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Abstract

We present some inequalities in convex geometry falling under the broad theme of quan-

tifying complexity, or deviation from particularly pleasant geometric conditions: we give

an upper bound for the Banach–Mazur distance between an origin-symmetric convex body

and the n-dimensional cube which improves known bounds when n ≥ 3 and is “small”;

we give the best known upper and lower bounds (for high dimensions) for the maximum

number of points needed to hit every member of an intersecting family of positive homo-

thets (or translates) of a convex body, a number which quantifies the complexity of the

family’s intersections; we give an exact upper bound on the VC-dimension (a measure of

combinatorial complexity) of families of positive homothets (or translates) of a convex body

in the plane, and show that no such upper bound exists in any higher dimension; finally, we

introduce a novel volumetric functional on convex bodies which quantifies deviation from

central symmetry, establish the fundamental properties of this functional, and relate it to

classical volumetric measures of symmetry.
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Chapter 1

Introduction

We present some inequalities in convex geometry falling under the broad
theme of quantifying complexity, or deviation from particularly pleasant
geometric conditions. We generally consider only affine properties, that is,
properties which are invariant under invertible affine transformations of Rn;
when dealing with the important special class of centrally symmetric convex
bodies, we often further take all bodies to be centred at the origin, and then
consider only properties which are invariant under linear transformations.

A linear-invariant notion of distance between origin-symmetric convex
bodies is Banach–Mazur distance, which is customarily defined between bod-
ies K and L rather than their equivalence classes, as

dBM(K,L) = inf {λ : λ > 0 andK ⊆ TL ⊆ λK for some T ∈ GL(Rn)} .

(See figure 1.1.) This is a multiplicative distance: dBM(K,K) = 1, and
the triangle inequality is dBM(K,M) ≤ dBM(K,L)dBM(L,M). The loga-
rithm of this distance induces a metric on the space of linear equivalence
classes of origin-symmetric convex bodies, yielding a compact metric space
on which many interesting linear-invariant functionals are continuous (for ex-
ample, volume ratio, MM∗, and the K-convexity constant). Thus estimates
on Banach–Mazur distance are of fundamental interest.

A seminal result of this type is John’s theorem that, for any origin-
symmetric convex body K in Rn,

dBM(K,Bn
2 ) ≤

√
n ,

where Bn
2 denotes the unit Euclidean ball. More specifically, every origin-

symmetric convex body K has a linear image TK such that Bn
2 is the el-

lipsoid of maximum volume in TK, and then Bn
2 ⊆ TK ⊆

√
nBn

2 . (See
section 2.2, and figure 1.2.)

The analogous question for the n-dimensional cube Bn
∞ remains open
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Figure 1.1: Banach–Mazur distance between the square and the circle.

Bn
2

√
nBn

2

Figure 1.2: John’s theorem on Banach–Mazur distance from the ball.

for n ≥ 3. As in the case of Bn
2 , one can consider a linear image TK such

that Bn
1 (the unit ball of `n1 norm, that is, a regular cross-polytope) is the

cross-polytope of maximum volume in TK; it follows that Bn
1 ⊆ TK ⊆ Bn

∞,
which yields dBM(K,Bn

∞) ≤ n. (This is essentially the proof of the classical
Auerbach lemma.) Perhaps surprisingly, this estimate is not sharp: in R2,
the exact inequality is

dBM(K,B2
∞) ≤ 3

2
,

as shown by Asplund [3]; for n→∞ it is known that

dBM(K,Bn
∞) ≤ cn5/6 .

(See chapter 2 for references and more information.) The exact upper bound
remains open for all n ≥ 3.

The main result of chapter 2, Theorem 2.3.4, asserts that, for any origin-
symmetric convex body K in Rn,

dBM(K,Bn
∞) ≤

√
n2 − 2n+ 2 +

2√
n+ 2− 1

,

which improves previous estimates for small n ≥ 3. (For large n, the afore-
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Figure 1.3: Nearly orthogonal contact points in John’s theorem.

mentioned estimate cn5/6 is superior.) The argument relies heavily on in-
formation from John’s theorem about origin-symmetric convex bodies for
which Bn

2 is the maximum volume ellipsoid, specifically about the contact
points between the body and Bn

2 . We show that there always exist two
contact points u and v which are nearly orthogonal, in the sense that

|〈u, v〉| ≤ 1√
n+ 2

.

(See figure 1.3.) This inequality is sharp in some cases, and is closely related
to a well-known estimate of Gerzon on how many lines there can be in an
equiangular system of lines through the origin in Rn.

In chapter 3 we consider transversal properties of families of convex bod-
ies, a topic with a long history in convex geometry. The most famous classical
result on transversals is Helly’s theorem, which asserts that if, in a family of
convex bodies, every (n + 1)-element subfamily has a common point, then
the whole family has a common point. A well-known consequence is that,
if, in a family F of translates of a cube (more generally, images of a cube
under diagonal affine maps), every pair of translates has a common point,
then the whole family has a common point.

In other words, for such F , if ν(F) = 1 then τ(F) = 1, where

ν(F) = sup {#(E) : E ⊆ F and E is pairwise disjoint}

is the independence number of F and

τ(F) = inf {#(T ) : T ⊆ Rn and (∀F ∈ F : F ∩ T 6= ∅)}

is its transversal number. (See figure 1.4.) Note that ν(F) ≤ τ(F) by the
pigeonhole principle. In view of the above result for the cube, it is natural
to ask the maximum value of τ(F) among families F of translates of a

3



(a) A family F of trans-
lates of a convex body.

(b) A pairwise disjoint
subfamily of F , show-
ing ν(F) ≥ 11.

(c) A transversal of F ,
showing τ(F) ≤ 11.

Figure 1.4: Transversal and independence numbers.

convex body having ν(F) = 1, or more generally, the maximum value of the
ratio τ(F)/ν(F). which in a sense quantifies the complexity of intersections
among the elements of F .

Passing from K to the cube in this problem, so as to exploit the cube’s
pleasant packing and covering properties, yields

τ(F) ≤ d2dBM(K,Bn
∞)enν(F) ,

as shown by Kim et al. [35]. Combined with estimates of the type considered
in chapter 2, this yields an inequality of the type τ(F) ≤ cnnnν(F). Chap-
ter 3 presents asymptotically superior estimates using volumetric arguments
for covering numbers; the main result of the chapter, Theorem 3.3.2, as-
serts that for any family F of translates (or positive homothets) of a convex
body K in Rn,

τ(F) ≤ cnν(F) ,

with c = 3 + 2
√

2 + o(1) (as n → ∞). An estimate with c = 6 + o(1)
was also given independently (and roughly simultaneously) by Dumitrescu
and Jiang [18]; the constant given here is the best known. We also give an
example to show that we must have c ≥ 2 − o(1), which again is the best
known constant.

Also in chapter 3, we consider estimates on the VC-dimension of a family
of translates (or positive homothets) of a convex body. The VC-dimension
of a family F of sets is

vcdim(F) = sup {#(X) : F shatters X},

where a family F is said to shatter a set of points X if for every sub-
set X ′ ⊆ X, there exists a set F ∈ F such that X∩F = X ′. (See figure 1.5.)
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(a) The family of halfplanes in R2 shatters this set of three points.

(b) The family of halfplanes in R2 does not shatter any set of four points.

Figure 1.5: The VC-dimension of the family of halfplanes in R2 is 3.

Note that if there is no upper bound on the sizes of sets shattered by F ,
then this definition yields vcdim(F) = ∞. This combinatorial measure of
complexity was introduced by Vapnik and Červonenkis [61, 62] for proba-
bilistic applications: families of events having finite VC-dimension satisfy a
uniform law of large numbers.

Our main motivation in studying the VC-dimension is its involvement
in upper bounds on transversal numbers (see the Epsilon Net Theorem of
Haussler and Welzl [31] and [43, Corollary 10.2.7]) and related phenomena
(see [44], for example). We show, however, that vcdim(F) is bounded from
above in dimension two but not in any higher dimension.

Our example for higher dimensions also conclusively settles the conjec-
ture of Grünbaum for dual VC-dimension (see [43, Section 10.3] for this
notion), that vcdim(F∗) ≤ n + 1 for any family F of positive homothets
of a convex body in Rn. Naiman and Wynn [46] disproved this conjecture
by giving an example with vcdim(F∗) =

⌊
3n
2

⌋
; our example implies that no

upper bound exists if n ≥ 3.
Chapter 4 deals with measures of (central) symmetry, that is, affine-

invariant functionals on the space of convex bodies which quantify how far
a convex body deviates from being centrally symmetric. Three classical
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θ

K

−K

Figure 1.6: The radius of 1
2 �K +̂ 1

2 � (−K) in a direction θ is the harmonic
mean of the radii of K and −K in that direction.

measures of symmetry arise by considering the volume of some combination
of the body K and its negative −K: their Minkowski average 1

2K−
1
2K; their

intersection K ∩−K; and the convex hull of their union conv(K ∪−K). (In
the latter two cases, for affine invariance we optimize over translates of K.)

We introduce the harmonic mean measure of symmetry, which com-
bines K and −K by an operation which is dual to Minkowski average in
the same way that intersection is dual to convex hull of union:

mHM(K) = sup
x∈K

vol(1
2 � (K − x) +̂ 1

2 � (x−K)))

vol(K)
,

where � and +̂ denote harmonic linear combination, that is, linear combina-
tion of gauge functions:

‖ · ‖α�K+̂β�L = α‖ · ‖K + β‖ · ‖L .

(See figure 1.6.) Harmonic linear combinations are dual to the usual Min-
kowski linear combinations, in the sense that

α �K +̂ β � L = (αKo + βLo)o

if K and L are convex bodies with the origin in their interiors. (The term
“harmonic” evokes this duality, suggesting an analogy to harmonic and arith-
metic means.) Harmonic linear combinations were first considered by Stein-
hardt [54], who obtained the dual Brunn–Minkowski inequality

vol(α �K +̂ β � L)−1/n ≥ α vol(K)−1/n + β vol(L)−1/n .

Firey [21], apparently independently, considered them in a slightly more
general form, and Lutwak [41] treated them together with his dual mixed
volumes [40] in an integrated dual Brunn–Minkowski theory. See also the
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thorough survey of Gardner [23, §18.9] and references therein.
We prove that, for any convex body K in Rn,√

π(n+ 1)

2n+1
≤ mHM(K) ≤ 1 ,

and that, for the simplex 4,

mHM(4) =
2nn!

(n+ 1)n
∼
√
πn

2

(
2

e

)n+1

as n→∞.

Thus the range of values of the harmonic mean measure of symmetry is
exponential in the dimension n, as is the case for the three classical measures
of symmetry mentioned above.

We also prove sharp inequalities between the volume of the harmonic
mean of K and −K and the volume of their intersection, namely that

vol(K ∩ −K) ≤ vol(1
2 �K +̂ 1

2 � (−K)) ≤ (n+ 1) vol(K ∩ −K)

if K is a convex body with the origin in its interior. (A dual version of
these inequalities is implicit in the work of Rogers and Shephard.) Since
the factor n + 1 is small in comparison to the exponential range of these
quantities, these inequalities show that the harmonic mean of K and −K
and their intersection have roughly the same volume.

Finally, we show that, if K is in John’s position, then the harmonic mean
of K and −K has the smallest volume exactly when K is the Euclidean ball
and the largest volume exactly when K is a simplex.

Notation and terminology

Throughout the thesis, we work in Rn, with its standard basis (ei)
n
1 , its usual

inner product 〈·, ·〉, the associated norm | · |, and origin o. The boundary
of a set A ⊆ Rn is denoted ∂A; its interior is intA; its closure is clA; its
convex hull is convA; and its polar is

A◦ = {x ∈ Rn : 〈x, a〉 ≤ 1 for all a ∈ A} .

The cardinality of A is denoted #(A), and its n-dimensional volume is de-
noted vol(A), or voln(A) to emphasize the dimension.

A convex body is a convex, compact set in Rn with non-empty interior.
A set A ⊆ Rn is said to be centrally symmetric if there exists a point x ∈ Rn,
the centre of A, such that A = 2x− A; in particular, it is origin-symmetric
if A = −A. Given a norm ‖ · ‖ on Rn, its closed unit ball {x ∈ Rn : ‖x‖ ≤ 1}
is an origin-symmetric convex body; conversely, given an origin-symmetric

7



convex body K, the Minkowski functional, or gauge function,

‖x‖K = inf {λ : λ > 0 and x ∈ λK}

is a norm. (We also use this notation when K is not origin-symmetric.) We
write

Bn
p = {x ∈ Rn : ‖x‖p ≤ 1}

for the unit ball of the `np norm. Thus Bn
∞ = [−1, 1]n is the n-dimensional

cube, and Bn
2 is the Euclidean ball.
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Chapter 2

The Banach–Mazur distance
to the cube in low
dimensions∗

Abstract
We show that the Banach–Mazur distance from any sym-

metric convex body in Rn to the n-dimensional cube is at
most √

n2 − 2n+ 2 +
2√

n+ 2− 1
,

which improves previously known estimates for “small” n ≥
3. The proof uses an idea of Lassak and the existence of two
nearly orthogonal contact points in John’s decomposition of
the identity. Our estimate on such contact points is closely
connected to a well-known estimate of Gerzon on equiangular
systems of lines.

2.1 Introduction

The Banach–Mazur distance between two origin-symmetric convex bodies
K and L in Rn is

dBM(K,L) = inf {λ > 0: K ⊆ TL ⊆ λK for some T ∈ GL(Rn)} .

(See figure 1.1.) This distance is multiplicative, in that dBM(K,K) = 1,
and dBM(K,M) ≤ dBM(K,L) dBM(L,M). Asplund [3] showed that, for any

∗A version of this chapter has been published [59].
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origin-symmetric convex body K in the plane,

dBM(K,B2
∞) ≤ 3

2
,

with equality for the regular hexagon. (See [29, §7] for a survey of this area
in classical convex geometry.) The analogous problem in Rn for n ≥ 3 is
open.

The estimate
dBM(K,Bn

∞) ≤ n

follows from the classical Auerbach lemma, which yields that every origin-
symmetric convex body K in Rn has a linear image TK such that Bn

1 ⊆
TK ⊆ Bn

∞. (For the generalization to convex bodies which are not neces-
sarily centrally symmetric, see [15, Lemma 1].) This estimate also follows
from John’s theorem that dBM(K,Bn

2 ) ≤
√
n (see section 2.2) and the (mul-

tiplicative) triangle inequality.
Lassak [37] improved the argument via John’s theorem to give

dBM(K,Bn
∞) ≤

√
n2 − n+ 1 . (2.1)

Lassak’s idea was to pass from the ball Bn
2 to a ball truncated by parallel

hyperplanes, a body which more closely resembles Bn
∞. The main result in

this chapter, Theorem 2.3.4, extends Lassak’s idea by truncating Bn
2 twice,

obtaining the estimate

dBM(K,Bn
∞) ≤

√
n2 − 2n+ 2 +

2√
n+ 2− 1

, (2.2)

which improves Lassak’s bound for all n ≥ 3. (For example, for n = 3,
Lassak’s bound gives

√
7, while (2.2) gives

√
6.618 . . ..)

As in Lassak’s proof, the truncating hyperplanes are chosen based on
the contact points between the given body K and its inscribed ellipsoid of
maximum volume. For our purposes it is desirable to choose two contact
points which are as nearly orthogonal as possible; we show, in Lemma 2.3.1,
that there always exist contact points ui and uj with

|〈ui, uj〉| ≤
1√
n+ 2

. (2.3)

The case of equality here is closely related to the question of how many lines
there can be in an equiangular system of lines in Rn. A theorem due to
Gerzon (stated below as Theorem 2.4.1) asserts that such a system contains
at most 1

2n(n + 1) lines and gives necessary conditions on n for this bound

10



to be achieved (see section 2.4 for details). We show that (2.3) is sharp in
Rn if and only if Gerzon’s bound is sharp.

The estimate (2.2) is of interest only for small n because, like Lassak’s
bound, it is asymptotically linear in n but maxK dBM(K,Bn

∞) is known to
be of lower order; in fact, there are absolute positive constants c and C such
that

c
√
n log n ≤ max

K
dBM(K,Bn

∞) ≤ Cn5/6 .

The lower bound is due to Szarek [56]. The upper bound is the culmination of
work by several authors: Bourgain and Szarek [12] obtained the first estimate
of order o(n); Szarek and Talagrand [57] proved O(n7/8); Giannopoulos [24]
improved their argument to give O(n5/6). See [25, §7.2] for a survey of this
area in asymptotic geometric analysis.

The analogous, more general, problem when K is not required to be
centrally symmetric (and the notion of Banach–Mazur distance is suitably
generalized), was solved by Chakerian and Stein [15, Lemma 1], who showed
that dBM(K,Bn

∞) ≤ n, and this is sharp for the simplex. A broad general-
ization was obtained by Gordon, Litvak, Meyer, and Pajor [28], who showed
that dBM(K,L) ≤ n for any convex body K and any centrally symmetric
convex body L, and that equality is attained if K is the simplex; see [28,
Theorem 5.5, Corollary 5.8].

Section 2.2 sketches the necessary background on John’s theorem. Sec-
tion 2.3 proves the main results, and section 2.4 discusses the case of equality
in (2.3).

2.2 John’s theorem

Definition 2.2.1. A finite collection (ui)
m
1 of unit vectors in Rn is a John

configuration if there exist positive real numbers (ci)
m
1 such that∑

i

ciui ⊗ ui = Id , (2.4)

where u ⊗ v denotes the map Rn → Rn, x 7→ 〈u, x〉v. A John configuration
is centred if, moreover, ∑

i

ciui = o .

Theorem 2.2.2 (John [33]). Let K be an origin-symmetric (resp., arbitrary)
convex body in Rn. Then Bn

2 is the ellipsoid of maximum volume in K if
and only if Bn

2 ⊆ K and ∂Bn
2 ∩ ∂K contains a John configuration (resp., a

centred John configuration). Every convex body has one such affine image
(up to orthogonal transformations).

11



A body satisfying the conditions in Theorem 2.2.2 is said to be in John’s
position.

The original paper of John is difficult to obtain; for proofs of Theo-
rem 2.2.2, see, for example, [4, Lecture 3], [25, §2.3], or [60, §15]. For gener-
alizations to two arbitrary convex bodies, see [26], [9], and for the strongest
form, [28, Theorem 3.8].

We will use the following well-known facts about John configurations. It
is easy to show that the defining condition (2.4) is equivalent to the condition
that ∑

i

ci〈ui, x〉2 = |x|2 for all x ∈ Rn. (2.5)

Taking traces in (2.4) yields ∑
i

ci = n , (2.6)

and so (ui)
m
1 is a John configuration if and only if

1

n
Id ∈ conv {ui ⊗ ui : i = 1, . . . ,m} . (2.7)

Carathéodory’s theorem (applied to the space of symmetric trace-one linear
operators from Rn to Rn) yields that any John configuration has a subset
with at most 1

2n(n+ 1) elements which is also a John configuration.
These facts together yield that dBM(K,Bn

2 ) ≤
√
n for any origin-symmet-

ric convex body K, as follows. (See figure 1.2.) If K and (ui)
m
1 ⊆ ∂Bn

2 ∩∂K
are as in Theorem 2.2.2, then any halfspace that supports K at ui also sup-
ports Bn

2 there, and so must be {ui}◦; thus K ⊆ {±u1, . . . ,±um}◦. Finally,
{±u1, . . . ,±um}◦ ⊆

√
nBn

2 by a straightforward computation using (2.5)
and (2.6). These observations will also be used in the proof of Theorem 2.3.4.

John’s theorem is also an essential ingredient in the proof of Ball’s volume
ratio theorem, which is stated here for convenience, though it will not be
used until section 4.6.

Theorem 2.2.3. Let K be a convex body in John’s position in Rn. If K is
origin-symmetric, then

vol(K) ≤ 2n ,

with equality if and only if K is a cube. In general,

vol(K) ≤ nn/2(n+ 1)(n+1)/2

n!
,

with equality if and only if K is a simplex.

The inequalities are due to Ball [5, 6] (see also the more self-contained
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proof in [7]); both cases of equality are due to Barthe [8, Proposition 10]. In
the proof of the general case, the following observation by Ball plays a key
role. We state it here as a separate lemma for use in section 4.6.

Lemma 2.2.4 (Ball [6]). Let (ui)
m
i=1 be a sequence of unit vectors in Rn

and let (ci)
m
i=1 be associated positive scalars. If the vectors ui form a centred

John configuration with the weights ci, then the vectors

vi =

(√
n

n+ 1
ui,−

1√
n+ 1

)
form a John configuration in Rn ⊕ R = Rn+1 with weights di = n+1

n ci.

Proof. By direct computation.

2.3 Nearly orthogonal contact points and distance
to the cube

Lemma 2.3.1. If (ui)
m
1 is a John configuration in Rn, n ≥ 2, then

min
i,j
|〈ui, uj〉| ≤

1√
n+ 2

.

Proof. As noted in section 2.2, we may assume m ≤ 1
2n(n + 1). Let (ci)

m
1

be positive real numbers such that
∑

i ciui ⊗ ui = Id. Let X be a random
variable in {1, . . . ,m} with

Prob(X = j) =
cj
n

.

Since

max
i
ci ≥

1

m

∑
i

ci =
n

m
≥ 2

n+ 1
,

we have

min
i

min
j
〈ui, uj〉2 = min

i
min
j 6=i
〈ui, uj〉2

≤ min
i

E(〈ui, uX〉2 | X 6= i) = min
i

1

1− ci/n
∑
j 6=i

cj
n
〈ui, uj〉2

= min
i

1

n− ci

(
|ui|2 − ci〈ui, ui〉2

)
= min

i

1− ci
n− ci

≤ 1− 2/(n+ 1)

n− 2/(n+ 1)
=

1

n+ 2
,

as desired.
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The case of equality in Lemma 2.3.1 is discussed in section 2.4.

Remark 2.3.2. The idea of averaging over the ui according to their weights
(as in the proof of Lemma 2.3.1) goes back to John [33], who used a simi-
lar argument to prove Jung’s inequality [11], which asserts that if r is the
minimum radius of a sphere enclosing some set A ⊆ Rd, then

r ≤

√
d

2(d+ 1)
diamA ,

and equality is attained by regular simplices. In fact, one can deduce
Lemma 2.3.1 from this inequality by taking A to be the set of operators
ui ⊗ ui (with geometry given by the Hilbert–Schmidt inner product, as in
the proof of Proposition 2.4.2). The proof above, however, gives slightly
more, since it shows that we may take ui to be any point with above-average
weight; John’s method cannot provide such information because he computes
the average over all pairs (i, j) with i 6= j instead of fixing i and averaging
over j. (Compare also [55, Proposition 2], which uses a method resembling
John’s to estimate the maximum inner product between two vectors in a
slightly different context.)

Remark 2.3.3. The weaker, though asymptotically equivalent, bound

min
i,j
|〈ui, uj〉| ≤

1√
n

is obtained in the first step of the proof of the classical Dvoretzky–Rogers
lemma [19] (also [25, Theorem 2.3.3]). The argument of Theorem 2.3.4 can
be given using this bound, but the resulting bound on dBM(K,Bn

∞) does not
improve Lassak’s result (2.1) in the case n = 3.

Theorem 2.3.4. For any origin-symmetric convex body K in Rn, n ≥ 3,

dBM(K,Bn
∞) ≤

√
n2 − 2n+ 2 +

2√
n+ 2− 1

.

Proof. Applying an affine transformation if necessary, we may assume Bn
2 is

the maximum volume ellipsoid of K. Let (ui)
m
1 be a John configuration of

contact points, as in Theorem 2.2.2. By Lemma 2.3.1, we may assume

|〈u1, u2〉| ≤
1√
n+ 2

.

Let V = span {u1, u2}. Rotating if necessary, we may assume that V =
span {e1, e2} and that u1 + u2 is a multiple of e1 + e2.
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Let

U = {±u1,±u2}◦ , L = U ∩
√
nBn

2 , and M = U ∩
√
nBn
∞ .

We will show that

dBM(K,Bn
∞) ≤ dBM(K,L) dBM(L,M) dBM(M,Bn

∞) ≤
√
n · r√

n
· 1 = r ,

where r = maxx∈M |x|.
To show that dBM(K,L) ≤

√
n, note that, by the remarks in section 2.2,

K ⊆ L ⊆
√
nBn

2 ⊆
√
nK.

To show that dBM(L,M) ≤ r√
n

, note first that
√
ne3 ∈ M , so r ≥

√
n.

Thus M ⊆ r√
n
U . Furthermore, M ⊆ rBn

2 = r√
n

√
nBn

2 by the definition of r.

So L ⊆M ⊆ r√
n
L.

To show that dBM(M,Bn
∞) = 1, we will show that M is a parallelotope.

Consider a vertex p of the rhombus U ∩ V . (See figure 2.1.) Since p is the
intersection of the tangents to the circle Bn

2 ∩ V at u1 and u2, the line `
joining u1 and u2 is ∂({p}◦), so

|p|2 =
1

dist(o, `)2
=

1

|12(u1 + u2)|2
=

2

1 + 〈u1, u2〉

≤ 2

1− 1√
n+2

= 2 +
2√

n+ 2− 1
.

In particular, |p|2 < 4 < 2n, so the vertices of the rhombus U ∩ V are closer
to the origin than the vertices of the square

√
nBn
∞ ∩ V are. Recall that

u1 + u2 is a multiple of e1 + e2, so the vertices of the rhombus lie on the

p

u1

u2

o

√
nBn
∞ ∩ V

U ∩ V

Figure 2.1: The rhombus U ∩ V , in the proof of Theorem 2.3.4.
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same rays through the origin as the vertices of the square; thus

U ∩ V ⊆
√
nBn
∞ ∩ V ,

as figure 2.1 shows. It then follows easily that

M = U ∩
√
nBn
∞ = U ∩ V +

√
nBn
∞ ∩ V ⊥ ,

which is the sum of a rhombus and an (n− 2)-dimensional cube in comple-
mentary subspaces, hence a parallelotope.

It remains only to estimate r. Let x = v+w ∈M , where v ∈ U ∩ V and
w ∈
√
nBn
∞ ∩ V ⊥. Then

|x|2 = |v|2 + |w|2 ≤ 2 +
2√

n+ 2− 1
+ n(n− 2) .

Taking square roots yields the desired result.

2.4 Equiangular lines

Theorem 2.4.1 (Gerzon [38, Theorem 3.5]). An equiangular system of lines
in Rn contains at most 1

2n(n+1) lines. If equality is achieved, then the angle
between any pair of lines is arccos(1/

√
n+ 2), and moreover, either n = 2,

n = 3, or n+ 2 is an odd square.

In fact, Gerzon’s theorem as stated in [38] does not include the value of
the angle, but the proof given there does establish it.

Systems of lines achieving Gerzon’s bound are known to exist for the
first few n satisfying the conditions stated in Theorem 2.4.1, namely n =
2, 3, 7, 23; see [38]. The case of equality (or near-equality) in Gerzon’s the-
orem is also of interest in the theory of frames; see [55] for a recent survey
from this point of view.

Proposition 2.4.2. Let (ui)
m
1 be a finite collection of unit vectors in Rn,

n ≥ 2. Then the following are equivalent:

(i) (ui)
m
1 is a John configuration and mini,j |〈ui, uj〉| = 1/

√
n+ 2;

(ii) the lines spanned by the ui are equiangular, and m = 1
2n(n+ 1).

Proof. Examining the inequalities in the proof of Lemma 2.3.1, we see that
condition (i) holds if and only if these three conditions are satisfied:

1. (ui) is a John configuration with all weights equal;

2. m = 1
2n(n+ 1); and
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3. all the values 〈ui, uj〉2 with i 6= j are equal.

The last two statements are exactly condition (ii), which thus clearly follows
from condition (i).

Conversely, suppose condition (ii) holds, so that m = 1
2n(n+ 1) and the

points (ui)
m
1 satisfy, say,

〈ui, uj〉2 =

{
1 if i = j,

a if i 6= j.

We wish to show that the points (ui)
m
1 are a John configuration with all

weights equal, that is, ∑
i

n

m
ui ⊗ ui = Id .

Consider the space of real symmetric n×n matrices, under the Hilbert–
Schmidt inner product

〈〈A,B〉〉 = tr(AB) ,

and the associated norm ‖·‖HS (which in this finite-dimensional setting is
sometimes called the Frobenius norm). With this inner product structure,
the hyperplane {A : tr(A) = 1} is at distance 1/

√
n from the origin, and the

(unique) closest point to the origin in this hyperplane is 1
n Id. On the other

hand, tr( 1
m

∑
i ui ⊗ ui) = 1, and

∥∥∥∥∥ 1

m

∑
i

ui ⊗ ui

∥∥∥∥∥
2

HS

=
1

m2

∑
i

∑
j

〈〈ui ⊗ ui, uj ⊗ uj〉〉 =
1

m2

∑
i

∑
j

〈ui, uj〉2

=
1

m2

∑
i

|ui|4 +
∑
i

∑
j 6=i
〈ui, uj〉2

 =
1

m
+

(
1− 1

m

)
a =

1

n
,

since m = 1
2n(n+ 1) (by hypothesis) and a = 1/(n+ 2) (by Theorem 2.4.1).

Thus 1
m

∑
i ui ⊗ ui is also a closest point to the origin in the trace-one hy-

perplane, so by uniqueness, 1
m

∑
i ui ⊗ ui = 1

n Id, as desired.

Remark 2.4.3. The direction (ii)⇒ (i) in the above proof essentially shows
from condition (ii) that 1

n Id is the centroid of the operators ui⊗ ui. With a
little more computation, one may actually show from condition (ii) that

〈〈ui ⊗ ui − 1
n Id, uj ⊗ uj − 1

n Id〉〉∥∥ui ⊗ ui − 1
n Id

∥∥
HS

∥∥uj ⊗ uj − 1
n Id

∥∥
HS

=

{
1 if i = j,

−1/d if i 6= j,

where d = 1
2n(n+ 1)− 1 is the dimension of the ambient space of symmetric

trace-one n × n matrices; thus the operators ui ⊗ ui are the vertices of a
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regular d-simplex centred at 1
n Id, which accounts for the extremality of the

situation.

Example 2.4.4. Lemma 2.3.1 is sharp for the contact points of the Platonic
dodecahedron in R3, but Theorem 2.3.4 is not sharp for this body. Indeed,
let K be a Platonic dodecahedron in R3, centred at the origin. Then Ko is
a Platonic icosahedron. Without loss of generality, Ko is the convex hull of
the points

(0, 1, a), (a, 0, 1), (1, a, 0), (0, 1,−a), (−a, 0, 1), (1,−a, 0)

and their negatives, where a = 1
2(
√

5 − 1). Then B3
1 ⊆ Ko ⊆ (a + 1)B3

1 , so

dBM(K,B3
∞) = dBM(Ko, B3

1) ≤ a+ 1 = 1
2(1 +

√
5).
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Chapter 3

Complexity of families of
positive homothets∗

Abstract
We investigate two approaches to measuring the combina-

torial complexity of a family of positive homothets (or trans-
lates) of a convex body K in Rn. First, we give an upper
bound on the transversal number of the family in terms of its
independence number and the dimension, extending previous
results to the case of infinitely large families and giving the
best known dependence on the dimension. Our example for
a lower bound also gives the best known dependence on the
dimension, making use of an asymptotically sharp estimate
on the number of translates of a simplex needed to cover its
negative.

Second, we consider VC-dimension, a standard combina-
torial measure of complexity. We show that any family of
positive homothets of a convex body in the plane has VC-
dimension at most 3, but that no such upper bound exists
in any higher dimension, conclusively settling a conjecture of
Grünbaum.

3.1 Introduction

A positive homothet of a set S ⊆ Rn is a set of the form λS+x, where λ > 0
and x ∈ Rn. Let F be a family of positive homothets (or translates) of a
given convex body K in Rn. In this chapter we study two approaches to

∗A version of this chapter has been published [47]. It is joint work with Márton
Naszódi.
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measuring the complexity of F .
First, we bound the transversal number τ(F) in terms of the dimension n

and the independence number ν(F). The transversal number τ(F) of a
family of sets F is defined as

τ(F) = min {#(S) : S ⊆ Rn and S ∩ F 6= ∅ for all F ∈ F}.

The independence number ν(F) of F is defined as

ν(F) = max {#(S) : S ⊆ F and S is pairwise disjoint}.

Clearly ν(F) ≤ τ(F). Karasev [34] showed that, if F is a family of translates
of a convex body in R2 with ν(F) = 1, then τ(F) ≤ 3, as had been conjec-
tured by Grünbaum [17]. One of the main results of [35] is that if F is a fam-
ily of positive homothets of a convex body in Rn then τ(F) ≤ 2n−1nnν(F).
We improve the dependence on n to exponential, showing that

τ(F) ≤

{
3n(n log n+ n log log n+ 5n)ν(F) if K = −K,

(3 + 2
√

2)n(n log n+ n log log n+ 5n)2ν(F) otherwise.

In the general case, the published version of this chapter [47] gave an estimate
of order roughly 8n; Dumitrescu and Jiang [18], roughly simultaneously,
published an estimate of order roughly 6n (for finite families) by applying a
result of Rogers [17, footnote to item 7.10]. The order (3+2

√
2)n given here

is the best known.
We also show that an exponential bound is the best possible, even when F

contains only translates of K, by constructing an example of such F with

τ(F) ≥ 2n√
π(n+ 1

2)
ν(F) .

Other examples with τ(F) ≥ cnν(F) are known ([47, Proposition 2], [18,
Theorem 5]); the value of c in the example given here is the best known.

Our second approach is to investigate the VC-dimension of a family F of
positive homothets (or translates) of a convex body K. This combinatorial
measure of complexity was introduced by Vapnik and Červonenkis [61, 62],
and is defined as

vcdim(F) = sup {#(X) : F shatters X},

where a family F is said to shatter a set of points X if for every subset X ′ ⊆
X, there exists a set F ∈ F such that X ∩ F = X ′. Note that if there
is no upper bound on the sizes of sets shattered by F , then this definition
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yields vcdim(F) =∞.
Our main motivation in studying the VC-dimension is its involvement

in upper bounds on transversal numbers (see the Epsilon Net Theorem of
Haussler and Welzl [31] and [43, Corollary 10.2.7]) and related phenomena
(see [44], for example). We show, however, that vcdim(F) is bounded from
above in dimension two but not in any higher dimension.

Our example for higher dimensions also settles a conjecture of Grünbaum
on dual VC-dimension (see [43, Section 10.3] for this notion). He showed [30]
that if F is a family of positive homothets of a convex body in R2, then
vcdim(F∗) ≤ 3, and conjectured [30, point (7), p. 21] the upper bound
vcdim(F∗) ≤ n + 1 for such families in Rn. (Grünbaum uses a different
terminology: instead of dual VC-dimension, he writes “the maximal number
of sets in independent families”, where “independence” is not as we defined
above.) Naiman and Wynn [46] disproved this conjecture by giving an ex-
ample with vcdim(F∗) =

⌊
3n
2

⌋
; our example shows that no upper bound

exists, since vcdim(F) < 2vcdim(F∗)+1 [43, Lemma 10.3.4]. (We are grateful
to Leonard Schulman, who upon learning of our Example 3.4.2, brought this
conjecture of Grünbaum to our attention.)

The construction of our example shares some principles with the con-
structions given in [32] and [27, Theorem 2.9] to show that certain Helly-type
and Hadwiger-type theorems for line transversals of families of translates of
a convex set in the plane do not generalize to R3. These examples and ours
show that, in some sense, translates of a convex set in R3 may form fami-
lies of high complexity. They also suggest that finding good bounds for the
transversal numbers of such families is a difficult task.

Section 3.2 reviews some background on covering and separation numbers
in preparation for section 3.3, which presents the results on transversal and
independence numbers. Section 3.4 presents the results on VC-dimension.

3.2 Covering and separation numbers

For any sets A,B ⊆ Rn, define the covering number of A by B to be

N(A,B) = inf {#(T ) : A ⊆ T +B} .

Equivalently, N(A,B) is the smallest number of translates of B that can
cover A. Also say that a set T is separated by B if

∀t1, t2 ∈ T : t1 6= t2 =⇒ (t1 +B) ∩ (t2 +B) = ∅ ,

and define the separation number of A by B to be

M(A,B) = sup {#(T ) : T ⊆ A and T is separated by B} .
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Equivalently, M(A,B) is the largest number of pairwise disjoint translates
of B by vectors in A. Note that if F is a family of translates of a set K,
say, F = {t+K : t ∈ T}, then

τ(F) = N(T,−K) and ν(F) = M(T,K) .

The elementary facts about covering and separation numbers are conse-
quences of the following geometric lemma.

Lemma 3.2.1. For any sets A,B ⊆ Rn and vectors x, y ∈ Rn, the following
are equivalent:

1. x− y ∈ B −A;
2. (x+A) ∩ (y +B) 6= ∅;
3. (x−B) ∩ (y −A) 6= ∅;
4. there exists z ∈ Rn such that x ∈ z +B and y ∈ z +A;
5. there exists z ∈ Rn such that x ∈ z −A and y ∈ z −B.

Proposition 3.2.2. For any sets A,B ⊆ Rn, we have

N(A,B −B) ≤M(A,B) ≤ N(A,B) .

Proof. Let T ⊆ A be a maximal set as in the definition of M(A,B). By
maximality, if a ∈ A then there exists t ∈ T such that (a+B)∩ (t+B) 6= ∅.
Condition (1) of the lemma yields that A ⊆ T+B−B, and so N(A,B−B) ≤
#(T ), which proves the lower inequality. On the other hand, by condition (4)
of the lemma, no translate of B can cover any two distinct points of T ; by
the pigeonhole principle, N(A,B) ≥ #(T ), proving the upper inequality.

We will make use of the inequality

N(A+B,C +D) ≤ N(A,C)N(B,D) ,

and of the basic volumetric estimates for covering numbers, that is, the
obvious bound

vol(K)

supx∈Rn vol(K ∩ (x+ L))
≤ N(K,L) ,

and the Rogers–Zong lemma:

Theorem 3.2.3 (Rogers [48], Rogers–Zong [51]). Let K,L ⊂ Rn be convex
sets. Then

N(K,L) ≤ vol(K − L)

vol(L)
(n log n+ n log log n+ 5n) .
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3.3 Transversal and independence numbers

Lemma 3.3.1. Let K be a convex body in Rn and let a > 0. Then

N(aK −K,−K) ≤ (
√
a+ 1 + 1)2n(n log n+ n log logn+ 5n)2 .

Proof. Let λ > a be chosen later. Then

N(aK −K,−K) ≤ N(aK −K,λK)N(λK,−K)

= N(aK −K, aK + (λ− a)K)N(λK,−K)

≤ N(−K, (λ− a)K)N(λK,−K)

≤
(

(λ− a+ 1)(λ+ 1)

λ− a

)n
(n log n+ n log log n+ 5n)2

by Theorem 3.2.3. Taking λ = a+
√
a+ 1 yields the desired result.

Theorem 3.3.2. Let F be a family of positive homothets of a convex body K
in Rn. Then

τ(F) ≤ ν(F) inf
a>1

N(aK −K,−K)

≤

{
3n(n log n+ n log log n+ 5n)ν(F) if K = −K,

(3 + 2
√

2)n(n log n+ n log log n+ 5n)2ν(F) otherwise.

Proof. The second inequality is a direct application of Theorem 3.2.3 (when
K = −K) and of Lemma 3.3.1 (in general).

For the first inequality, fix a > 1. For any A ⊆ F , define λ(A) =
inf {λ : λK + x ∈ A}. If λ(A) > 0, then say that F ∈ A is a small member
of A if F = µK + x and µ < aλ(A).

First consider the case λ(F) > 0. Iteratively choose F1, . . . , Fm ∈ F
as follows. First let F1 be a small member of F ; then let F2 be a small
member of {F ∈ F : F ∩ F1 = ∅}; then let F3 be a small member of {F ∈
F : F∩(F1∪F2) = ∅}; and so on, until {F ∈ F : F∩(F1∪· · ·∪Fm) = ∅} = ∅.
Let

Fi = {F ∈ F : min {j : F ∩ Fj 6= ∅} = i} .

Note that, by construction, Fi is a small member of Fi.
For each F ∈ Fi (including Fi itself), choose a point z ∈ F ∩ Fi, and

shrink F with center z to obtain a translate of λ(Fi)K. Let F ′i be the family
of the shrunken copies, say, F ′i = {λ(Fi)K + t : t ∈ Ti}. Since every element
of Fi is a superset of a set in F ′i , any transversal of F ′i is a transversal of Fi.
Furthermore, every element of F ′i intersects Fi, so Ti ⊆ Fi − λ(Fi)K (by
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Lemma 3.2.1). Thus

τ(Fi) ≤ τ(F ′i)
= N(Ti,−λ(Fi)K)

≤ N(Fi − λ(Fi)K,−λ(Fi)K)

≤ N(aλ(Fi)K − λ(Fi)K,−λ(Fi)K)

= N(aK −K,−K)

Since F =
⋃m
i=1Fi, it follows that τ(F) ≤ mN(aK −K,−K), which com-

pletes the proof of this case since the Fi are pairwise disjoint by construction,
so m ≤ ν(F).

Finally, consider the case λ(F) = 0. Let (δm)∞m=1 be a sequence of
positive real numbers with δm ↓ 0. For m ∈ Z+, define F (m) = {λK + x ∈
F : λ > δm}. By the previous case, for each m there is a transversal T (m)

of F (m) with #T (m) ≤ ν(F)N(aK−K,−K). Let k = ν(F)N(aK−K,−K),
and write T (m) = {tm1 , . . . , tmk } (duplicating entries if necessary). Let

Λ = {i : lim
m→∞

tmi exists} and T = { lim
m→∞

tmi : i ∈ Λ} .

We claim that if T is not a transversal of F , then we can replace T (m) with
a subsequence such that the set Λ is (strictly) enlarged. Since #Λ ≤ k,
repeating this procedure will, after at most k repetitions, yield a transversal
of F with at most k elements, as desired.

So suppose T is not a transversal of F . Let F ∈ F be such that F ∩T =
∅. On the other hand, for each m, F ∩ T (m) 6= ∅. By the pigeonhole
principle, there exists i ∈ {1, . . . , k} such that tmi ∈ F for infinitely many m.
If i ∈ Λ then, since F is closed, limm→∞ t

m
i ∈ F , contrary to the assumption

that F ∩ T = ∅; so i /∈ Λ. Passing to a subsequence, we obtain that tmi ∈ F
for all m; by the compactness of F , passing to a further subsequence, we
obtain that limm→∞ t

m
i exists, which proves the claim.

Remark 3.3.3. In some special cases of Theorem 3.3.2, we have the stronger
inequality

τ(F) ≤ ν(F)N(K −K,K) .

(The inequality N(K − K,K) ≤ infa>1N(aK − K,−K) may indeed be
strict, as when K = Bn

∞: then N(K −K,K) = 2n but N(aK −K,−K) ≥
M((a+1)Bn

∞, B
n
∞) ≥ 3n, as taking T = {−(a+1), 0, a+1}n in the definition

of M(·, ·) shows.) First, if F consists only of translates of K, then the

24



observations of section 3.2 yield

τ(F) = N(T,−K) ≤ N(T,K −K)N(K −K,−K)

≤M(T,K)N(K −K,−K) = ν(F)N(K −K,−K) .

Second, if F is finite, then in the proof of Theorem 3.3.2 we have only the
case λ(F) > 0, and we can moreover take Fi to be the smallest member of Fi,
hence a translate of λ(Fi)K rather than of aλ(Fi)K. The proof for this case
appears, essentially, in [35, Lemma 13], and for the subcase of ν(F) = 1,
in [17, item 7.9]; the generalization to infinite families F given here first
appeared in [47].

Lemma 3.3.4. Let K be a convex body in Rn, and let A be any set in Rn.
The function

[0, 1]→ N
λ 7→ N((1− λ)K + λA,K)

is increasing.

Proof. Indeed, let 0 ≤ λ1 ≤ λ2 ≤ 1, and set

t = 1− λ1

λ2
∈ [0, 1] .

Then

N((1− λ1)K + λ1A,K)

= N
(
(1− t)

(
(1− λ2)K + λ2A

)
+ tK, (1− t)K + tK

)
≤ N((1− t)((1− λ2)K + λ2A), (1− t)K)N(tK, tK)

= N((1− λ2)K + λ2A,K) .

Proposition 3.3.5. Let 4 be an n-dimensional simplex. Then

2n√
π(n+ 1

2)
≤ N(4,−4) ≤ 2n(n log n+ n log logn+ 5n) .

Proof. The upper bound is a direct application of Theorem 3.2.3. For the
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lower bound,

N(−4,4) ≥ N(1
2(4−4),4) (Lemma 3.3.4: K,A := 4,−4; λ = 1

2 , 1)

≥
vol(1

2(4−4))

vol(4)

=
1

2n

(
2n

n

)
(see [49])

≥ 2n√
π(n+ 1

2)
(Lemma 4.2.4)

Remark 3.3.6. Chakerian and Stein [14] gave the cruder estimate

N(4,−4) ≥ vol(4)

maxx∈Rn vol(4∩ (2x−4))
∼ 1√

3

(e
2

)n+1
.

(See Proposition 4.2.3.) In the terminology of chapter 4, Chakerian and
Stein estimate N(4,−4) using mKB(4) while the nearly sharp result of
Proposition 3.3.5 uses mDB(4).

Example 3.3.7. Let 4 be an n-dimensional simplex. The observations of
section 3.2 yield that if F = {t + 4 : t ∈ 4} then ν(F) = 1 and τ(F) =
N(4,−4), which is roughly 2n by Proposition 3.3.5.

3.4 VC-dimension

Theorem 3.4.1. If K ⊆ R2 is a convex body and F is a family of positive
homothets of K, then vcdim(F) ≤ 3.

Proof. Let F be a family of positive homothets of a convex body K ⊆ R2.
Suppose, for contradiction, that F shatters some set of four points, say, X =
{x1, x2, x3, x4}.

Case 1: One of the points of X is in the convex hull of the other three,
say, x1 ∈ conv {x2, x3, x4}. By hypothesis, there is an F ∈ F such that X ∩
F = {x2, x3, x4}. But since F is convex, it follows that x1 ∈ F , which is a
contradiction.

Case 2: The points of X are in convex position, forming the vertices of a
convex quadrilateral in, say, the order x1x2x3x4. (See figure 3.1.) Without
loss of generality, X ∩K = {x1, x3} and X ∩TK = {x2, x4}, where T : R2 →
R2, Tx = λx+ t is a homothety with ratio λ ≥ 1.

First suppose λ > 1. Let

p =
1

1− λ
t ,
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Figure 3.1: Theorem 3.4.1, Case 2.

x1

x2

x3

x4

p

T−1x2

Figure 3.2: Why p /∈ A.

which is the centre of the homothety T . If p is in the (closed) region A
shown in figure 3.1, then x2 ∈ conv {x1, x3, p}. On the other hand, T−1x2

is a convex combination of p and x2; thus x2 ∈ conv {x1, x3, T
−1x2}. (See

figure 3.2.) But {x1, x3, T
−1x2} ⊆ K, so by convexity, x2 ∈ K, a contradic-

tion.
Similarly, if p ∈ B then x4 ∈ conv {x1, x3, T

−1x4} ⊆ K; if p ∈ C ∪
D then x3 ∈ conv {x2, x4, Tx3} ⊆ TK; and if p ∈ D ∪ E then x1 ∈
conv {x2, x4, Tx1} ⊆ TK. In all cases we obtain a contradiction.

The case λ = 1, when T is a translation, succumbs to essentially the
same argument, with p an ideal point corresponding to the direction of the
translation. We omit the details.

Example 3.4.2. We construct a convex body K ⊆ R3 and a countable
family F of translates of K such that vcdim(F) = ∞. (This example can,
of course, be embedded in Rn for n > 3 as well.)

The construction is based on the example in figure 3.3, which shows a
set whose translates shatter 4 points. The example is non-convex, and The-
orem 3.4.1 shows that in the plane the non-convexity is essential. In R3,
however, we can wrap such a set around a strictly convex surface (see fig-
ure 3.4), and then take the convex hull.

Now, we present Example 3.4.2. Let E be the family of all finite subsets
of N, and let E : N→ E be a bijection. Set

A = {(m,n) ∈ N2 : m ∈ E(n)} .

For m,n ∈ N, let um = ( 1
m , 0,

1
m2 ) and vn = (0, 1

n ,
1
n2 ), and define

p : N2 → R3 , p(m,n) = um + vn .
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X F : translates of this set

Figure 3.3: A (non-convex) set in the plane whose translates shatter four
points.

Figure 3.4: The paraboloid z = x2 + y2 and a few sections of it.

Let K = conv cl p(A) and F = {K−vn : n ∈ N}. We claim that vcdim(F) =
∞.

Let P ⊆ R3 be the paraboloid with equation z = x2 + y2. Since P is the
boundary of a strictly convex set, P ∩convS = S for any S ⊆ P . Since p(N2)
is a discrete set, p(N2) ∩ clS = S for any S ⊆ p(N2). So if T ⊆ p(N2), then

T ∩K = T ∩ p(N2) ∩ P ∩K = T ∩ p(N2) ∩ cl p(A) = T ∩ p(A) .

Now, let M ∈ N, X = {u1, . . . , uM}, and X ′ ⊆ X. Let n ∈ N be such
that X ′ = {um : m ∈ E(n)}. Then

(X + vn) ∩K = (X + vn) ∩ p(A) = X ′ + vn ,

that is, X ∩ (K − vn) = X ′. Thus F shatters X, so vcdim(F) ≥M .

Corollary 3.4.3. There is a convex body K ⊆ R3 and a countable family F
of translates of K such that vcdim(F∗) =∞.
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Chapter 4

The harmonic mean measure
of symmetry∗

Abstract
We introduce a measure of (central) symmetry for a convex

body K in Rn based on the volume of the harmonic mean of
K and −K and compare it to other classical volumetric mea-
sures of symmetry. We prove sharp inequalities between the
volume of the harmonic mean of K and −K and the volume
of their intersection, and we show that, if K is in John’s po-
sition, then the volume of the harmonic mean of K and −K
is minimized for the Euclidean ball and maximized for the
simplex.

4.1 Introduction

A measure of symmetry is a functional on the space of convex bodies which
is continuous with respect to the Hausdorff metric and invariant under in-
vertible affine transformations, and which attains one of its extreme values
exactly for centrally symmetric convex bodies. This definition was first made
explicit by Grünbaum in his survey of the classical results on such function-
als [29].

Three classical measures of symmetry arise by considering the volume of
some combination of the body K and its negative −K: the difference body
measure of symmetry

mDB(K) =
vol(K)

vol(1
2K −

1
2K)

; (4.1)

∗A version of this chapter has been accepted for publication [58].
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the Kovner–Besicovitch measure of symmetry

mKB(K) = sup
x∈Rn

vol((K − x) ∩ (x−K))

vol(K)
; (4.2)

and Estermann’s measure of symmetry

mE(K) = sup
x∈Rn

vol(K)

vol(conv((K − x) ∪ (x−K)))
. (4.3)

We follow here the nomenclature proposed by Grünbaum. Some known
results on these functionals are summarized in section 4.2.

We introduce the harmonic mean measure of symmetry, which is dual to
the difference body measure of symmetry in the same way that the Kovner–
Besicovitch measure of symmetry is dual to Estermann’s:

mHM(K) = sup
x∈K

vol(1
2 � (K − x) +̂ 1

2 � (x−K)))

vol(K)
,

where � and +̂ denote harmonic linear combination, that is, linear combina-
tion of gauge functions:

‖ · ‖α�K+̂β�L = α‖ · ‖K + β‖ · ‖L .

Harmonic linear combinations were first considered by Steinhardt [54], then,
apparently independently, by Firey [21], in a slightly more general form.
Lutwak [41] treated them together with his dual mixed volumes [40] in an
integrated dual Brunn–Minkowski theory. We follow the notation and ter-
minology of Lutwak [41]. See also the thorough survey of Gardner [23, §18.9]
and references therein.

We prove that, for any convex body K in Rn,√
π(n+ 1)

2n+1
≤ mHM(K) ≤ 1 , (4.4)

and that, for the simplex 4,

mHM(4) =
2nn!

(n+ 1)n
∼
√
πn

2

(
2

e

)n+1

as n→∞.

Thus the range of values of the harmonic mean measure of symmetry is
exponential in the dimension n, as is the case for the three classical measures
of symmetry listed above.
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We also prove the sharp volume inequalities

vol(K ∩ −K) ≤ vol(1
2 �K +̂ 1

2 � (−K)) ≤ (n+ 1) vol(K ∩ −K) . (4.5)

The dual result, that if K contains the origin then

1

n+ 1
vol(conv(K ∪ −K)) ≤ vol(1

2(K −K)) ≤ vol(conv(K ∪ −K)) , (4.6)

is implicit in the work of Rogers and Shephard; see Remark 4.4.6 below.
The factor n+ 1 in (4.5) and (4.6) is “small” in comparison to the exponen-
tial range of these phenomena, so these inequalities indicate that the bodies
considered have roughly the same volume (for large n). In contrast, we give
examples to show that, although the harmonic mean measure of symmetry
and the Kovner–Besicovitch measure of symmetry are close (by (4.5)), and
the difference body measure of symmetry and Estermann’s measure of sym-
metry are close (by (4.6)), the former pair may differ from the latter pair by
an exponential factor, in either direction.

It immediately follows from (4.5) that

mKB(K) ≤ mHM(K) ≤ (n+ 1)mKB(K) , (4.7)

but it does not follow that the upper inequality is sharp. In fact, the example
which shows the upper inequality in (4.5) is sharp relies on a badly centred
convex body, while the definitions of mKB and mHM choose good centres.
We conjecture that the sharp upper bound in (4.7) is of order

√
n, and give

three pieces of evidence in favour of this conjecture: first, it is true for the
simplex (see Remark 4.5.6); next, it is true for the analogous statement
with expectations in place of suprema (see Remark 4.5.10); and finally, in
a corollary of (4.5) for bodies in John’s position, the factor n + 1 can be
improved to a factor of order

√
n (see Remark 4.6.2).

Some of the results stated above for K +̂ (−K) generalize to K +̂p (−K)
(see section 4.2 for definitions); in the interest of generality we define the
p-harmonic mean measure of symmetry

m
(p)
HM(K) = sup

x∈K

vol(1
2 � (K − x) +̂p

1
2 � (x−K))

vol(K)
,

and prove results below for suitable ranges of p.
Section 4.2 introduces notation and summarizes the known results on the

classical measures of symmetry. Section 4.3 proves the technical fact that the
harmonic mean measure of symmetry is continuous. Section 4.4 proves the
main volume inequality (4.5), and gives examples for which the difference
body and harmonic mean measures of symmetry differ greatly. Section 4.5
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proves that the volume of the harmonic mean (with a suitable exponent) is
a concave function of the choice of centre, which yields (4.4) as well as the
value of mHM for the simplex. Section 4.6 gives a sharp volume-ratio-type
theorem for K +̂ (−K) when K is in John’s position.

4.2 Notation and background

Let Kn denote the space of compact convex sets in Rn, endowed with the
Hausdorff metric δH . The radial function ρK : Sn−1 → R of a convex body K
with o ∈ intK is given by

ρK(θ) = sup {λ : λθ ∈ K} ,

and its support functional hK : Rn → R is

hK(x) = sup {〈x, y〉 : y ∈ K} .

Note that, for θ ∈ Sn−1,

hK(θ) = ‖θ‖Ko =
1

ρKo(θ)
. (4.8)

For any convex body K in Rn with o ∈ intK, and any p > 0, we have
the standard volume formula∫

K
‖x‖pK dx =

n

n+ p
vol(K) . (4.9)

Indeed,∫
K
‖x‖pK dx =

∫
K

∫ ‖x‖K
0

ptp−1 dt dx

=

∫ 1

0

∫
K\tK

ptp−1 dx dt =

∫ 1

0
ptp−1(1− tn) vol(K) dt .

If K and L are convex sets containing the origin, then we define their
p-Minkowski sum K +p L, for p ≥ 1, via

hK+pL = (hpK + hpL)1/p .

We extend this definition as usual to p =∞ by

hK+∞L = max(hK , hL) ,

which yields K+∞L = conv(K ∪L). The case p = 1 is the usual Minkowski
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sum; the generalization to p ≥ 1 is due to Firey [22], who obtained the
analogue of the Brunn–Minkowski inequality, namely

vol(K +p L)p/n ≥ vol(K)p/n + vol(L)p/n .

Lutwak [42] developed a full Brunn–Minkowski-type theory for such combi-
nations. See also the survey of Gardner [23, §18.3] and references therein.

The p-harmonic linear combination α �K +̂p β � L is defined by

‖ · ‖α�K+̂pβ�L = (α‖ · ‖pK + β‖ · ‖pL)1/p .

Note that K +̂p L = (Ko +p L
o)o and that K +̂∞ L = K ∩ L (again using

the usual convention for this case). Harmonic linear combinations satisfy a
dual Brunn–Minkowski inequality

vol(α �K +̂p β � L)−p/n ≥ α vol(K)−p/n + β vol(L)−p/n . (4.10)

Standard inequalities involving pth powers yield that K +̂pL is increasing
in p and 1

2 �K +̂p
1
2 � L is decreasing in p. In particular,

K ∩ L ⊆ 1
2 �K +̂p

1
2 � L ⊆ 21/p(K ∩ L) . (4.11)

These inclusions immediately yield the volume estimates

vol(K ∩ −K) ≤ vol(1
2 �K +̂p

1
2 � (−K)) ≤ 2n/p vol(K ∩ −K) ,

which are refined below for p < n in Theorem 4.4.5.
The difference body measure of symmetry (4.1) satisfies

2n(
2n
n

) ≤ mDB(K) ≤ 1 .

The upper bound is an instance of the Brunn–Minkowski inequality; we have
equality there exactly when K is centrally symmetric. The lower bound is
a well-known result of Rogers and Shephard [49], who also showed that we
have equality there exactly when K is a simplex.

For Estermann’s measure of symmetry (4.3), we have

1

2n
≤ mE(K) ≤ 1 .

The upper bound is by inclusion, and we have equality there exactly when
K is centrally symmetric. The lower bound is a consequence of a result of
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Rogers and Shephard [50], who actually showed that

1

2n
≤ inf

x∈K

vol(K)

vol(conv((K − x) ∪ (x−K)))
. (4.12)

(Bianchini and Colesanti [10] recently proved a result analogous to (4.12) for
the p-difference body K+p (−K) in the case n = 2.) Note that, since K−K
is invariant under translations of K, the inequalities (4.6) imply that, for
any K, the infimum in (4.12) and the supremum in the definition of mE

differ at most by the small factor n+ 1.
The exact lower bound for mE is not known, but Fáry and Rédei [20]

showed that for the n-dimensional simplex 4 we have

sup
x∈Rn

vol(4)

vol(conv((4− x) ∪ (x−4)))
=

1(
n
bn/2c

) ∼ √πn/2
2n

as n→∞,

so the Rogers and Shephard bound on mE is nearly sharp.
For the Kovner–Besicovitch measure of symmetry (4.2), we have

1

2n
≤ mKB(K) ≤ 1 . (4.13)

The upper bound is by inclusion, and we have equality there exactly when
K is centrally symmetric. The lower bound is due to Stein [53]. The exact
lower bound is not known, but it must be exponential in n since for the
n-dimensional simplex 4 we have the following asymptotic result, which
essentially goes back to Laplace. The argument is very briefly sketched
in [13, §11]; we give a more detailed proof for the reader’s convenience.

Lemma 4.2.1. Let X be a uniform random variable in [−1
2 ,

1
2 ], let (Xi)

n
1 be

i.i.d. copies of X, let Sn = 1√
n

∑n
i=1Xi, and let pn be the probability density

function of Sn. Then, for any x ∈ R,

lim
n→∞

pn(x) =

√
6

π
e−6x2 .

Proof. The characteristic function of X is ϕX(t) = EeitX = sinc( t2). By the
central limit theorem,

sinc
( t

2
√
n

)n
= ϕSn(t)→ e−t

2/24

pointwise as n→∞. We will show that if n ≥ 2 then

|ϕSn(t)| ≤ 1 ∧ 12

t2
(4.14)
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and so ϕSn (for such n) is integrable. By the Fourier inversion theorem and
dominated convergence,

pn(x) =
1

2π

∫
R
e−itxϕSn(t) dt→ 1

2π

∫
R
e−itxe−t

2/24 dt =

√
6

π
e−6x2 ,

pointwise as n→∞.
It remains to show (4.14). First, if |t| ≤ π then

sinc(t) =

∞∏
k=1

(
1− t2

π2k2

)
(see, e.g., [2, eq. (4.6)])

≤ exp
(
− t2

π2

∞∑
k=1

1

k2

)
= e−t

2/6 .

So, if |t| ≤ 2π
√
n then

sinc

(
t

2
√
n

)n
≤ (e−(t/2

√
n)2/6)n = e−t

2/24 ≤ 1 ∧ 24

et2
≤ 1 ∧ 12

t2
.

Suppose, on the other hand, that |t| > 2π
√
n. Then∣∣∣∣sinc

( t

2
√
n

)∣∣∣∣n ≤ ∣∣∣∣2√nt
∣∣∣∣n ≤ ( 1

π

)n
≤ 1 .

Furthermore, if n ≥ 2 then∣∣∣∣sinc
( t

2
√
n

)∣∣∣∣n ≤ ∣∣∣∣2√nt
∣∣∣∣n =

∣∣∣∣2√nt
∣∣∣∣n−2

4n

t2
≤
(

1

π

)n−2 4n

t2
≤ 12

t2
,

which completes the proof of (4.14).

Lemma 4.2.2 (Fáry and Rédei [20]). For any convex bodies K and L in Rn,
the function x 7→ voln(K ∩ (x+ L))1/n is concave on its support.

Proposition 4.2.3. Let 4n denote a simplex in Rn. Then

mKB(4n) ∼
√

3

(
2

e

)n+1

as n→∞.

Proof. We may assume 4n is a regular simplex with centroid at the origin;
let its size be chosen later. By Lemma 4.2.2, the map x 7→ vol(4n∩(2x−4n))
attains its supremum mKB(4n) at a point fixed under all affine symmetries
of 4n, that is, at the origin. Now, let v = (1, 1 . . . , 1) ∈ Rn+1, let H = {x ∈
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Rn+1 : 〈x, v〉 = 0}, and write Rn+1
+ for the positive orthant in Rn+1. The

orthant Rn+1
+ is a cone whose cross-sections by hyperplanes parallel to H

are homothets of 4n. Direct calculations show that (Rn+1
+ − 1

2v) ∩ H has

circumradius 1
2

√
n(n+ 1); we may assume 4n has this size. Thus

1
2B

n+1
∞ ∩H = ((Rn+1

+ − 1
2v) ∩H) ∩ ((1

2v − Rn+1
+ ) ∩H)

is congruent to 4n ∩ −4n, and so

mKB(4n) =
vol(4n ∩ −4n)

vol(4n)
=

vol(1
2B

n+1
∞ ∩H)

vol((Rn+1
+ − 1

2v) ∩H)

=
2nn!

(n+ 1)n+1/2
vol(1

2B
n+1
∞ ∩H) ∼

√
π

2

(
2

e

)n+1

vol(1
2B

n+1
∞ ∩H)

as n→∞. Finally, in the notation of Lemma 4.2.1,

vol(1
2B

n+1
∞ ∩H) = pn(0)→

√
6

π
,

yielding the desired result.

We will also make use of the following concrete numerical estimates on
central binomial coefficients, which can be extracted from a traditional proof
of Stirling’s formula; for the reader’s convenience we sketch the argument.

Lemma 4.2.4. For any n ≥ 1, we have

4n√
π
(
n+ 1

2

) ≤ (2n

n

)
≤ 4n√

πn
.

Proof. Let In =
∫ π

0 sinn(x) dx. Integrating by parts yields In = n−1
n In−2;

by induction, I2n = π
(

2n
n

)
/4n and I2n+1 = 4n/

(
2n
n

)
(n + 1

2). The desired
inequalities then follow from I2n+1 ≤ I2n ≤ I2n−1 = 2n+1

2n I2n+1.

4.3 Continuity

We consider Kn with the Hausdorff metric δH .

Lemma 4.3.1. Let K,L ∈ Kn. If o ∈ intK and o ∈ intL then

δH(Ko, Lo) ≤ δH(K,L)

r(K)r(L)
,

where r(K) = infθ∈Sn−1 ρK(θ) is the inradius of K (with respect to the ori-
gin).
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Proof. Note that, since λBn
2 ⊆ K if and only if Ko ⊆ 1

λB
n
2 ,

r(K) =
1

supθ∈Sn−1 ρKo(θ)
= inf

θ∈Sn−1
hK(θ) . (4.15)

Thus

δH(Ko, Lo) ≤ sup
θ∈Sn−1

|ρKo(θ)− ρLo(θ)|

≤ 1

r(K)r(L)
sup

θ∈Sn−1

|hK(θ)− hL(θ)| (by (4.15) and (4.8))

=
δH(K,L)

r(K)r(L)
(see [52, Theorem 1.8.11])

Lemma 4.3.2. If K ∈ Kn and o ∈ ∂K, then dim(K +̂p (−K)) < n.

Proof. By standard separation theorems, there exists a halfspace H with
o ∈ ∂H and K ⊆ H. Then K +̂p (−K) ⊆ H +̂p (−H) = H ∩ −H. (We
abuse notation slightly here, since H is not a convex body and doesn’t have
the origin in its interior, but formal application of the definitions yields
that ‖x‖H = 0 if x ∈ H and ‖x‖H =∞ if x /∈ H, and H +̂p(−H) can then be
interpreted following the usual conventions for arithmetic involving ∞.)

Lemma 4.3.3. For any compact set C, the set {K ∈ Kn : C ⊆ intK} is
open in Kn.

Proof. Let K ∈ Kn satisfy C ⊆ intK and let (Km)∞m=1 be a sequence in Kn
such that Km → K. Since C is compact, there exists ε > 0 such that C +
εBn

2 ⊆ K. For all sufficiently large m, we have K ⊆ Km + ε
2B

n
2 , and

so C+εBn
2 ⊆ Km+ ε

2B
n
2 ; since Minkowski addition is cancellative for convex

sets, it follows that convC+ ε
2B

n
2 ⊆ Km, and in particular, C ⊆ intKm.

Proposition 4.3.4. The function f : Kn → R given by

f(K) =

{
vol(K +̂p (−K)) if o ∈ K,

0 if o /∈ K

is continuous.

Proof. The set {K ∈ Kn : o ∈ intK} is open in Kn by Lemma 4.3.3, and on
this set the function is

f(K) = vol((Ko +p (−K)o)o) ,

which is a composition of continuous functions, namely volume [52, §1.8],
p-Minkowski combinations [22], and taking polars (Lemma 4.3.1).
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The set {K ∈ Kn : o /∈ K} is open in Kn (since it is the preimage of the
open interval (0,∞) under the continuous function K 7→ dist(o,K)), and
f vanishes on this set.

It remains to show that f is continuous at any K ∈ Kn with o ∈ ∂K.
Let H be a hyperplane supporting K at o. Let (Km)∞m=1 be a sequence
in Kn with Km → K. If o /∈ Km then f(Km) = 0 by the definition of f . If
o ∈ ∂Km then f(Km) = 0 by Lemma 4.3.2. If o ∈ intKm then

Km +̂p (−Km) ⊆ Km ∩ −Km

⊆ (K + δH(Km,K)Bn
2 ) ∩ (H + δH(Km,K)Bn

2 ) .

By the continuity of measure for decreasing sequences of sets with finite
measure,

lim
δ↓0

vol((K + δBn
2 ) ∩ (H + δBn

2 )) = vol(K ∩H) = 0 .

Thus f(Km)→ 0, which is as desired since f(K) = 0 by Lemma 4.3.2.

Proposition 4.3.5. m
(p)
HM is continuous.

Proof. Define f : Rn ×Kn → R by

f(x,K) =

{
vol((K − x) +̂p (x−K))/ vol(K) if x ∈ K,

0 if x /∈ K.

Then f is continuous by Proposition 4.3.4, and we wish to show that the
function

m
(p)
HM = sup

x∈Rn
f(x, ·)

is continuous. Let K0 ∈ Kn, and set G = {K ∈ Kn : δH(K,K0) ≤ 1}. Note
that G is a neighbourhood of K0 and compact by the Blaschke selection
theorem. Now, if K ∈ G and f(x,K) 6= 0 then x ∈ K ⊆ K0 + Bn

2 ; so
f |Rn×G is supported on the compact set (K0 +Bn

2 )×G. Therefore f |Rn×G is

uniformly continuous, and so m
(p)
HM is continuous on G, hence continuous

at K0.

4.4 Intersection of two cones

Definition 4.4.1. For any set A ⊆ Rn and any nonzero p, define

conep(A) = {(x, t) ∈ Rn ⊕ R : x ∈ (1 + t)1/pA and t ≥ −1} .
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For a convex body K with the origin in its interior, conep(K) is the
epigraph of the function ‖ · ‖pK − 1.

Lemma 4.4.2. For any convex bodies K and L in Rn with o ∈ int(K ∩ L),

voln(K +̂p (−L)) =

n
p + 1

2
n
p

+1
voln+1(conep(K) ∩ − conep(L)) .

Proof. Since

(x, t) ∈ conep(K) ∩ − conep(L) ⇐⇒ ‖x‖pK − 1 ≤ t ≤ 1− ‖x‖p−L ,

the one-dimensional section of conep(K)∩− conep(L) by the line {(x, t) : t ∈
R} is a line segment of length

(2− ‖x‖pK − ‖x‖
p
−L)+ = 2(1− ‖x‖p1

2
�K+̂p

1
2
�(−L))

)+

(where a+ denotes max(a, 0)). By Fubini’s theorem and (4.9),

voln+1(conep(K)∩− conep(L)) = 2

∫
21/p(K+̂p(−L))

(1−‖x‖p1
2
�K+̂p

1
2
�(−L)

) dx

=
2p

n+ p
voln(1

2 �K +̂p
1
2 � (−L)) =

2p

n+ p
voln(21/p(K +̂p (−L))) ,

as desired. (See figure 4.1.)

Remark 4.4.3. The body cone1(K)∩− cone1(L) is dual to one considered
by Rogers and Shephard [50]. Indeed, one can check that if K is a convex
body in Rn with o ∈ K, then

(K × {−1})o = cone1(Ko)

(where the polar on the left is taken in Rn+1 and that on the right in Rn).
So, for bodies as in Lemma 4.4.2,

(cone1(K) ∩ − cone1(L))o = conv
(
(Ko × {−1}) ∪ −(Lo × {−1})

)
,

which is essentially C(Ko, Lo) in Rogers and Shephard’s notation.

Example 4.4.4. For any simplex 4 in Rn, we have

vol((4−4)o) vol(4) =
n+ 1

n!
.

Indeed, the left-hand side is invariant under affine transformations, so we
may assume 4 is a regular simplex, centred at the origin and with cir-
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K

(o,−1)

Rn

R

(a) cone1(K).

Rn

R

(b) cone1(K) ∩ − cone1(K).

Rn

R

(c) A cone of height 2 with base 1
2 �K +̂ 1

2 � (−K).

Figure 4.1: The idea of Lemma 4.4.2, in the case p = 1, K = L. Lining up
the “vertical” fibers of the set in (b) yields the cone in (c).
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cumradius
√
n. Then 4o = −4 and cone1(4) is congruent to an or-

thant in Rn+1. (Recall that the convex hull of the standard basis vectors
in Rn+1 is a regular n-dimensional simplex.) Thus cone1(4) ∩ − cone1(4)
is an (n + 1)-dimensional cube with main diagonal of length 2, hence vol-
ume 2n+1(n+ 1)−(n+1)/2. By Lemma 4.4.2,

vol((4−4)o) = vol(4 +̂ (−4)) =
1

(n+ 1)(n−1)/2
.

Finally,

vol(4) =
(n+ 1)(n+1)/2

n!
.

(See [16, §8.8] and note that, by the equality case of Jung’s theorem [11], a
regular simplex with circumradius 1 has edge length

√
2(n+ 1)/n.)

Theorem 4.4.5. For any convex body K in Rn, and any p ∈ [1,∞],

vol(K ∩ −K) ≤ vol(1
2 �K +̂p

1
2 � (−K)) ≤ min(np + 1, 2n/p) vol(K ∩ −K) .

Proof. The lower inequality, and the upper inequality with 2n/p, follow from
the inclusions (4.11). For the upper inequality with n

p + 1, take K = L in
Lemma 4.4.2 and write Ht = {(x, t) : x ∈ Rn}. Then conep(K)∩− conep(K)
is an o-symmetric convex body in Rn+1, whose section by the hyperplane H0

is congruent to K ∩ −K; by Brunn’s theorem and Lemma 4.4.2,

voln(K ∩ −K) = max
t∈R

voln(conep(K) ∩ − conep(K) ∩Ht)

≥ 1

2

∫ 1

−1
voln(conep(K) ∩ − conep(K) ∩Ht) dt

=
1

2
voln+1(conep(K) ∩ − conep(K))

=
2

n
p

n
p + 1

voln(K +̂p (−K)) .

Remark 4.4.6. The case p = 1 of Theorem 4.4.5 has a dual version: if K
is a convex body in Rn which contains the origin, then

1

n+ 1
vol(conv(K ∪ −K)) ≤ vol(1

2(K −K)) ≤ vol(conv(K ∪ −K)) .

The upper inequality is by inclusion. The lower inequality is implicit in [50];
for the reader’s convenience we give the proof. Define the (n+1)-dimensional
body

C(K) = conv((K × {1}) ∪ −(K × {1})) .
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Let V = span {en+1} ⊂ Rn+1. Note that since K contains the origin, C(K)∩
V is a line segment of length 2, that C(K)∩V ⊥ is congruent to 1

2(K−K), and
that the orthogonal projection of C(K) onto V ⊥ is congruent to conv(K ∪
−K). Therefore

2

n+ 1
voln(conv(K ∪ −K))

≤ voln+1(C(K)) (by [50, Theorem 1])

=

∫ 1

−1
voln(C(K) ∩ (V ⊥ + ten+1)) dt

≤ 2 voln(C(K) ∩ V ⊥) (by Brunn’s theorem)

= 2 voln(1
2(K −K))

which yields the desired inequality.

Example 4.4.7. In the case p = 1, the value n+ 1 in the upper inequality
of Theorem 4.4.5 is sharp. Indeed, let x = (1, 1, . . . , 1) ∈ Rn and 0 ≤ λ < 1,
and take K = Bn

∞ + λx. Then, by Lemma 4.4.2,

voln(1
2 �K +̂ 1

2 � (−K)) =
n+ 1

2
voln+1(cone1(K) ∩ − cone1(K))

= (n+ 1)

∫ 1

0
voln((1 + t)K ∩ (1− t)(−K)) dt

= 2n(n+ 1)

∫ 1

0
(1−max(λ, t))n dt

= 2n(1− λ)n(λn+ 1)

= (λn+ 1) voln(K ∩ −K) .

Letting λ→ 1 demonstrates the desired result.

As noted in the introduction, it follows from Theorem 4.4.5 that, for any
convex body K in Rn,

mKB(K) ≤ mHM(K) ≤ (n+ 1)mKB(K) , (4.16)

which since mKB and mHM have exponential range (see (4.13) and Corol-
lary 4.5.9) means that mKB and mHM are roughly equal. In contrast, the
following examples show that mDB and mHM may differ by an exponential
factor, in either direction.

Example 4.4.8. As noted in section 4.2,

mKB(4) ∼
√

3

(
2

e

)n+1

and mDB(4) =
2n(
2n
n

) ∼ √πn
2n
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as n → ∞, where 4 denotes the n-dimensional simplex. So, in this case,
the difference body measure of symmetry is exponentially smaller than the
Kovner–Besicovitch measure of symmetry. (It follows by (4.16) that the
difference body measure of symmetry is also exponentially smaller than the
harmonic mean measure of symmetry; we computemHM(4) explicitly below,
as Example 4.5.5.)

The reverse example requires the following simple lemma.

Lemma 4.4.9. The functions mKB and mDB are multiplicative, that is,
if K is a convex body in Rm and L is a convex body in Rn then for the
convex body K × L in Rm+n we have mKB(K × L) = mKB(K)mKB(L) and
mDB(K × L) = mDB(K)mDB(L).

Example 4.4.10. Let K be the pentagon

K = conv {(−1,−1), (−1, 1), (1, 1), (5, 0), (1,−1)} .

Then vol(K) = 8 and vol(1
2K −

1
2K) = 10, so mDB(K) = 4

5 . To com-
pute mKB(K), by Lemma 4.2.2 and symmetry we need only consider x of
the form te1 for some t ∈ R. Let F (t) = K∩(2te1−K) and f(t) = vol2(F (t)).
Then F is increasing (in the sense that s ≤ t implies F (s) ⊆ F (t)) on (−∞, 0]
and decreasing (in the analogous sense) on [2,∞), so we need only con-
sider t ∈ [0, 2]. Direct computations show that

f(t) =

{
−2t2 + 4t+ 4 if t ∈ [0, 1]

−3
2 t

2 + 3t+ 9
2 if t ∈ [1, 2]

This function attains its maximum at t = 1, so mKB(K) = 1
8f(1) = 3

4 .
So, for this K in R2,

mKB(K) < mDB(K) .

For any n ≥ 2, let Ln be the convex body in Rn which is the Cartesian
product of bn2 c copies of K (and a line segment, if n is odd). By Lemma 4.4.9,

mDB(Ln)

mKB(Ln)
=

(
mDB(K)

mKB(K)

)bn/2c
,

and so in this case the difference body measure of symmetry is exponen-
tially larger than the Kovner–Besicovitch measure of symmetry (and hence,
by (4.16), exponentially larger than the harmonic mean measure of symme-
try).

This contruction gives an exponential factor cn with c = (15/16)1/2 ≈
0.9682. The slightly better constant c = ((5

√
5 + 11)/24)1/2 ≈ 0.9613 can
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be obtained by replacing (5, 0) in the definition of K with (3 + 2
√

5, 0), at
the cost of a slightly more complicated computation.

4.5 A body of Rogers and Shephard

Definition 4.5.1. Given a set A ⊆ Rn, define

G(A) = {(x, y, t) ∈ Rn ⊕ Rn ⊕ R :

x+ y ∈ (1 + t)A and−x+ y ∈ (1− t)A and−1 ≤ t ≤ 1} .

The bodyG(A) was, up to an affine transformation, introduced by Rogers
and Shephard [50], whose computations yield, for convex sets K,

vol2n+1(G(K)) =
2n+1(n!)2

(2n+ 1)!
voln(K)2 . (4.17)

Proposition 4.5.2. For any convex body K in Rn and any y ∈ K,

voln((K − y) +̂ (y −K)) =
n+ 1

2n+1
voln+1(G(K) ∩ Vy) ,

where Vy = {(x, y, t) ∈ Rn ⊕ Rn ⊕ R : x ∈ Rn, t ∈ R}.
Proof. First consider the case y /∈ intK. In this case, the left-hand side
is zero by Lemma 4.3.2. On the other hand, G(K) ∩ Vy 6= ∅ if and only
if y ∈ K, that is, the orthogonal projection of G(K) onto V ⊥y is {o} ×K ×
{o}. It therefore follows from y /∈ intK that Vy ∩ intG(K) = ∅, and so
voln+1(G(K) ∩ Vy) = 0.

Now consider the case y ∈ intK. Define

Φ: Rn ⊕ Rn ⊕ R→ Rn ⊕ Rn ⊕ R , (x, y, t) 7→ (x+ ty, y, t) .

Note that Φ(Vy) = Vy and that, on Vy, Φ acts as a shear and so preserves
volumes. Note also that (x, t) ∈ cone1(K − y) ∩ − cone1(K − y) if and only
if Φ(x, y, t) ∈ G(K), and so

voln(1
2 � (K − y) +̂ 1

2 � (y −K))

=
n+ 1

2
voln+1(cone1(K − y) ∩ − cone1(K − y)) (by Lemma 4.4.2)

=
n+ 1

2
voln+1(Φ−1(G(K)) ∩ Vy)

=
n+ 1

2
voln+1(Φ−1(G(K) ∩ Vy))

=
n+ 1

2
voln+1(G(K) ∩ Vy) .
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Corollary 4.5.3. Let K be a convex body in Rn. The function

K → R
x 7→ voln((K − x) +̂ (x−K))

is 1
n+1 -concave.

Proof. By Proposition 4.5.2 and Brunn’s theorem.

Remark 4.5.4. When K is the Euclidean ball or the simplex, we can im-
prove the exponent in Corollary 4.5.3 to 1

n , as follows. First, note that the
expression

vol((L− L)o) vol(L)

is invariant under invertible affine transformations of the convex body L.
Write Kx = (K − x)o. When K is the Euclidean ball or the simplex, the
sets Kx for x ∈ intK are all affine, and so the value of

vol((K − x) +̂ (x−K)) vol(Kx) = vol((Kx −Kx)o) vol(Kx)

is constant for x ∈ intK. But as noted by Aleksandrov [1], vol(Kx) is
a (− 1

n)-concave function of x. (This is also an immediate consequence of
the dual Brunn–Minkowski inequality: in (4.10), take p = 1 and K,L :=
Kx,Ky.) It follows that vol((K − x) +̂ (x−K)) is 1

n -concave.

Example 4.5.5. Let 4 be an n-dimensional simplex in Rn with centroid at
the origin. By concavity, the expression vol((4− x) +̂ (x −4)) attains its
maximum value at a point which is fixed under all affine symmetries of 4.
The only such point is the centroid of 4, so

mHM(4) =
vol((1

24
o − 1

24
o)o)

vol(4)
=

2n(n+ 1)

n! vol(4) vol(4o)
=

2nn!

(n+ 1)n
.

(See Example 4.4.4.)

Remark 4.5.6. As noted in section 4.2, for the n-dimensional simplex 4
we have

mKB(4) ∼
√

3

(
2

e

)n+1

as n→∞,

while Example 4.5.5 and Stirling’s formula yield

mHM(4) ∼
√
πn

2

(
2

e

)n+1

as n→∞.

Thus, for the simplex, these measures of symmetry are in ratio of order
√
n,

as conjectured for all convex bodies in the introduction.
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Corollary 4.5.7. Let (x0, y0, t0) ∈ Rn ⊕ Rn ⊕ R be the centroid of G(K);
then y0 ∈ K and

vol((K − y0) +̂ (y0 −K)) ≥
(

2n+ 1

n

)−1

vol(K) .

Proof. As shown by Milman and Pajor [45, Lemma 1], the volume of a
section of a convex body through its centroid is at least as large as the average
volume of all parallel sections. Thus, using the notation Vy introduced in
Proposition 4.5.2,

voln+1(G(K) ∩ Vy0) ≥ 1

vol(K)

∫
K

voln+1(G(K) ∩ Vy) dy

=
vol2n+1(G(K))

voln(K)
=

2n+1(n!)2

(2n+ 1)!
voln(K)

by (4.17). The desired result follows by Proposition 4.5.2.

Remark 4.5.8. Due to the symmetries of G(K), in Corollary 4.5.7 we in
fact have x0 = o and t0 = 0.

Corollary 4.5.9. For any convex body K in Rn,√
π(n+ 1)

2n+1
≤ mHM(K) ≤ 1 .

Proof. The upper inequality follows from the dual Brunn–Minkowski in-
equality: in (4.10), take p = 1 and L = −K. The lower inequality follows
from Corollary 4.5.7 and the observation that

2n(
2n+1
n

) =
2n+1(
2n+2
n+1

) ≥ √π(n+ 1)

2n+1
.

(For the inequality, see Lemma 4.2.4.)

Remark 4.5.10. Corollary 4.5.9 improves slightly the estimate mHM(K) ≥
1

2n , which follows from combining (4.16) with Stein’s result (4.13). Stein in
fact showed that if X is a random vector uniformly distributed in K then

E vol(K ∩ (X −K)) =
1

2n
vol(K) ;

similarly the proof of Corollary 4.5.7 yields

E vol(1
2 � (K −X) +̂ 1

2 � (X −K)) ∼
√
πn

2
· 1

2n
vol(K) as n→∞.
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Thus the average volumes of these two functions of X are asymptotically
in ratio of order

√
n, as conjectured for the suprema mKB and mHM in the

introduction.

4.6 Bodies in John’s position

Let K be a convex body in Rn. If K is in John’s position (see section 2.2),
then so is K∩−K; by Theorem 2.2.3, vol(K∩−K) ≤ 2n, and Theorem 4.4.5
then yields

vol(1
2 �K +̂ 1

2 � (−K)) ≤ 2n(n+ 1) . (4.18)

This inequality is, however, not sharp; we obtain an exact inequality for this
situation by exploiting Lemma 2.2.4.

Theorem 4.6.1. Let K be a convex body in Rn. If K is in John’s position,
then

πn/2

Γ(1 + n
2 )
≤ vol(1

2 �K +̂ 1
2 � (−K)) ≤ 2nnn/2

(n+ 1)(n−1)/2
,

with equality on the left if and only if K = Bn
2 and equality on the right if

and only if K is a simplex.

Proof. If K is in John’s position then K ⊇ Bn
2 ; setting L = −K in (4.11)

and taking volumes yields the lower inequality (and its equality case).
For the upper inequality, let (ui)

m
i=1 and (ci)

m
i=1 be as in John’s theorem,

and let K̃ = {u1, . . . , um}o. Also let (vi)
m
i=1 and (di)

m
i=1 be as in Lemma 2.2.4,

and let V = {v1, . . . , vm}. A direct computation shows that

V o =
√
n+ 1 cone1(n−1/2K̃) . (4.19)

Therefore

voln(1
2 �K +̂ 1

2 � (−K))

≤ voln(1
2 � K̃ +̂ 1

2 � (−K̃)) (since K ⊆ K̃)

=
n+ 1

2
· nn/2

(n+ 1)(n+1)/2
voln+1(V o ∩ −V o) (by (4.19) and Lemma 4.4.2)

≤ n+ 1

2
· nn/2

(n+ 1)(n+1)/2
· 2n+1 (by Theorem 2.2.3)

(For the last step, note that V o ∩ −V o is, by construction, an origin-sym-
metric convex body in John’s position in Rn+1.) This proves the upper
inequality.

Next, if K is a simplex in John’s position, then K = K̃, and the contact
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points satisfy

〈ui, uj〉 =

{
1 if i = j,

−1/n if i 6= j.

A direct computation then shows that (vi)
m
i=1 is an orthonormal basis, and

so V o ∩ −V o is an (n+ 1)-dimensional cube. Therefore we have equality in
the upper inequality.

Finally, suppose we have equality in the upper inequality. Then K = K̃
and vol(V o ∩ −V o) = 2n+1. By the equality case of Theorem 2.2.3, the
set V o ∩ −V o is a cube circumscribed about Bn+1

2 . Since the vi are unit
vectors, it follows that V ∪−V consists of the 2(n+1) contact points between
the cube and Bn+1

2 . Since V and −V are disjoint (indeed, they are separated
by {(x, 0) ∈ Rn⊕R : x ∈ Rn}), it follows that V contains exactly n+1 points,
that is, m = n+ 1. Therefore K̃ is a simplex, and so is K.

Remark 4.6.2. The fact that the factor n + 1 in (4.18) can be strength-
ened to the factor in Theorem 4.6.1 (which is asymptotically

√
n/e as n→

∞) is suggestive evidence in favour of our conjecture that mHM(K) ≤
c
√
nmKB(K).

48



Chapter 5

Conclusions

Chapter 2 concerns the problem of determining supK dBM(K,B3
∞), where

the supremum is over all origin-symmetric convex bodies K in R3; Theo-
rem 2.3.4 states a new upper bound for this quantity. Although the method
of Theorem 2.3.4 could obviously be extended — say, by trying to choose
three nearly orthogonal contact points — it does not seem likely that such an
approach would yield sharp estimates for dBM(K,B3

∞). Indeed, the method
of Theorem 2.3.4 involves attempting to align the facets of the cube B3

∞
with the facets of K, but the example of the Platonic dodecahedron shows
that for some bodies this approach yields very suboptimal positions: it is far
better to align the facets of the cube with the edges of dodecahedron, as in
Example 2.4.4.

An intriguing by-product of the proof of Theorem 2.3.4 is the connection
between John configurations and systems of equiangular lines established in
Proposition 2.4.2. Further exploration of this connection could yield insight
into the conditions under which Gerzon’s bound, Theorem 2.4.1, is sharp.

Chapter 3 considers two problems on the complexity of families of pos-
itive homothets of a convex body. The first is to bound the transversal
number of such a family in terms of the independence number and the di-
mension. The dependence on the dimension is known to be exponential;
Theorem 3.3.2 gives the best known base, 3 + 2

√
2, for the upper bound,

and Example 3.3.7 gives the best known base, 2, for the lower bound. The
major open problem here is to close this gap.

The analysis of Example 3.3.7 raises a tangential but very interesting
question: for which convex body is N(K,−K) maximal? Proposition 3.3.5
gives strong asymptotic evidence in favour of the obvious conjecture that it
is the simplex. (Note that the upper bound in Proposition 3.3.5 holds for
all K.)

The second problem considered in chapter 3 was to determine the max-
imal VC-dimension of a family of homothets of a convex body. It is well-
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known that the family of all convex sets has infinite VC-dimension; our
Example 3.4.2 shows that this is true also for the much simpler families con-
sidered in this chapter. It seems, then, that the pleasant consequences of
finite VC-dimension (such as Vapnik and Červonenkis’ uniform law of large
numbers) are not typically available even for quite simple families of convex
sets.

Chapter 4 introduces the harmonic mean measure of symmetry and es-
tablishes its fundamental properties. The most salient open problem is
whether the simplex the least centrally symmetric convex body according
to this measure of symmetry. A positive answer to that question would im-
mediately yield, by (4.16), substantial progress on the analogous question for
the Kovner–Besicovitch measure of symmetry; on the other hand, a coun-
terexample would be a striking violation of the intuition that the simplex
is in all reasonable senses the least centrally symmetric convex body. One
possible line of inquiry is based on the observation that, writing

H(K) = 1
2 �K +̂ 1

2 � (−K) ,

we have

H((1− λ) �K +̂ λ � L) = (1− λ) �H(K) +̂ λ �H(L) .

Taking volumes yields, by (4.10), that vol(H(K)) is a 1
n -concave function

of K, in the sense of harmonic convex combinations. What are the extreme
points of Kn in the sense of harmonic convex combinations?

A few other questions arise naturally from chapter 4. First, what is the
correct dependence on the dimension in (4.16)? In particular, is it the case
that

mHM(K) ≤ c
√
nmKB(K) ,

as conjectured in the remarks after (4.7)? Second, can the exponent in
Corollary 4.5.3 be improved to 1

n , as in Remark 4.5.4? Third, do exponential
lower bounds such as that in Corollary 4.5.7 hold for any natural central
point of K, such as its centroid, its Santaló point, or the centre of its John
ellipsoid?
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[17] Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly’s theorem
and its relatives. In Klee [36], pages 101–180.

[18] Adrian Dumitrescu and Minghui Jiang. Piercing translates and homo-
thets of a convex body. Algorithmica, 2009.

[19] A. Dvoretzky and C.A. Rogers. Absolute and unconditional convergence
in normed linear spaces. Proc. Nat. Acad. Sci. USA, 36:192–197, 1950.
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