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SOME INEQUALITIES FOR QUANTUM TSALLIS

ENTROPY RELATED TO THE STRONG SUBADDITIVITY

DÉNES PETZ AND DÁNIEL VIROSZTEK

Abstract. In this paper we investigate the inequality Sq(ρ123)+ Sq(ρ2) � Sq(ρ12)+ Sq(ρ23)(∗)
where ρ123 is a state on a finite dimensional Hilbert space H1⊗H2⊗H3, and Sq is the Tsallis
entropy. It is well-known that the strong subadditivity of the von Neumnann entropy can be
derived from the monotonicity of the Umegaki relative entropy. Now, we present an equivalent
form of (*), which is an inequality of relative quasi-entropies. We derive an inequality of the
form Sq(ρ123)+Sq(ρ2) � Sq(ρ12)+Sq(ρ23)+ fq(ρ123) , where f1(ρ123) = 0 . Such a result can
be considered as a generalization of the strong subadditivity of the von Neumnann entropy. One
can see that (*) does not hold in general (a picturesque example is included in this paper), but we
give a sufficient condition for this inequality, as well.
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