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1. Introduction. Many of the inequalities of function theory and potential
theory may be reduced to statements regarding the properties of harmonic
domain functions with vanishing or constant boundary values, that is, func-
tions which can be obtained from the Green's function by means of elementary
processes. For the derivation of these inequalities a large number of different
techniques and procedures have been used. It is the aim of this paper to show
that many of the known inequalities of this type, and also others which are
new, can be obtained as simple consequences of the classical minimum prop-
erty of the Dirichlet integral. In addition to the resulting simplification, this
method has the further advantage of being capable of generalization to a
wide class of linear partial differential equations of elliptic type in two or
more variables.

The idea of using the positive-definite character of an integral as the
point of departure for the derivation of function-theoretic inequalities is, of
course, not new and it has been successfully used for this purpose by a num-
ber of authors [l; 2; 8; 9; 16]. What the present paper attempts is to give a
more or less systematic survey of the type of inequality obtainable in this
way.

2. Monotonie functionals. 1. The domains we shall consider will be as-
sumed to be bounded by a finite number of closed analytic curves and they
will be embedded in a given closed Riemann surface R of finite genus. The
symbol 5(a) will be used to denote a "singularity function" with the follow-
ing properties: 5(a) is real, harmonic, and single-valued on R, with the excep-
tion of a finite number of points at which 5(a) has specified singularities. 5(a)
is thus the real part of a properly normalized Abelian integral.

The following result indicates a monotonie functional associated with 5(a).

Theorem I. Let D and D\ be two domains embedded in R such that
DCZDi and that D\ — D contains no singularities of 5(a), and let C and C\ denote
the boundaries of D and D\ respectively. Let further piz) denote the function which
vanishes on C and is such that piz) +5(a) is harmonic in D. If piiz) denotes the
corresponding function associated with Di, then

/dpiz) r dpiiz)5(a) -£-i ds ^  I    5(a) —- ds,
c dn J d an
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SOME INEQUALITIES IN THE THEORY OF FUNCTIONS 257

where the differentiation is performed with respect to the outer normal.

With the notation (w, u)D=JjDÍu\+u\)dxdy, it follows from the mini-
mum property of the Dirichlet integral that

(2) ipi + S,pi + S)Dl ^ iu, u)Dv

where «(a) is continuous in the closure of P)\ and has on C\ the same boundary
values as ¿>i(a)+5(a); the derivatives ux and uv need only be continuous in
subdomains of Dx into which D\ is divided by a finite number of smooth arcs
or curves. Since piz) and p\iz) vanish on C and &, respectively, we may set
w(a) =piz)+Siz) in D and «(a) =5(a) inDi — D. Inserting this in (2) and using
Green's formula, we obtain

C     /dS     dpi\ c    /<35    dp\ r     dS r    dSI   S ( — + —UíjSÍ- + — J & + I    S — ds - I   S — ds.
J d    \dn      on / J c    \dn     dn/ J ct    on J c    dn

This is identical with (1) and thus proves Theorem I.
Remark. From the proof it is clear that the assumptions regarding the

single-valuedness of the various functions involved may be somewhat relaxed.
It is sufficient to assume that 5(a) is single-valued in Di—D, while 5(a) +piz)
and 5(a)+£i(a) are single-valued in D and Du respectively.

2. To illustrate the application of Theorem I, consider the case in which
R is the schlicht plane and D is a simply-connected domain. If «i, • • • , a„
are complex constants such that e*i+ • • • +a„ = 0, fi, • • • , f„ are points of
D, and w=F(a) is one of the functions mapping D onto the schlicht unit
circle, it is easily confirmed that

(3) piz) = Re | ¿ [«, log (F(z) - F(?,)) - a* log (1 - F*(f,)F(a))]} (2)

vanishes on C. The corresponding singularity function 5(a) is of the form

(4) 5(a) = - Re | ¿ a, log (a - {,)\ .

Clearly, ^(a)+5(a) is single-valued in D and—because of ^"„i «,. = 0—5(a)
is single-valued in the complement of D. In view of the remark made further
above, Theorem I will therefore apply. The integral in (1) can be evaluated
by the residue theorem. If g(z) and (r(a) are the analytic functions for which
piz)=Re {qiz)} and 5(a) = Re (<r(a)}, we have, in view of piz)=0 (aEC),

dp 1
— ds — -7- q'iz)dz, z CZC,
dn i

and therefore

(2) Asterisks denote conjugate complex quantities.
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f S—ds =  f (5 + p) — <b = Re { f (<r(a) + ç(a)) — djl
J c    dn Jc dn \J c dn    )

= Re |-J (a(z) + q(z))q'(z)dz} .

Since q(z)+a(z) is regular in 7J, this is equivalent to

f 5 — ds = - Re \— f io-iz) + q(z)W(z)dz\ .
J c    dn \i J c J

Inserting the expressions for a(z) and q(z), we obtain

m - Fa,)L dp
S — ds = Re

c    dn \i   J C \ v=l L
log

z-i.

(5)
- < log (1 - F*(f,)F(a))]) ( ¿ -3J ¿a}

9   p    if ,     ^-)-^^)

- ¿ «*«, log (i - F*(r,)F(r„))}.

By Theorem I, this expression decreases if the domain D increases. If D
is contained in the unit circle, we may compute the right-hand side of (1) by
replacing, in (5), F(z) by a. (1) and (5) will then yield the inequality

Re
U,a-1

log
f (r>) - FjQ i=¿-^l0H  1-^ )'

where the right-hand side is obviously real. Passing to the function inverse
to F(a), we have thus established the following result.

Letfiz) be regular, univalent, and bounded by unity in \z\ <l. If Zi, • • • , zn
are points in \z\ <1 and ai, • • • , ctn are complex constants such that <xi+ • • •
+a„ = 0, then

(6)
/(a») - /(a,)

¿_, ayaß log:
k,/i=1 Zr Zp

á   S «><*? log 1 - /(a„)/*(a„)

That the real part may be replaced by the absolute value is seen by multi-
plying all the a, by a complex number of suitable argument.

If we set ai=l, a2= — 1, n = 2, and assume, in addition,/(0) =0, (6) yields

log
a2/'(a)/'(0)

f(z)
<]        1-1/(2) I2

1 —   a
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and thus

259

1 - |a|2

i-l/W
a2/W(0)

P(z)
1-1/Wl2
1 - lal2

3. From (6) it is possible to derive a set of necessary and sufficient condi-
tions for the coefficients of a function which is univalent and bounded in the
unit circle.

Let f(z) =a0+aia+a2Z2+ • • • be regular in a neighborhood of z = 0 and let
Anm and Bnm denote the polynomials in a0, a\, ■ • ■ given by the expansions

(7)

(8)

/(a) - /(f) -
log -——— - 22 Anmznr

Z Ç n,m=0
\Amn   —   Anm),

- log (1 - /*(f)/(a)) =  ¿ B„«"f*- (Bmn = B*nm).

In order that ao, a*, • • • be the coefficients of a function which is univalent and
bounded by unity in | a | < 1 it is necessary and sufficient that the inequalities

(9) 7 .   A nm<Jn<Tr,
|  On |

è    2-1-2-1   -DnmCnC
n=l n »,m=l

* N - 1,2,

be satisfied for any set of complex numbers ift, • ■ -, o-jy.
To prove the necessity, we observe that, by (7) and (8),

f ,     /(«,) - f(z„)       f /    » m\
2_,   Ct,Ct„ log- =    2-,     <M%\      2-,   AnmZyZli   \

v,p=*\ %v Zp r,ß=l \ n,*n=0 /

=     22^4nm(    2   «ä)(    2-]     a*Z*   ))
n,m-0 \ »=1 /  \ v—l /

X X /       co \

2~2 a,a? log (1 — f*(zr)f(z„)) = —   J2 «vcc/i    2 Bnmz^z*mj
y.li^l r,li=l \ n,m=0 /

= —   2~1 Bnm (  X «»a» ) (  £   a-2» )
n,m=0 \ r—1 /   \ p—1 /

Moreover,
x °°    1

X a.«M* log (1 — M*) = — S —
»,M=1 n=l     »

2^ «»s.

Hence, if we can show that it is possible to find complex numbers «i, a2,
and points Si, z2, • • • in |z| <1 such that, for given aru ■ • - , aN,

(10)       2~2 <*>z" = «r»,   » = 1,  • • • , N,    2~1 a'Z« = 0,   n = 0, TV + 1,
r-l »=1
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(9) will follow from (6). Now the equations (10) are equivalent to the exist-
ence of an expansion

(11) E «ntn   = E
ir—l     1    -   Zyl

which converges in a neighborhood of ¿ = 0. To establish (11), we choose the
a» such that lim,,«, z, = Zo, |Zo| <1, and we observe that the functions (1— z,t)~l
form a complete set in the space Z,2 of functions which are regular in \t\ <1
and satisfy /|t|„i \f(t)\ 2|^| <°°- Indeed, if there were a function of L2, say
g(z), which is orthogonal to all functions of the set, we would have

0 r      g(t) \dt\      1   r      g(t)dt-.-ZZ- — I     ;—j = 2xgiz*),
J |ti=i 1 — z?t*       i J i f |=i / — a*

and, since lim a* = a0* and g(t) is regular at t = Zo*, it would follow that g(t)
vanishes identically. From the completeness of the set (1— a»/)-1 follows the
existence of a converging expansion of the type (11) for all functions of Z,2 [l].
This proves (11) and thus also the necessity of the conditions (9).

To prove sufficiency, set crn = zn+Çn, n = l, ■ • • , N, ffn = 0, n>N. For
N—> oo it then follows from the positivity of the right-hand side of (9) that
log [(1 - | z[2)(l - | r |2) | 1 - f*a|2] á log [(1 - | /(a) |2)(1 - | /(f) |2) | 1
- /*(f)/(s) |2]- Letting f—>z, we find that |/(z)| <1. The same set <rn will
also assure the univalence of f(z). Neglecting the nonpositive second term
on the righthand side of (9), we obtain

log/'(a)+log/'(f) + 2 1og /(*) - /(f)

^ log r
(l-|a|2)(l-   f 2) l-f*a|2J'

which shows that/(a) ^/(f) if z^f and both are in the unit circle.
If we consider the class of univalent functions in the unit circle for which

|/(z) I < M and let M—» w, we obtain the corresponding results for univalent
functions without any boundedness restrictions. It is easily confirmed that
(6) is in this case replaced by

2~2 ara„log
P,JI=1

(6')

and (9) takes the form

(9')

/to - /(*,)̂  E log
1

v,p=l

N

A-nmtT n<J v

N

^ E
.

where Anm is given by (7). (9') is equivalent to Grunsky's necessary and suffi-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1953] SOME INEQUALITIES IN THE THEORY OF FUNCTIONS 261

cient conditions [9] for the coefficients of a function univalent in the unit
circle.

It is of interest to find the cases in which the sign of equality will occur in
(6). Since (6) is but a special case of (1), this will happen if the function p(z)
constructed with the singularity (4) will be the same for both D and D\. If D\
is the unit circle, the function p\(z) with the singularity (4) is of the form

Pi(z) = Re | Ê [«, log (a - f,) - a* log (1 - f *a)] X .

Hence, p(z) will be identical with p\(z) if D is a simply-connected domain
whose boundary is either the circumference \z\ =1 or consists of parts of
\z\ =1 and one or more arcs whose equation is

Re | Ê k log (z - Ù - «* log (1 - f*z)]j  = 0.

It follows that there will be equality in (6) if w=f(z) maps the unit circle
onto a domain within | w\ < 1 whose boundary consists of parts either satisfy-
ing | w\ =1 or

Re | Ê \ßa, log (to - f(z,)) - ß*a* log (1 - f*(z,)w)]\  = 0,

where ß is a complex number of suitable argument.
4. Another application of Theorem I concerns the Bergman kernel func-

tion jfiT(a, f) of a plane domain D [l]. It was shown by Schiffer [15] that

(12) K(z, f) = - (2/,r) (d2g(z, o/azan,

where g(z, f) is the Green's function of D and the differential operators d/dz
and d/dz* are defined by

1/5 d\ d 1 (d d\
= — I-i — I,        -= — I-\- i — J, z = x + iy.

2 \dx by) dz*       2 \dx dy)
d
dz       2 \dx dy/ dz*        2 \dx dy)

Schiffer also showed that the function

2   d2g(z, f) 1(13) L(z, f) =-f£l =- + l(z, f)
x       ozdf 7r(z — f )

plays a fundamental role in the theory of conformai mapping. Both A^(z, f)
and the function /(a, f) defined in (13) are regular in D.

If «i, • • • , a„ are complex parameters, then

(») f»-R.{¿«.^}
V.    ,= 1 OÇy }
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vanishes on C and may be identified with the function p(z) of Theorem I.
The corresponding singularity function is

(15)
(  "       b log I a - f, | ) 1 C   »        a,    1

5(a) = Re \ E «, ' [  = ~ T Re { £ ■-4 •
I f=i of -        / 2        1 „_i z — f, ;

If ç(z, f) denotes the analytic function in z for which Re {q(z, f)} =g(z, f).
we obviously have

2 ItíL        di, di*   J
where the expression enclosed in brackets is single-valued in D, since the
periods of q(z, f) are pure imaginary. Since p(z) vanishes on C, we may thus
evaluate the integral (1) by means of the residue theorem in the same way as
in (5). We obtain

f ,<,,*«*_ ..*.¿L/,{£Aa—!_q
Jc           bn                          \2iJc\,=i     L    df„           z — f, J

= — % Re < >,   a,ctu-1-
U=i      L  af,dfM       (f„-f,)2J

¡    Ä     i      d2q(i„i,)}+ 2-< *»*«*-( ■

a&tß       (r,-r,)2-i
W,, f,)

xfetß
v,p=l

In view of (12), (13), and the fact that

dq(z, f) 5g(a, f)
9a 3a

it thus follows from Theorem I that the quantity

(i6) Re | e <W£(f„ rj - E <W(r*> u}

decreases if D increases, a result derived by Bergman and Schiffer [2] by
means of a variational method.

3. Single-valued conjugates. 1. In this section we derive a variant of
Theorem I which is useful in the treatment of extremal problems involving
single-valued analytic functions in multiply-connected domains or in domains
not of genus zero.

Theorem II. Let R, D, D\, C, G, and 5(a) have the same meaning as in
Theorem I. Let p(z) denote the function which takes constant values on the indi-
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vidual components of C and is such that p(z) +S(z) is harmonic in D and, more-
over, satisfies

m L -ds = 0
dn

for any closed contour V in D. If pi(z) is the corresponding function associated
with Pu then

/dp(z) C dPi(z)Siz)-J-^-ds^  j    S(s)^-^dj.
cr dn J d dn

The proof of Theorem II is similar to that of Theorem I, the only dif-
ference being that the ordinary minimum property of the Dirichlet integral
is replaced by the following more general inequality applicable to harmonic
functions u(z) which have a single-valued harmonic conjugate in D, that is,
functions u(z) such that

<19) L du(z)
——ds = 0

dn

for every closed contour Y in D.
Let u(z) be harmonic in D and satisfy (19) for every closed contour in D, and

let v(z) be continuous in D with the possible exception of the points of a finite num-
ber of closed contours Aßin D at which v(z) may have a constant jump across A,,;
furthermore, let v(z) have continuous first derivatives in D with the possible excep-
tion of the points of a finite number of closed contours in D. If, on the individual
components C, of the boundary C of D, u(z) —v(z) = const., then

(20) (u, u)D g (v, v)D,

with equality only for u(z) =v(z).
Indeed, we have

r du v^ r au
iu, u — v)D = 2-, \    (u — v) — ds + ¿_, I    (u — v) — ds

,  J c, dn „  J a„ dn

r   du r   du
— ¿_, const.   I      — ds + 2-, const.   I      ■— ds,

, J c,  dn , J Aß dn

and this vanishes by (19). Hence,

(v, v)d = («, u)d + 2(w, u — v)n + (u — v, u — v)d

= (u, u)d + (u — v, u — v)d ^ (u, u)d,

which proves (20).
To prove Theorem II, we set w(z) =5(z)+/>i(z) in D\ and define v(z) by
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264 ZEEV NEHARI [September

v(z) = 5(a) + piz),   z E D;       viz) = 5(a),    a E ¡k - D.

This choice obviously satisfies the conditions under which (20) holds. Hence,

iS+p,S + p)D + (5, S)Dl-D ¿ ($ + Pu S + PÙd,

and thus, by Green's formula,

dS r      dp r      d(S + p) r      dS r    dS
ds

r   as        r     dp        r     a(s + p) r     as        r
5 — ds + j      5— ds + I      p-1-— ds + \    S—ds-\S

J c    dn J c      dn Jc dn J e,     dn Jc

f   S—ds+f   S—ds+fp
J cx     dn J er,      9» J c.

— ¿î.
dn

Observing (17) and the fact that piz) and piiz) take constant values on the
components of C and G, respectively, we arrive at (18).

2. To illustrate the application of Theorem II, consider the case of a finite
multiply-connected plane domain D and of the analytic function F(z) = F(z, f)
which maps D onto the schlicht unit circle with concentric circular slits. If f
is a point of D, F(z, f) may be so normalized as to satisfy F(f, f) =0 and we
may require that the outer boundary of D be transformed into the unit
circumference. The argument of (a — f)-1F(a, f) returns to its initial value if z
describes a boundary component C, of D, and | Fiz, f) | is constant on each
C We may therefore set —log \z — f| =Siz) and log | F(z, f)| =piz) and ap-
ply Theorem II. It follows that

(21) -  flog |a-f|-log |F(*,r)|<fc
J c bn

decreases if D increases. To evaluate (21), we observe that

f  — log | Fiz, f)] ds -  f   ¿{arg F(a, f)} = 0
J c,bn J c,

if C, is an inner boundary component and that log | F(a, f) | = 0 on the outer
boundary. (21) may therefore be replaced by

L[log I a - f I - log I Fiz, f) | ] — log | Fiz, f) | ds
dn

= Re Mtë$fê$4***n™
Hence, | F'(f, f) | decreases if D increases.

If £>i is the unit circle and f its center, then Fi(z, f)=z. It thus follows
from the monotonicity of | F'(f, f ) | that | F'(z, 0) | ^ 1 if D is a schlicht multi-
ply-connected domain contained in the unit circle. This is equivalent to the
following well known theorem on bounded univalent functions [6; 8]: Let
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1953] SOME INEQUALITIES IN THE THEORY OF FUNCTIONS 265

G be a finite plane domain and let fiz) be univalent and |/(z) | ^ 1 in G. If,
moreover, fiz) maps the outer boundary of G onto the outer boundary of the image
domain, then

|/'(f) | á|F'(f,f)|,
where Fiz, f) maps G onto the unit circle with concentric circular slits.

3. As another illustration, we consider the analytic function F,ß(z) which
maps a schlicht domain of connectivity =g 3 onto the circular ring 1 < | w\ <M
minus a number of concentric circular slits, where the subscripts v, ju indicate
that the boundary components C, and G are transformed into the circum-
ferences \w\ =1 and \w\ =M, respectively. We denote by D\ the domain
containing D which is bounded by C, and C„, and by F0(z) the function map-
ping £>i onto the circular ring l<|w| <Af0. Clearly, log F„,,(z) — log F0(z)
is regular and single-valued in D and we may apply Theorem II with 5(a)
= -log | F0(z)|, piz) =log | F„(z) |, p,(z) =log | F0(z) |. By (18), we have

(22) flog |F„| -log \Frii\dsZ  f        log \Fo\ -log ¡F
J c dn J c„+c, bn

)| ds.
C,+Cp

Since both | F0| and \Fril\ are harmonic in D, the left-hand side of (22) is,
by Green's formula, equal to

f log | F„ | — log | Fo | ds.
J c dn

FVI1\ is constant on each boundary component and

d
J  dn

Fo   ds = 0

on all boundary components other than C, and G- Since | F,M| =1 on C„
| F,,,\ =M on G. \Fo\ =1 on C„ and | F0| = M0 on C„, (22) thus reduces to

log M f    — log | Fo | ds ^ log Mo f    — log | F0 \ ds.
J c„ dn J c? dn

In view of

f    f log \Fo\=—^— f log |Fo| ¿ log |F,|ás
J cß dn log M o J c,+c„ dn

= (log [ Fo |, log |Fo|)d, >0,

this shows that M<M0. This is equivalent to the following result [4;6]:
Let D be « schlicht domain of connectivity ^ 3 and let C, and G denote two of
its boundary components.  If M denotes the Riemann modulus of the doubly-
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connected domain Do bounded by C, and G» then, within the conformai class of D,
the problem Af = max is solved by the domain whose boundary components other
than G and G are transformed into concentric circular slits about the origin by
the conformai mapping carrying D0 into a circular ring about the origin.

4. Positive functionals. 1. The monotonicity properties indicated in Theo-
rems I and II were derived without any assumptions regarding the behavior
of the singularity function S(z) outside the larger of the two domains in-
volved. The following theorem indicates an inequality which holds if an
additional assumption of this type is made.

Theorem III. Let R be a closed Riemann surface of finite genus and let
D be a domain embedded in R and bounded by a finite number of closed analytic
curves, G, • • • , G (G+ • • ■ +Cn = C), all of which can be contracted to
points within R — D. Let further S(z) denote a real Abelian integral on R all of
whose singularities are situated in D, and which is single-valued in each com-
ponent of R — D. If p(z) is a real function for which p(z)—S(z) is single-
valued and harmonic in D and which takes constant boundary values on each C„
then

[p(z)-S(z)]-^ds^0.
c bn

Equality in (23) will hold if, and only if, p(z) = 5(z), in which case D is bounded
by analytic slits given by S(z) = const.

The proof of Theorem III is very simple. Since p — S is harmonic and
single-valued in D, the Dirichlet integral of this function can be transformed
by means of Green's formula. We have

(24) ip - 5, p - S)d =  f (p-S)-(p- S)ds
J c bn

bp "        r     dS r     95/dp »        r     dS r     dS(p-S)-fds-2Zp\      -ds+\S-ds,
c dn ,=i     J c    dn J c    dn

where the fact that p = const, on C, has been used. If D' denotes the comple-
ment of D with respect to R, S is single-valued and harmonic in D' and we
have, by Green's formula,

/,

ds
S — ds = — (5, S)d>.

c    dn

The integrals over the G vanish since the G can be contracted to points in
D' and 5 is harmonic and single-valued there. Hence,

(25) ip-S,p- S)D + (5, S)D. =  ( ip-S)— ds.
J c dn
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Since the Dirichlet integrals are non-negative, this proves (23). To have
equality in (23), both Dirichlet integrals in (25) must vanish, which ob-
viously is possible only if p = S and if D' has the area 0, that is, if D is a slit
domain. Since p = S and p is constant on each C, the boundary slits will then
have the equations 5(a) = const. This proves Theorem III.

2. Before we apply Theorem III to a number of problems in the theory
of functions, we indicate a somewhat stronger form of this result which
holds if the function p(z) has the value zero on the entire boundary of D.

Theorem Ilia. If the function p(z) takes the boundary values zero on C,
the conclusion of Theorem III will hold regardless of the homotopic type of the
closed curves C,.

Indeed, the assumption that the C, can be contracted to points within D'
was used only to guarantee the vanishing of the integrals over the C, in (24).
Since now p(z) =0 for zEG, these integrals have zero factors and the argu-
ment goes through as before.

As an application of Theorem Ilia, consider the case in which 5(a) is the
single-valued real Abelian integral of the third kind t(z; f, n) which has the
local expansions t(z; f, ?i)=Iog \z — f| + • • -and t(z; f, n) = — log \z — w\
+ ■ • -, respectively, near its logarithmic poles at f and n. If f and r; are in
D, p(z) will be of the form p(z) =g(z, r¡) —g(z, f), where g denotes the Green's
function of D. By (23), we have

(26) f [giz, r,) - giz, f) - l(z; f, r;)] — [g(z, v) - g(z, t)]ds à 0.
J c dn

If we write

(27) giz, f) - giz, v) + Kz; f, 7,) = Hiz; f, r,),

H(z; f, v) is harmonic and single-valued in D and it follows from (26) and
Green's formula that

H(r, f, r,) - 7J(f ; f, ¿ ^ 0.
Since g(z, f) =g(f, z) and t(z; r\, f) = — t(z; f, n), it follows from the definition
(27) that this may also be written in the form

(28) %»,f) + Ä(r;f,i)^o.
We thus have the following result.

Let D be a domain embedded in a closed Riemann surface of finite genus and
let t(z; f, 77) denote the normalized single-valued real Abelian integral of the third
kind on R whose positive and negative logarithmic poles are at the points f and r¡
of D, respectively. If g(z, f) denotes the Green's function of D and H(z; f, 77) is
defined by (27), the inequality (28) holds. Equality in (28) will occur if, and
only if, the boundary of D consists of slits along arcs satisfying t(z; f, r¡) =0.
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If R is the schlicht plane, t(z; f, 77) reduces to log |a — f| —log |a — n\.
With h(z, f)=g(a, f)+log |a — f|, (28) is in this case equivalent to

(28') *(f, f) + h(v, v) ^ 2A(f, „)
derived by Schiffer [14] by means of Hadamard's variation formula for the
Green's function. Except for the trivial case f = 77, there will be equality in
(28') if the schlicht domain D is bounded by one or more rectilinear slits
situated along the line of symmetry \z — f| =|z — 771 off and 77.

3. Passing now to applications of Theorem III, we first remark that in
the case in which the function p(z)—S(z) has a single-valued conjugate in
D the left-hand side of (23) can be expressed by means of a Cauchy integral.
Since p — const, on each C„ dp/dn is pure imaginary on G Writing p(z)
= Re {q(z)}, S(z) = Re {a(z)}, we thus have

dp/dn= (l/i) q'(z) dz/ds > zCZ-C,

and (23) takes the form

(29) Re jy j [q(z) - o-(z)]q'(z)dz\  ^ 0.

If q — a is single-valued, this integral can be evaluated by means of the
residue theorem, which also shows that (29) may be replaced by

(30) Re i— f [q(z) - <r(z)]<r'(z)dz\  ^ 0.

Let now R be the schlicht plane and let D contain the point at infinity.
By w=f(z) we denote the univalent function in D which, near z==o, is
normalized by /(a) =z+a0+aiZ~1+ ■ ■ • and which maps D onto a domain
bounded by slits along arcs of the equation

(31) Re < E aß log (w — *ß)(  = const.,

where the a? and wß are arbitrary complex constants. If the points w„ do not
lie on any of the slits, there are points f, in D such that/(f„) =w„. The func-
tions

m m

<r(a) = E «m log (a - U. q(z) = E «m log [/(a) ~ /(f,)]
,.=1 d=i

may be used in (30). Indeed, Re {<r(a)} =const. on each boundary com-
ponent and

A     ,    f(z)-f(QE <*> log ———
»i—i a      fji
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is regular and, since the boundary curves of D and their conformai images
do not surround the points f„ and/(f„), respectively, single-valued in D. The
inequality (30) takes the form

Re{i/r¿,,.o/-^ir¿-^-i4io.
\i J c\-v=,\ z — f„    J L „=i   a — f„ J     1

Near a= °o, the residue of the integrand is zero since /(a)/a—»1 if z—»°°.
Hence, the residue theorem yields the inequality

ran p    / V ,    -fflJ - fe   > n(32) Re < ¿w «v«« log->  â 0.
Vi»,/t=i Ç,       s?     J

Let now D' be a domain of the same conformai class as D which con-
tains the point at infinity and is mapped ontoD by a function z = g(u) with
the normalization g(u) =u+bo+biu~1+ ■ ■ ■ . If we write f[g(u)]=F(u),
g(u') = fr, (32) is seen to be equivalent to

_    / A         ,     *(«,) - «(«„) \             / A         ,    F(u,) - F(uß)\Re < 2^ «■«/. log->  s Re < 2-, a*<x» log-> .
U./i-l «»—«,,       J L,)i=l u, — Up       )

We have thus proved the following result.
Let «i, • • • , am be arbitrary complex constants and let U\, • • • , um be points

of a schlicht multiply-connected domain containing the point at infinity. The
extremal problem

(  ™ g(u,) — g(uß) )
(33) Re < 2-j «-«».log->

V,í>,^=i tiv M ft        )

within the family of univalent functions g(u) in D' normalized by g(u) =u+ba
+biu~1+ • ■ ■ is solved by a function F(u) mapping D' onto a slit domain
whose boundary slits satisfy

Re <   ¿«-log [F(u) — F(u,)]>  = const,

provided such a mapping exists.
The question of the existence of the extremal map requires a special dis-

cussion which goes beyond the elementary methods used in the present paper.
It can, however, be avoided by phrasing the result as follows:

Let D be a schlicht domain containing the point at infinity which is bounded
by slits satisfying (31). If f(w) =w+c0 + O(w~1) is univalent in D, then

(34) Re S E «"«/« log-Ï  ^ °.
U¡£i w, — wß    )

with equality only for f(w) = w.

max
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For »71 = 1, Wi = 0, (31) reduces to Re {a log w\ =const. and (33) to
Re {a2 log/'(0)} ^0, expressing the well known extremal properties of the
spiral slit maps [7; 8]. Another geometrically simple extremal map is ob-
tained by setting, in (33), «i= • • ■ =am = ew. We find that the problem

R.WÛ (sW"s("-))}
v ,,ß=i   \     u, — uß     /)

max

is solved by a map whose boundary slits are arcs of trajectories intersecting
the family of lemniscates with the foci F(ui), • • • , F(um) at the angle —8.

4. Passing to another application of Theorem III, we consider the case
of a schlicht domain D containing the origin. We denote by /(a) a function
which is univalent in D, vanishes at the origin, and maps D onto a domain
bounded by slits along arcs satisfying Re {P(w~1)\ = const., where P(t) is
a given polynomial of degree n. If Qif) is another polynomial of the same
degree such that

P[?S)]-eLT]
is regular at a = 0, we may clearly set

sW=ö  '«-«H
and apply (30). We obtain

<35)    MI/.C'^-OCO*}"
Let now D' be a schlicht domain containing the origin which is mapped

onto D by a function a = g(w) for which g(w) =0. If C denotes a circle about
the origin Which together with its interior is within D' and if we write

f[giu)] = F(u),
(35) is equivalent to

<36) R« {jfiii^i - efcyxöHa °-
Expanding into power series, we have

ril        »  A,       " r  1  "I        "A,       »i*krr   = E - + EG«*,       Q  —   = E - + E B>*LF(m)J       ,=1 u"       „_o Lg(u) J       ,=i u"       ß=a

where, in view of our assumptions, the coefficients of the negative powers
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must be the same in both cases. Inserting these expansions in (36) and using
the residue theorem, we obtain

Re | ¿ viB, - C,)A,\  = 0.

We have thus derived the following result concerning the coefficients of uni-
valent functions.

Let D be a schlicht domain containing the origin and let Fiz) = aiz
+a2z2+ • • ■ be a univalent function mapping D onto a domain bounded by
slits satisfying Re {P(w~1)} = const., where Pit) is a polynomial of degree n.
Let further A, and Cß be the coefficients determined by the local expansion

r  i   ~\       n   A        °°
(37) p\^rA= E^+egs*.LF(z)J       „=i  z'       „=o

If f(z) is also univalent in D and g(0) =0, and the polynomial Q(t) is so chosen
that the local expansion

r l -|      • A,      »
e— = E-+ E*,*1

l_/(a)J       r=i  z"       „_o

agrees with (37) in the coefficients of the negative powers, then

(38) Re | ¿ vB,a\ = Re j ¿ vC,A,\ .

Equality in (38) will occur if, and only if, fiz) maps D onto a domain bounded
by slits satisfying Re \Qiw~1)} = const.

If D is the unit circle, the coefficients G are easily determined. Since we
only used the fact that the right-hand side of (37) has a constant real part
on the boundary of D, we may in this case take it to be of the form

n       A n

E-- E^v,
„=1    Z" ,=i

regardless of whether this expression can be written in the form P[{ F(z) }~1],
where P(t) is a polynomial and F(a) is univalent. Hence G = — A„ v = 1, • • -,
n, and (38) becomes

Re {¿¿,5,1  ^ 2Z"\A,\2\ ,=i )       ,=i
or, if we replace /(a) by f(ewz) with suitable 0,

(39) 2Za,b,»=i áE"l^l2.
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5. As an application of (39) we derive a result recently obtained by
Springer [17] by means of a variational method. If

b\      è2      b%
(40) z = g(w) = w+ —+—+ — + ...

w      w       w

maps a schlicht domain  containing w= <x>  onto  \z\ >1, then  \b3\ =T, with
equality only for a rectilinear slit domain. If

ai      a2      a3
w = h(z) =a-|-1-1-1-

%        a2       z3

is inverse to (40), it is easily found that

(41) - b3 = a3 + a\.

On the other hand
2 2 —1 2—2

h (z) = z  + 2ax + 2a2z   + (2a3 + ax)a    +

and thus, by (39),

| 2a3 + a\ | ^ 1.

Hence, by (41),

2 | &« | á l + |«i|2.

By a classical result—and also as an immediate consequence of (39)—| ax\ < 1
unless D is bounded by a rectilinear slit. It follows that \bz\ <1 except in
this case.

6. As another application consider a function

C\ C3 Cf,
q(z) = z + -+-+-+■•■  ,

a        a3       z6

which is univalent in \z\ >1. We have

q (a) — 3ciq(z) = z  + 3c3z    + (3d + 3cic3 + Ci)z    + • • •

and therefore, by (39),

(42) | 3c6 + 3clC3 + c\ | = 1.

If
til 09

(43) piz) =z + a0 + —+ — +■•■
a        a2

is univalent and/(a)/¿O in |a| >1, the function
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(/(a2))1'

3
«o (a\       ao\ /a2       ao«i       «o\

= Z + —Z-1+1-la-3 + (-+—)a-s +
2 \2        8/ \2 4 16/

is also univalent in \z\ >1 and we may apply (42). This yields

(44)

Let now

(45)

3 ao
— a2 + —
2 8

< 1.

a,       a2
/(*)=* + -+- +

be univalent in | a| > 1. If/(a) t^ol in | z\ > 1, we may identify/(z) —a with the
function p(z) in (43). Hence, by (44),

(46) ■ a2 =S 1,

if a is any value not taken by/(z) in \z\ >1. Replacing, if necessary,/(z) by
e~i"lf(eiyz), we may assume that a2 = 0. If there exists a value a, not taken by
fiz) in |z| >1, such that Re {a3} <0, it will follow from (46) that |a2[ <2/3.
Suppose, then, that for all such a we have Re {a3] =0. If 0 = arg a, it follows
that a is in one or more of the three angular regions \0\ <ir/6, \0 — ir/3|
<7r/6, ¡0+7t/3| <ir/6. If one of these regions did not contain values a, all
the values left out by /(z) would be contained in a half-plane bounded by a
line passing through the origin. This is impossible since, by (45), the center
of gravity of the boundary of the image of | z| > 1 is at the origin. Hence, all
three angular spaces must contain boundary points of the image, which
shows that the origin is also a boundary point. We may therefore take a = 0
in (46) and obtain |a2| ^2/3. This inequality, due to Schiffer [12] and
Golusin [5], has thus been proved in all cases. The sign of equality will hold
if, and only if, there is equality in the corresponding inequality (39). It is
easily confirmed that, except for trivial transformations, this will occur only
for the function/(z)=z(l-z3)-2/3 = z+2z-2/3 +

We add a remark concerning the coefficients of univalent functions
<7>(a) =a+a2a2+a3a3+ ■ ■ • which are regular in the unit circle. It is easily
confirmed that (44) is equivalent to

7               13    3«4 — ¿a.2Ct3-a2
12

is   - J"  3

whence

,liT+ ¿<X20l3   —   - OL2
12
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If it were true that the right-hand side of this inequality is maximized by
the function for which a2 = 2, «3 = 3, it would follow that |a«f ¿4, m ac"
cordance with a well known conjecture. However, using the tables for the
boundary surface of the (a2, «3)-space computed by Schaeffer and Spencer
[ll], it can be shown that the right-hand side is capable of values as large as
4.27(2).

7. As a last application of (38) we derive the following result.
If

a-i      a2      a3
(47) /(z)=2 + _+      +      +...

a       zl      z6

is the local expansion near z= a> of a function f(z) which is univalent in a
schlicht domain D containing z = °o, then the domain of variability of the expres-
sion 2a3+a\for all such functions is a circle. To the points on the circumference
correspond functions which map D onto the full plane minus slits along arcs of a
number of concentric and coaxial equilateral hyperbolas.

If

bV   b?
Fe(z) =z +-+ — +•••

z z2

yields such a hyperbolic slit mapping, where 0 indicates that the axis of the
hyperbolas forms the angle 0 with the real axis, then Re { [ie~2ieFe(z)]2\
= const, on the boundary of D. Since

2
2a2       2a3 + ai

P(z) = a2 + 2«x +-+-+ • • • ,
z z2

it follows from (38) that

Re {e-ii$(2a3 + a\) ] ^ Re { "¿9(2 b¡' ' + bf)},

which shows the extremal property of the hyperbolic slit mappings, provided
the latter exist. Since <j>(z) = F¡(z)-e2»[cos 20F2o(z)-i sin 20F2./4(a)] clearly
satisfies Re { [ie~2WFe(z) ]} = const, on the boundary of D and is bounded in
D (and zero at z = °o ), we have

f\(z) = /'"[cos 20Fo(z) - i sin 26fI/í(z)].

Hence, with the abbreviation ye = 2b3$)+bf),

ye = e2ie[cos 26yo — i sin 207,/J,

or

(2) I owe this remark to a written communication of Professor A. C. Schaeffer.
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79 = — (To + 7»/0 + — (To - y*/i)eiie,

which shows that the y¡ are situated on the circumference of a circle.
The existence of the extremal maps can be shown by an artifice used by

de Possel [3] for a similar purpose. If D is simply-connected, the existence
follows from the Riemann mapping theorem. If D is multiply-connected,
consider the extremal problem Re {e~4U(2a3+af)} =max within the family
of univalent functions in D which are normalized by (47). Because of the
compactness of the family, the existence of an extremal function is assured.
If this function, say F(z), does not yield the required hyperbolic slit mapping,
there is at least one boundary component, say P, which is not a slit of this
type. Let

C\        c2
p(w) = w -\-1- + • • •

w      w2

be the function mapping the simply-connected domain bounded by T and
containing w= °° onto the exterior of a hyperbolic slit of the desired type. If

bi       ¿>2
w = F(z) = a + — + — +•• • ,

a       a2

r       -, di      di
q(z) = p[F(z)] = z + —+ — +■■■ ,

z       z¿

2 2 2
it is easily confirmed that 2d3 + di = 2b3 + b\ + 2c3 + C\. Since q(z) is uni-
valent in D, it follows from the extremal property of F(a) that

Re {e~M(2c3+ cl)} ^ 0.

But this is impossible since, by the extremal property of the function p(z)
as applied to the competing function pi(w) =w,

Re {e~M(2c3+ c\)\ > 0.

5. Mutually disjoint domains. 1. An interesting set of inequalities is ob-
tained when the procedure leading to Theorem I is generalized to the case of
a domain D which contains a number of mutually disjoint subdomains
Di, • • • , Dn. We now have to introduce a number of singularity functions
S,(z), v = \, ■ • • , n, which are harmonic and single-valued in the closure of
D — D,. Restricting ourselves, for shorter formulation, to the case of schlicht
domains, we then obtain the following result.

Theorem IV. Let D be a schlicht domain and let D\, • • • , Dn be mutually
disjoint subdomains of D. Let S,(z) be the singularity functions defined above
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and let the functions p,(z) be such that p,(z) = 0 on the boundary C, of D, and that
p,(z)+S,(z) is harmonic in D,. If P(z) is a function which vanishes on the
boundary C of D and for which P(z) + E"-i S,(z) is harmonic in D, then

(48) Ê f   L+± s)^dsZ  Í(P+Í Sß)~ds.
»=.iJc,\        pm\      / dn J c\ ß=i      / dn

There will be equality in (48) if, and only if, P(z) vanishes at all points of G,
v = l, ■ ■ ■ ,n.

The proof of (48) follows from the remark that the function u(z) defined
by

n

u(z) = p,(z) + E S„iz), z CZD„

(49) m(z) = ¿ S„(a), zCZD-2ZDß,
(1-1 (1=1

is continuous in D and has on C the same boundary values as the harmonic
function P(z) + E"-i -S>(a). Hence, by the minimum property of the Dirichlet
integral,

(50) E 0. + S,p, + S)Dy + (S, S)D-^lD, ^(P + S,P + S)D,
>—i

where the abbreviation

(51) 5(a) = ¿5,(a)
»=i

has been used. By Green's formula, it follows that

AT 9 r dS r 9
E       (P, + S) — (p, + S)ds + „      S — ds^\(P + S) — (P + S)ds,
,=\J c„ dn Jc-2,_icF    dn Jc dn

whence, by the boundary properties of p, and P,

AT dp, C dP
2Z¡    (P. + S) -f- ds =  \  (P + S)—ds.
,=i J c, bn J c bn

In view of (51), this proves (48).
Equality in (50) is possible only if the function (49) coincides with P+S

throughout D. But this means that p,=P in each D„ which shows that P must
vanish on C„ Incidentally, it is also clear that the domains D, must in this
case fill the entire domain D, since otherwise there would be regions in which
P is harmonic and on whose boundaries P vanishes.

2. As a first application of Theorem IV, consider the case 5„(a)
= a, log | z — f„|, where f„ is a point of D, and a, is an arbitrary real constant.
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If g*(z, f-) = -log |*-f>| +h,(z, t,) and G(z, f„) = -log |z-fv| +H(z, f,) are
the Green's functions of D, and D, respectively, we clearly have p,(z)
= a,g,(z, |V), P(a)= E"-t oi,G(z, f»), and (48) yields

v* r r i , »s, n- ,  i    , n  **'(*• ^ ^2_, I       o¡A(a, f„) + 2^ «„ log I a — fii I   a,-ds
,=i J c, L m*» -I dw

= r r ê «r^c*. roi r r ¿ «^ f')i*•JcL,.i J bn L v=i J

Evaluating the integrals by Green's formula, we obtain

2.(52)        E «A(f,, fv) + 2 E «k«m log | f, - f, I á   E "M^ffÖFw &)•
r=l v<ji p./*—1

For « = 2, (52) yields the interesting discriminant inequality

G2(fi, f2) Û [HHu fi) - Âi(fi, fi)][tf(f2, f2) - ¿2(f2, f2)].
3. Applying (52) to a problem in the theory of bounded functions, we

set n = 2, ai=l, a2= — 1 and take D to be the unit circle. Since, in this case,
Hit, rj) =log 11 -fV|, (52) takes the form

(l-|fi|2)(l-|f2|2)
(53)     Äi(f i, f i) + htiSt, f 2) - 2 log | f ! - f, | ^ log

1 - fif 2* 2

If the functions/(z) and g(z) map the unit circle onto the domains D\ and Z>2,
respectively, and we set/(z) =fi, g(w) =f2, we have

Äi(fi, fi) = log [|/'(z) | (1 - | a |2)], Ä2(f2, f2) = log [\g'(w) | (1 - | w\2)].

Inserting these expressions in (53), we obtain the following result.
Let /(a) and g(z) be univalent and bounded by unity in  \z\ <1 and let

f(z) 9ág(w), where z and w are any two points in the unit circle. Then

(54)    | / w, (w) | s (rYz^zy) { !_.„>, J11/(z) - g(w)

g*(w)f(z)
This inequality is sharp and, for two given points z = z0 and w = w0, equality
will hold only if the conformai maps yielded by the two functions partition the
unit circle along a circular arc which is orthogonal to | a | = 1 and with respect
to which /(ao) and g(w0) are inverse points.

That we have indeed equality in this case follows from the remark that,
by the Schwarz inversion principle, the analytic continuation of the Green's
function of Di across the dividing circular arc coincides with the negative
value of the Green's function of A>.

From (54) we can deduce the following result.
If f(z) and g(z) are univalent and bounded by unity in \z\ <1 and if f(z)
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9ig(w), where z and w are any two points in the unit circle, then

(55) |/'(0)g'(0)| £1/4.
This inequality is sharp and the sign of equality will occur only in the case in
which /(O) = 0, g(0) = 2-1/2 (or vice versa) and the two mappings partition the
unit circle along an arc of | z —2g(0) | = 1.

In view of (54), (55) will be established if, for any two numbers a, b
such that 0<o<l, 0<¿)<1, it can be shown that

/a + b\2      1
(1 - a2)(l - b2) (-I £ — ■

\1 + ab)       4
Writing a — tanh a, b = tanh ß, we have

/a+b\2     / tanh (a + ß)\2
(1 - a2)(l - b2)(^—) = (->:   7

\1 + ab/      \cosh a cosh ß/

<

tanh (a + ß)

cosh a cosh ß — sinh a sinh ß/

/     sinh (a + ß)     y      1

\1 + sinh2 (a + ß)) = 4 '

with equality if sinh (a+ß) = l and a — 0 or ß = 0. Choosing a = 0, we shall
thus have equality for a = 0, b = 2~112. The description of the extremal map-
pings follows by specialization of the preceding result.

4. As another application of (54), we consider a function F(z) which is
bounded and univalent in \z\ <1 and does not vanish there. The functions
(F(z))112 and — (F(z))112 are also univalent in |a| <1 and clearly take no
common values. We may thus identify (F(z))1'2 and — (F(z))1'2 with, respec-
tively, the functions/(z) and g(z) in (54). Hence:

If F(z) is univalent, bounded by unity and ^0 in \z\ <1, and if z, w are
any two points in the unit circle, then

F'(z)F'(w)   I /l - I Fiz) I \ (I - I Fiw) |V| (F(z))1'2 + (F(w))1< 4 f1-Wl\ n-\Tjw)\\\ (F
\  1 -lal2 A 1 -I w\2 /J   1

I--

iFiz)Fiw)yi2\        \  1 - | a|2 / \ 1 - I w\2 A|   1 + (F*(a)F(w))1'2

wiiÄ equality only if Fiz) maps \z\ <1 otz/o íAe mmíí cí'rc/e minus a rectilinear
slit along an entire radius.

5. By different choices of the singularity functions S, in Theorem IV it is
possible to derive a great many inequalities concerning the conformai map-
ping of a number of mutually disjoint domains all of which are contained in
a given large domain. Although many of these inequalities are of interest
in themselves, their derivations all follow the same pattern and no new
ideas are involved. However, a different type of inequality is obtained if we
combine the results contained in Theorems III and IV. In the interest of
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more concise formulation we again restrict ourselves to the case of schlicht
domains. The modifications which are necessary if the schlicht plane is re-
placed by a closed Riemann surface of finite genus are quite obvious.

Theorem V. Let D\, ■ ■ ■ , Dn be mutually disjoint domains in the schlicht
plane and let 5i(z), • • • , 5„(a) be functions such that E"-i S,(z) is harmonic
and single-valued in the complement of E?-i D,. If p,(z) is such that p,(z) =0
on the boundary C, ofD, and p,(z) +S,(z) is harmonic and single-valued inD„ then

(56) ±f  (p,+ ± Sß)^ds^0.
y-i J c, \ «-i      / bn

There will be equality in (56) if, and only if, the domains D, and their boundaries
cover the entire plane and if all boundaries consist of arcs satisfying E?-i S,(z)
= 0.

As a first application, take S,(z) =a, log | a — f,|, where f„ is a finite point
of D, and the real constants a, satisfy E"-i «» = 0 and are otherwise arbitrary ;
because of the condition restricting the <x„ E"-i a* l°g I z~T"l WM De regular
at z= <». If g,(z, f„) = —log \z — f„| +h,(z, f„) is the Green's function of D„
we have p,(z)=a,g,(z, f,). Inserting this in (56) and using Green's formula,
we obtain

n n

(57) E a,h,it„ f„) + 2 E ot,aß log | f„ - f'„] £ 0, E «- = 0,
y=l ,<ß v=«l

with equality only in the case in which the entire plane is divided up into the
domains D, by the curves E?-i a' l°g I z~~%'\ •

6. (57) gives rise to a number of curious geometric results. Set n = 2m,
and divide the f„ into two groups of m points each, for which the a, are taken
as 1 and — 1, respectively. Next, assume that all domains are simply-connected
and geometrically congruent to each other, and that the singularities of the
Green's functions all have the same relative position within the domains in
question. In this case we have h,(Ç„ f,) = log Ria), where Ria) is the inner
conformai radius [lO] of the domain with respect to the point selected, and
(57) leads to the following result:

Let D be a simply-connected domain and let a be a fixed point of D. If 2m
replicas of D are placed in the plane in such a way that no two of them overlap
and if fi, • • • , fm, 771, • • • , vm denote the positions of the point a in the plane,

Urn

where R(a) is the inner conformai radius of D with respect to a.

(58) R(a) =
n if*-1,1

n 1 r. - fn 1 n 1 n» - * 1
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For a simple domain D, R(a) can be expressed in terms of the geometric
constants involved and (58) becomes a purely geometric statement. If, for
instance, D is a circle and a its center, R(a) is the radius of the circle, and
the right-hand side of (58) provides an upper bound for the size of the latter.
From the way (58) was derived it is, however, clear that this will not be a
sharp bound for the radius (an example shows, incidentally, that it cannot
be more than about 8 per cent higher than the true value).

To find the domains D for which (58) will be sharp, we observe from
Theorem V that this is possible only if the entire plane can be simply covered
by replicas of D. Furthermore, the Green's functions of the domains with
a,= l and the negative values of the Green's functions of the domains with
a,= —1 must all be analytic continuations of each other. Except for the
trivial case in which D is a sector of angle ir/m, this leaves three possibilities.
D may be a rectangle, an equilateral triangle, or an infinite parallel strip, and
the distribution of the values ± 1 for a, must be such that across each bound-
ary line two different values of a, face each other. For squares, we thus
have the following sharp result.

Let fi ■ • * , fm, Vi • • " i »7m be distinct points in the plane and draw, with
these points as centers, equally-sized squares of arbitrary orientation which do
not overlap. If b is the side of the square, then

T2(l/4)
(59) b < P = 1.8541 • ■ • P,

-    4,1/1

where P is the right-hand side of (58). The constant in (59) is the best possible.
Equality in (59) is, of course, excluded unless there is an infinity of squares

covering the plane in chess-board fashion. How fast equality is approached if
the number of squares grows is indicated by the fact that, for a chess-board
arrangement of 4X4 squares, we obtain è = 1.6469P. If we use the known
value of the inner radius of an equilateral triangle of side b, we obtain the
sharp inequality

b g )r3(l/3)/27r) P,

analogous to (59).
Using parallel strips of width b, we obtain the following result.
If 2m nonoverlapping linear segments of length b and centers fi, • • • , fm.

Vu • • • , Vm He on the same straight line, then b^(ir/2)P, where P is the right-
hand side of (58). The constant 7r/2 is the best possible.

By generalizing Theorem V to harmonic functions in three dimensions,
similar three-dimensional results can be obtained. As an example, we men-
tion the following inequality.

Consider 2m nonoverlapping equal cubes in space whose centers are at the
points Pi, • ■ • , Pm, Qi, • • • , Qm- If b is the side of the cube, we have the sharp
inequality
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ts±(± -±_£-ü;i_ t » y
í»YVm=i   -f\6<»        „<„ P»P^       ,<„  Ç}„CV

wÂere 7 = limpio g(P, Ç}) — (PQ)-1 ow¿ g(P, Q) is the Green's function of the
unit cube with respect to its center.

7. Passing now to function-theoretical applications of Theorem V, we
first consider the special case « = 2, «i=l, aj= — 1 of inequality (57), that is,

(60) Âi(f!, fO + htiU f,) = 2 log I f 1 - f, I.
If Di and D2 are simply-connected and we introduce the functions f(z) and
g(z) which map the interior of the unit circle onto D\ and Di, respectively,
(60) can be expressed as the following result concerning these two functions.

If fiz) and giz) are univalent for |a| <1 and if f(z)9£g(w), where z and w
are two arbitrary points in the unit circle, then

I f'(z)g'(w) I 1
(61)

|/(a)-^)|2   - (l-|z|2)(l-| w\2)

with equality only in the case in which the two functions map the unit circle
onto complementary half-planes, with respect to whose dividing line the points
/(a) and g(w) are symmetric.

(61) can be made to yield some information on univalent functions in the
unit circle. If F(a) is regular and univalent and does not vanish in \z\ <1,
both (F(z))112 and — (F(z))112 are univalent in the unit circle and they do
not take common values. They may thus be identified with the functions
f(z) and g(z) in (61). This yields

(62)
F'(z)

Fiz) 1 -

which, incidentally, reduces to the Koebe 1/4-theorem for a = 0. Integrating
(62) along a radial path from 0 to a, we obtain

Fiz) I 1 +
log-^   = 2 log-

F(0) 1 -
whence

,/1-UK2  ,     1   ,     i/i + l«lv

and the information that

Re <-} > 0     for      a   < tanh —
F(0)/ '    ' 8{

6. Miscellaneous problems. 1. The first result of this section concerns a
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sharpening of Theorem I which is possible if the singularity function Siz)
satisfies

r dSiz)
(63) I    —— ds ^ 0.

J c     bn

Theorem I can be replaced by the more precise inequality

(64) f S~ds^  f   S^ds+ [(co, «)Dl_fl]-i ( f  — ds),
J c    bn J a      bn \J c bn    /

where co(z) denotes the harmonic function which has the boundary values 1 and
0 on C änd G, respectively.

To prove (64), we consider the function w(z) defined by

«(a) = piz) + 5(a) + a,    zCZD, «(a) = 5(a) + aco(a),    a E £>i - D,

where a is an arbitrary real constant. Since m (a) is continuous in D\ and has
on G the same boundary values as p\(z)+S(z), it follows from the minimum
property of the Dirichlet integral that

iP + S,P + S)D + (5 + «CO, 5 + Co).^ =  (J>! + 5, ^ + S)Dl.

Transforming this inequality as in the proof of Theorem I, we find

/'    bp                                                      r      bpi5 — ds + 2a(S, co)Dí-d + ot2(w, co)Bl_B =   I    5-ds.
c    bn                                                                J d      bn

The best inequality of this type is obtained for

(5, u)Dl-D
a = — ■-■-•

(co, U>)Dl-D

If we choose this value of a and observe that, in view of the boundary prop-
erties of w(a),

r bS
(S, co)Dl_7j =1    —- ds,

J c bn

we obtain (64).
2. If both D and D\ are simply-connected, D\ — D is doubly-connected

and (co, u^d^d can be expressed in terms of the Riemann modulus M of this
domain. We have

2x
(o, co)fll_D =

log M

which is easily confirmed by evaluating the integral for a circular ring and by
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observing that the Dirichlet integral is invariant under a conformai map-
ping. If we further set 5(a) = E"=i a' l°g lz — f»J > "where the f, are points of
D and the a, are arbitrary real constants, we have p(z)= Eï-i a"g(z< f»)i
where g(z, f,) = —log \z — f,| +h(z, f„) is the Green's function of D. Inserting
this in (64), we arrive after some manipulation at the inequality

n n /     n        \ 2

(65) E a»«*ÄG"»i f».) á   E a^xßhi^„ f„) —I   E«")  l°g ■M"-

For n = 1, «i = l, this reduces to

(65') Ä(f, f) ^ **0\ f) - log M.
If Z> is finite and r(f) is the inner conformai radius of D [10], we have
h(Ç, D=log fit). (65') is thus equivalent to the following result.

Let D and D\ be two finite simply-connected domains such that DCZD\ and
let ri£) and i?(f) denote the inner conformai radii of D and D\, respectively, with
respect to a point f of D. If M denotes the Riemann modulus of the doubly-
connected domain Di — D, then

M á Ä(r)/r(f).
If D and £>i contain the point at infinity, we may set S(z) = —log |z|,

p(z)—g(z, oo)=log \z\ +h(z, co). Similarly to (65)', we obtain

— A(oo, co) ^ — Ai(co) — log M.

Since h(<*>, ») = —log r, where r is the outer conformai radius [10] of the
complement of D, M can also be estimated in terms of the outer radii.

If the outer conformai radii of the inner and outer boundaries of a finite
doubly-connected domain of modulus M are r and R, respectively, then

M ^ R/r.

3. To illustrate the type of information regarding bounded conformai
maps of the unit circle which can be obtained from (65), we set n = 2, ai=a2
= 1, and take D\ to be the unit circle. We have hi(z, f) = log 11 —f*z| and, if

/(a) denotes the function mapping D onto the unit circle,

h(z, f) = log
\f(z) - /(f)

i - /*(r)/(a)

We further assume that D contains the origin and that/(0) =0. Setting f = 0
and passing to the function F inverse to /, we arrive after an elementary
computation at the following result.

Let w — F(z) map \z\ <1 onto a schlicht domain D contained in \w\ <1
and let F(0) =0. If M is the Riemann modulus of the doubly-connected domain
bounded by \w\ =1 and the boundary of D, then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



284 ZEEV NEHARI [September

, Hz) 2
F'(z)F'(0) ' g M-

Jl-\F(z)\\
\  l-|a|2 A

with equality in the case in which D is bounded by the fourth-order curve

I     /  w - /(a) \ I
w I-J   = const.

I     \1 - f*(z)w)\
4. We now turn to a different type of extremal problem. Let D be a

schlicht domain of finite connectivity and let U(s) denote a piecewise continu-
ous function of s, where s is the length-parameter along the boundary C of D;
let further a and ß denote two distinct points of D. Consider now all doubly-
connected subdomains D' of D which do not contain a and ß and whose boundaries
C+C contain C, and associate with D' the harmonic function u(z) in D' which
takes the boundary values U(s) and zero on C and C, respectively. With these
definitions, find the domain D' for which

(66) (u, u)d' =   j  I     (ux + uy)dxdy = min.

We shall show that the problem (66) is solved by a domain D'0 whose
boundary component C is an analytic slit connecting a and ß and that the
associated function u0(z) satisfies

(buo\ i9«o">

\dn) *_Z1        I 9„ ) z=zt '

if Zi and a2 are two geometrically coinciding points on opposite edges of the slit.
We first remark that the existence of a solution to our problem follows

from compactness considerations. Furthermore, an approximation argument
shows that it is sufficient to establish the inequality

(68) («o, wo)d0' ^ («, u)d',

where the boundary component C of D' consists of one or more analytic
curves. If D' is of this type, we may connect a and ß by a continuous arc y—
which may even be assumed to be analytic—such that y has no points in com-
mon with D'. We denote the domain bounded by C and y by D", and we ex-
tend the definition of u(z) to all points of D" by setting u(z) =0 in D"—D'; ob-
viously, this function u(z) is continuous in D".

We now construct a two-sheeted domain D* by crosswise joining two
replicas of D" along y, and we extend the definition of m (a) to all points of D*
by setting tt(ai)-f-«(z2) =0 if Zi and z2 are points which lie one on top of the
other. Clearly, this function u(z) is continuous in D* and it has the boundary
values U(s) and — U(s) on C and its replica, respectively. We now introduce
the function Uo(z) which has the same boundary values and is harmonic
throughout D*. By the minimum property of the Dirichlet integral, we have
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(69) («o, uo)d> á (m, u)d. = 2(u, u)D-,

By symmetry, m0(zi) = — «o(z2) if ai and z2 are two points with the same pro-
jection onto the plane, and the curve u0(z) =0 will therefore decompose D*
into two identical schlicht slit-domains Do ■ Since a and ß are branch points
of D*, this slit—which, since it satisfies u(z) =0, is obviously analytic—must
connect a and ß. It is further clear that (m0, Mo)d. = 2(wo, Uo)d'„ and this, to-
gether with (69), proves the minimum property (68) of D¿. That the normal
derivatives of u0(z) satisfy the relation (67) at the points of the slit is also
an immediate consequence of the fact that «o(zi) = — u0(z2) if zi and z2
are two points of D* with the same projection onto the plane.

The same method of proof will also dispose of the case in which there are
m pairs of points of D, say a\, ßi, • • • , ctm, ßm, which are to be outside D',
and in which we prescribe, moreover, that both points of a pair are to be
within the same "hole." We obtain an extremal domain which, in addition to
G is bounded by m analytic slits each connecting the two points of a pair;
the extremal function will again have the property (67).

5. (67) can be used in order to obtain explicit expressions for the extremal
functions. We illustrate this in the case of the following problem: Given four
distinct points a\, a2, a3, «4, to find two disjoint continua G and G containing
the pairs a.\, a2 and a3, au, respectively, such that the Riemann modulus of
the complement D of G + G is a maximum [13].

If u(z) is harmonic in D and takes the boundary values 0 and 1 on G and
G, respectively, the modulus M of D is given by (u, u)D — 2»r/log M. We thus
have to minimize this Dirichlet integral under the above conditions; the
existence of a minimizing domain follows again from a compactness argu-
ment. If we apply our solution of the problem (66) in turn to the curves G
and G—using the functions u(z) and 1— «(a), respectively—we find that
in the extremal case both G and G are analytic arcs along which the ex-
tremal function satisfies the condition (67).

If w—f(z) maps the extremal domain onto the circular ring 1< | w\ <M,
we have log |/(z)| =u(z) log M, and thus

du      1   f'(z)  dz
— = — -— > a E G, C%.
9«       i   /(a)   ds

Since (dz/ds)2 has the same values on opposite edges of the slits, it follows
therefore from (67) that (/'(z)//(z))2 is single-valued in the entire plane. The
only singularities of this function are situated at the points a„ v = l, 2, 3, 4.
In view of the mapping properties of /(a), these are simple poles. Hence the
function

(70) (^Y Ó (z - a.)
\f(z) /   _i
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is regular and single-valued at all finite points of the plane. Since /'// has a
double zero at a= °°, the same is also true at infinity, and the function (70)
must reduce to a constant. It thus follows, in accordance with  [13], that

log/(a) =cj"
dz

/   4 \1/2( II (» - a,))
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