (Aj) Bjy, y

〉
−

〈
n∑

j=1

pjAjx, x

〉〈
n∑

j=1

qjf
′ (Aj) y, y

〉
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for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and

(3.6)

〈
n∑

j=1

pjf
′ (Aj)x, x

〉〈
n∑

j=1

pjBjx, x

〉
−

〈
n∑

j=1

pjf
′ (Aj) Ajx, x

〉

≤

〈
n∑

j=1

pjf (Bj) x, x

〉
−

〈
n∑

j=1

pjf (Aj)x, x

〉

≤

〈
n∑

j=1

pjf
′ (Bj) Bjx, x

〉
−

〈
n∑

j=1

pjAjx, x

〉〈
n∑

j=1

pjf
′ (Bj) x, x

〉
for any x ∈ H with ‖x‖ = 1.

Proof. Follows from Theorem 6 on choosing xj = √
pj ·x, yj = √

qj ·y, j ∈ {1, ..., n} ,

where pj , qj ≥ 0, j ∈ {1, ..., n} ,
∑n

j=1 pj =
∑n

j=1 qj = 1 and x, y ∈ H, with
‖x‖ = ‖y‖ = 1. The details are omitted.

Example 3. a. Let Aj , Bj , j ∈ {1, ..., n} , be two sequences of positive definite
operators on H. Then we have the inequalities

(3.7) 1−
n∑

j=1

〈
A−1

j xj , xj

〉 n∑
j=1

〈Bjyj , yj〉

≤
n∑

j=1

〈lnAjxj , xj〉 −
n∑

j=1

〈lnBjyj , yj〉 ≤
n∑

j=1

〈Ajxj , xj〉
n∑

j=1

〈
B−1

j yj , yj

〉
− 1

for any xj , yj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 =
∑n

j=1 ‖yj‖2 = 1.
b. With the same assumption for Aj and Bj we have the inequalities

(3.8)
n∑

j=1

〈Bjyj , yj〉 −
n∑

j=1

〈Ajxj , xj〉

≤
n∑

j=1

〈Bj lnBjyj , yj〉 −
n∑

j=1

〈lnAjxj , xj〉
n∑

j=1

〈Bjyj , yj〉

for any xj , yj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 =
∑n

j=1 ‖yj‖2 = 1.

Finally, we have

Example 4. a. Let Aj , Bj , j ∈ {1, ..., n} , be two sequences of positive definite
operators on H. Then for any pj , qj ≥ 0 with

∑n
j=1 pj =

∑n
j=1 qj = 1, we have the

inequalities

(3.9) 1−

〈
n∑

j=1

pjA
−1
j x, x

〉〈
n∑

j=1

qjBjy, y

〉

≤

〈
n∑

j=1

pj lnAjx, x

〉
−

〈
n∑

j=1

qj lnBjy, y

〉

≤

〈
n∑

j=1

pjAjx, x

〉〈
n∑

j=1

qjB
−1
j y, y

〉
− 1
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for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
b. With the same assumption for Aj, Bj , pj and qj , we have the inequalities

(3.10)

〈
n∑

j=1

qjBjy, y

〉
−

〈
n∑

j=1

pjAjx, x

〉

≤

〈
n∑

j=1

qjBj lnBjy, y

〉
−

〈
n∑

j=1

pj lnAjx, x

〉〈
n∑

j=1

qjBjy, y

〉
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Remark 3. We observe that all the other inequalities for two operators obtained in
Section 2 can be extended for two sequences of operators in a similar way. However,
the details are left to the interested reader.
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[10] D.S. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis,

Kluwer Academic Publishers, Dordrecht, 1993.
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