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1. Introduction. The hypergeometric i?-function, R(a; h, ■ ■ • , b„;

Xi, • ■ ■ , x„), has recently been shown [4] to have a close connection

with the theory of elementary mean values. By exploiting this con-

nection we shall arrive at inequalities which compare R with (com-

binations of) mean values of the form (X^**!)1". where the weights

(w) are related to the ^-parameters by Wi = bi/2^bi, (* = 1, • • • , n).

Both the ^-parameters and the arguments (x) are required to be posi-

tive, but the o-parameter may be any real number.

The inequalities in their general form (Theorem 2) subsume a wide

variety of special results, including some inequalities for elementary

transcendental functions and elliptic integrals, inequalities due to

Watson [10] and Szego [9] for a certain integral, and new inequalities

for the Gaussian and confluent hypergeometric functions as well as

Appell's function F\. New inequalities for the surface area and capac-

ity of an ellipsoid in n dimensions are also included.

This work began from a conversation with Dr. G. D. Chakerian at

a time when I was privileged to use the facilities of the Mathematics

Department of the California Institute of Technology. I wish to thank

also Mr. Malcolm D. Tobey for discussions of Theorem 1, which he

first proved for restricted values of / by a method different from the

one used here.

2. The inequalities. The R-iunction will be defined for present

purposes by an integral representation,

(2.1) R(a,b,x)=  \   (j^UixA     P(b,u')du',

where (b) and (x) stand for w-tuples of positive numbers, («')

= («i, ■ • • , m„_i), and du'=dui • ■ ■ dun-i- The domain of integra-

tion E is the set of points satisfying m;>0 (t = l, • • • , ra —1) and

X^-i1 «.<L Because we define un = i— 2~l"-i M*> the last condition

is equivalently un>0. The positive weight function
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satisfies

f P(b, u') du' = 1.

A homogeneous mean of the values (x) is constructed from the R-

f unction in the following way. We define the parameter c, the positive

weights (w), and the hypergeometric mean M(t, c) by

n

(2.2) c=Z^,
i-l

(2.3) Wi = bi/c,    (i = 1, • • • , n),        ( X) w* = l),

(2.4) MO, c; *, w) = [R(-t, cw, x)]1",        (t 9^ 0, c > 0).

If i = 0 or c = 0, the mean value is defined to be the limiting value of

M(t, c) as t—>0 or e—>0. It is shown in [4] that

(2.5) lim M(t, c; x, w) = Mt(x, w),
c->0

where Mt is the mean of order t:

(n \1/1

£ w.Xj)    , (/^0),

(2.6) " '
n

Mo(x, w) = JJ %i'.
i-l

We shall want several results taken from [4] which are valid for

c^O:

M(s, c; x, w) < M(t, c; x,w)    if s < t and min(x) < max(x);

M(l, c; x, w) = M\(x, w),        M( — c, c; x, w) = M0(x, w).

By max(x) we denote the largest of the positive numbers x\, ■ • • , x„.

In addition to (2.7) we shall want a new result:

Theorem 1. If min(x) <max(x), the hypergeometric mean of the

positive values (x) with positive weights (w) satisfies

M(t, c; x, w) < Mt(x, w),        (t > I, c > 0),

M(l, c; x, w) > Mt(x, w),       (t < 1, c > 0).
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Proof. By (2.1) and (2.4) we have

(2.9) [M(t, c; x, w)\l =   f ( jb «.*.•) P(cw, «') du',        (c > 0).

If min(x) <max(x), then (^UiXi)'<^uix'i for />1 or t<0, with

reversed inequality for 0</<l; this follows directly from the fact

that Mt(x, u) is a strictly increasing function of t. Using (2.9) and

(2.7), we have

/(22 UiXi)P(cw, u') du' = M(l, c; x , w) = Mi(x , w)
2

= Yl wi%i — [Mt(x, w)] .

The inequalities of Theorem 1 follow immediately provided that

t^O. If 2 = 0 and c>0, the integral representation [4] of M(0, c)

and the concavity of the logarithmic function show that

log[M(0, c; x, w)] =   I   log f  ^UiXij P(cw, u') du'

(2.10) >   f (j^Ui log xA P(cw, u') du'

= Y Wi log Xi = log M0(x, w).

In preparation for the statement of Theorem 2, we define several

quantities in terms of elementary mean values, assuming always that

(b), c, and (w) are related by (2.2) and (2.3):

77(a, b, x) = [Mi(x, w)]     = (22 biX{/c)    ,

J (a,  b,  X)   =   [M_(x, W)]        =   22 °iXi   A,

K(a, b, x) = [M0(x, w)]~° = YL xT ' ',

J'(a,b,x) = [Mo{x,w)\  c[Mc^{x, w)]C_° = (IT**  ')£***'"  A,

H'(a,b,x) =- [M0(x, w)Yc[M-X{x, w)Y~"
= (IT*.' ')(£*<*< A)"c-

As implied by (2.7) and (2.20) below, there are several values of a for

which the hypergeometric function R(a, b, x) takes a simple form:

P = Mt = H = I, (a = - 1),

R = l = H = 7 = P, (a = 0),
(2.12)

P = Mo   = P' = P = P,        (a = c),

7? = Mr^l! = H' = J', (a = c+ 1).
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Having disposed of these special values, we now state

Theorem 2. If the arguments (x) and parameters (b) are all positive

and if min(x) <max(x), the hypergeometric function R(a, b, x) and the

elementary functions defined by (2.11) satisfy

(2.13) H' <K < H < R <J <J', (- oo < a < - 1),

(2.14) H' < K <J < R <mm{H,J'}, (-l<a<0),

(2.15) max{#, H'}   < R <K < minj/,7'}, (0<a<c),

(2.16) H < K <J'< R < min \lT,J), (c < a < c + 1),

(2.17) H <K <H' < R<J' <J, (c+ 1 < a < °o).

If a^c-1, then min{H, J'\=H<J'. If a£l, then min{H', j}
= H'<J.

Proof. The main inequalities are those relating to R; all other parts

of the theorem follow easily from the inequality Ms<Mt if s<t. It is

evident from (2.7) and (2.8) that

Mi < M(t, c) < Mt, (1 < < < oo),

Mt < M(t, c) < Mh (0 < t < 1),
(2.18)

M0 < M(l, c) < Mi, (-c <t < 0),

Mt < M(t, c), (-c - 1 < t < - c).

Several additions to this list could be made (for instance, the last in-

equality is valid also for — oo </<—c —1) without sharpening the

final results. We now raise each of the inequalities (2.18) to the power

t, use (2.4), and substitute t=—a, thereby proving those parts of

Theorem 2 which compare R with H, J, or K. In the inequalities

H(a, b, x) < R(a, b, x) < J(a, b,x), (— oo < a < — 1),

we now replace a by c — a and (x) by (x~1) = (xr1, ■ ■ ■ , x^1). The

elementary relation M((x_1, w) = [M-t(x, to)]-1 implies that

(2.19) H(c - a, b, x"1) = [M0(x, w)]cH'(a, b, x)

and that (2.19) still holds if H and H' are replaced by J and J' (or

by K and K'=K). The Euler transformation of R is a similar equa-

tion [2]:

(2.20) R(c - a, b, x'1) = ( II *<*) R(a, b, x) = [M0(x, w)]cR(a, b, x).

Thus (2.13) implies (2.17), and similarly all those parts of Theorem 2
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which compare R with 77' or J' are implied by those parts which com-

pare R with 77 or J.

3. Some special cases. Assume x and y to be positive and unequal.

From (2.1) and (2.15) we find that

R{\; 1, 1; x, y) = (log x - log y)/(x - y)

satisfies LKR<K; hence

x — y x + y
(3.1) («y)wi <-^— < __£ •

log a; — log y 2

If r^O, then 7?(1—r; 1, 1; x, y) = (xr — yr) /r(x — y) lies always between

H— [5(^+30]r_1 and /= K^'^+y-1) according to Theorem 2. This

statement is sharper than the very useful result [5, Theorem 41] that

it lies always between xr_1 and yr~y.

If  0<a<c the 7?-function  has the  integral  representation   [2,

Equation (7.1)]

(3.2) B{a, c - a)R{a, b, x) =   I    t°-°~x J\ (t + *,•)"*'*i
•^ 0 i=i

where 73 is the beta function. The integral was considered by Watson

[10] and Szego [9], who proved the right and left parts, respectively,

of the inequality H<R<K for the case 0<o = c —1. This is a special

case of (2.15).
Gauss' hypergeometric function is expressible in terms of the 7?-

function by

(3.3) zFi(a, b; c; x) = R(a; b, c — b; 1 — x, 1).

Assume c>&>0 and — <=o<x<l, x^O. Then the inequalities of

Theorem 2 remain valid when the following substitutions are made:

R = iFi{a, b;c;x),

K = (1 - x)-"1-!',

H = (1 - bx/c)-",
(3 4)

H' = (1 - a;)*-*-*[! - x + bx/cY",

J = l + (6/c)[(l -*)-- 1],

J' = (b/c){\ - x)°-°-» + (1 - b/c)(l - x)~b.

If c>a>0 it may be useful to recall that both members of (3.3) are

symmetric in a and b.
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Inequalities for confluent hypergeometric functions can be ob-

tained by taking a limit of Equations (3.4) in either of two ways. In

the first limiting process (replacing x by x/a and letting a—>«>),

(2.13) or (2.17) yields only a weaker form (with < replaced by 5s) of

the inequalities

(3.5) e»*" < iFiO; c; x) < 1 + (b/c)(e* - 1),      (c > b > 0, x * 0).

However, strict inequality is easy to prove if x>0 by comparing the

power series of the three members, and if x<0 by Kummer's trans-

formation of iPi. In the other limiting process (replacing x by ex and

letting c—>°°), (2.13)—(2.15) become the following inequalities, valid

for 6^0 andx^O:

(3.6) (1 - &x)-°<j 2F0(a, b;x), (- » < a <J - 1),

(3.7) 1 g ,F0(a, b; x) £ (1 - bx)~", (-lga^O),

(3.8) (1 - bx)~" ^ 2F0(a, b; x) S 1, (0 ^ a < »).

Results analogous to those for Gauss' hypergeometric function are

easily found for Appell's function p by using the relation

(3.9) Fi(a, b, b'; c; x, y) = R(a; b, b', c - b - b';l - x, I - y, 1).

4. Area and capacity of an ellipsoid. The ellipsoid 22*-1 xVal = l
has volume V = aia2 ■ ■ • a„7r"/2/r(fw-|-l); its surface area 5 and

capacity C are given by

(4.1) S/nV = R{-h h,---A\al,---,al),        (» £ 2),

(4.2) (n-2)/C = R(in- 1;J, • • • ,\;a\, ■ ■ ■ ,al),        (» ^ 3).

The expression for 5 is derived by writing the surface area as an

(« — l)-fold integral [6, Equation (10)] and comparing with (2.1);

the expression for C comes from separating Laplace's equation in

confocal coordinates [l] and using (3.2).

Assume that «i, ■ • • , an are positive, finite, and not all equal. Then

Theorem 2 gives inequalities for 5 and C, in particular

(4.3) JJ <>-Tlln < 22 «TV» < S/nV < (E <*r2A)m-

For n = 3 these inequalities were found by Peano and Polya [7]; for

general n the members of (4.3) were discussed by Lehmer [6, p. 230]

as approximations (but not as bounds) for 5 in the case of nearly

spherical ellipsoids.

If w = 3, inequalities for C and S are equivalent to inequalities for

the symmetric normal elliptic integrals [3]
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,.   .. Rf(x, y, z) = R(i; \, \, f; x, y, z),
(4.4)

Ra(x,y,z) = R(~i; §, J, 1; a, y, z).

If x, y, z are positive and not all equal, Theorem 2 shows that

(4.5) (—-—)     < RF(x, y, z) < (xyz)-™,
\x + y + z/

x1'2 + y1'2 + z1'2 /x + y + zV'2
(4.6) (xyzyi* <- < R0(x, y, z) < f-"--\    .

Inequalities for C due to Polya and Szego [8, Equation (1.7)] are

equivalent to inequalities for RF that are sharper than (4.5):

3 3
(4.7)    - < RF(x, y, z) <-

x1'2 + y1'2 + z1'2 (yzy* + (ax)1'* + (ry)1/4

The left side of (4.7) is generalized to any ra^3 by

Theorem 3. If xi, ■ ■ ■ , xn are nonnegative and not all equal, then

(I    "      i/s\B— 2

n /  zZ Xi   J      < R(%n — 1; $, J, • • • , J;*i, x%, • ■ • , xn),

(ra ̂  3).

Proof. Assume yi, • • • , yn are positive and not all equal. The

inequality

(E yM"-1 > (II ydlZyrVn, (» £ 3),

is part of Maclaurin's theorem for elementary symmetric functions

[5, Theorem 52]. Replacing yt by (t+xi)112, where t>0, we have

II (t + *>')~1/2 >E0 + Xi)1'2^]1-"^ (f + x,)-1'2/^

= (1 - in)-»(d/A)[E (* + «*)l'V«]»-".

We now integrate with respect to £ and use (3.2) witha = ^ra —1 =c — 1.

Theorems 2 and 3 show that the capacity of an ellipsoid in ra di-

mensions (ra ̂  3) with positive semiaxes satisfies

(4.9) II «1r2/" < C/(n - 2)< (£ a;/Mr2

unless the ellipsoid is a sphere.
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