Some Insights Into Deterministic Scheduling Problems Involving Multiple Resources and Preemption

K. Omahen

Report Number:

75-155

Omahen, K., "Some Insights Into Deterministic Scheduling Problems Involving Multiple Resources and Preemption" (1975). Department of Computer Science Technical Reports. Paper 102.
https://docs.lib.purdue.edu/cstech/102

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Some Insights Into Deterministle Scheduling Problems Involving Multiple Resources \& Preemption

K. Omahen

Computer Science Department
Purdue Universlty
West Lafayette, IN 47907

CSD-TR 155
July 1975

Keywords: determinlstic scheduling, preemptive-resume rules, multiple-resource scheduling, minlmizing completion time

Abstract

This paper considers deterministic scheduling problems for systems having a number of different resource types and an arbitrary number of units of each resource. General results are obtalned for preemptiveresume scheduling rules under the condition of zero preemption costs. Schedule completion time is the objective function considered, and the paper examines the relative effect of demand scheduling and precedence constraints on the minlmum schedule completion time.

With the exception of multiple-server systems, few scheduling problems arlsing from multiple-resource systems have been treated in the literature. This paper attempts to offer insights into one class of multiple-resource scheduling problems and to provide some general results as a by-product. A formal description of the problem to be consldered is glven below:

Problem.

We are given a system having the following resource characteristics:
I = No. of Types of Resources
$R_{i}=$ Amount of Resource-Type-i in System, $1=1,2, \ldots, I$.
A set of jobs as described below are to be scheduled so as to minimize
schedule completion time (i.e., the time to finish all jobs):
$N=$ No. of Jobs to be scheduled.
$J_{n}=$ Symbol denoting the nth Job, $n=1,2, \ldots, N$.
$V_{n}=\left[r_{n 1}, r_{n 2}, \ldots, r_{n I}\right]=$ Vector describing the resource requirements of $J_{n} ; i . e ., r_{n 1}$ units of Resource-Type-1, $r_{n 2}$ units of Resource-Type-2, etc.
$P_{n}=$ Processing Time for J_{n}; this is the amount of time that the resources V_{n} are simultaneously required. If the resource requirement V_{n} is satisfled, job J_{n} progresses at unit rate.
The scheduling rule to be used is assumed to be of the preemptive-resume type with zero preemption costs, and the four cases to be considered are:

Case 1. No Precedence ConstraInts, Non-Demand Scheduling
Case 2. No Precedence Constraints, Demand Scheduling
Case 3. Precedence Constraints, Non-Demand Scheduling
Case 4. Precedence Constraints, Demand Scheduling
Problems examined in the past have assumed that the scheduling decision involves choosing the next job to be scheduled; such a viewpoint is a reasonable one to take when developing heuristic rules but Ignores the fundamental nature of the problem. This author believes that the following alternative view is more appropriate;

Vlewpoint. Scheduling rules for multiple-resource systems should, at a scheduling epoch, be concerned with the choosing of some combination of jobs whose characteristics allow for simultaneous processing.

In order to demonstrate the utility of thls approach, additlonal notation must be introduced:
$M=$ Number of distinct feasible job combinations
$C_{m}=N \times I$ column vector denoting a feasible combination of Jobs, $=$ a subset of the set of jobs $\left\{J_{n} \mid 1 \leq n \leq N\right\}$, $=\left[\begin{array}{l}x_{m 1} \\ x_{m 2} \\ \vdots \\ x_{m N}\end{array}\right]$

$$
\text { where } x_{m n}=\left\{\begin{array}{l}
1 \text { if } J_{n} \text { is included in } C_{m}, \\
0 \text { otherwise. }
\end{array}\right.
$$

For a job combination C_{m} to be "feasible," we require that
N
$\sum_{j=1} X_{m j}{ }^{*} r_{j i} \leqslant R_{i}, i=1,2, \ldots, I$.
That is, the total resources required of all Jobs in the combination must not exceed the amount actually present in system.
If we pursue the viewpoint that the scheduling rule should be concerned with choosing combinations of jobs for processing, we may denote a schedule S as $S=\left[\left(i_{1}, t_{1}\right),\left(i_{2}, t_{2}\right), \ldots,\left(i_{K}, t_{K}\right)\right]$
where each pair ($\mathrm{I}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}$) is interpreted to be a combination scheduling
Interval In which feasible combination with Index i_{k} is to be serviced for t_{k} unlts of time.

The above notation specifles the first through Kth combination scheduling intervals which constltutes the schedule.

Some Insights

Observe that it is immediately possible to make a statement concerning the minimum schedule completion time for the situation in which there are neither precedence constraints on the order in which jobs must be processed nor any requilrement for demand processing.

Lemma l. The minlmum schedule completion tlme T_{1} for Case I (PreemptiveResume Scheduling, No Precedence Constraints, Non-Demand Scheduling) is the solution of the following LInear Programming (LP) problem:

$$
T_{1}=\operatorname{Min} \sum_{m m 1}^{M} t_{m}
$$

subject to the N equality constraints
M
$\sum_{m=1}^{E} \quad x_{m n}{ }^{*} t_{m}=P$,
where $t_{m}=$ (non-negative) amount of t mme that the meh combination, C_{m}, is to be serviced in total to obtain the minimum schedule completion time; to obtain the minimum

$$
\begin{aligned}
& P_{n}=\text { processing time for job } J_{n} ; \\
& X_{m n}=\text { element of colioms }
\end{aligned}
$$

$$
\begin{aligned}
& x_{m n} a \text { element of column matrix } c_{m} \text { indicating whether job } J_{n} \\
& \text { is present in the combination. }
\end{aligned}
$$

Proof. The schedule nt in the combination. spent in processing each possible completion time is the sum of the amount of time reflect the requirement that, for combination of jobs, and the constraints In combinations in which the job "each job, the amount of time spent time request of that job. Given a solution to the Job. for example, any permutation LP problem, a schedule S may be In in for which t has a nonzero of those combination scheduling in sly formed; results also imply that no value would be acceptable. non-zero values and independent, where

$$
A=\left\{C_{m} / t_{m}>0\right\}
$$

It should be obvious that imposing demand scheduling and/or precedence constraints on the set of Jobs can never result In a smaller schedule completion than would be obtain situations in which due to demand shed the minimum schedule complete However, there might exist factors will be next ing and/or precedence constetion time might be increased For me next examined. that mo r multiple-server systems, demand that no processor will remain idle if thad scheduling has been taken to mean serviced. For multiple-resource systems in e is some. Job which might be ambiguities arise when there are many this definition is not adequate

If we consider a scheduling epoch to be the instant at which a different combination of jobs goes into service, a more suitable definition of demand scheduling may be given in terms of a "maximal combination."

Maximal Comblnation (when no precedence constraints): For a glven set of jobs in a multiple-resource system, each with resource-requirements and (remaining) processing tlme requests, a (feaslble) comblnation c_{i} is said to be a maximal combination if there does not exist another (feasible) combination C_{j} such that C_{j} is properly contained in C_{j} (i.e., such that every job in C_{f} is also contained in C_{j}). Having defined a maximal combination, demand scheduling may be better described as shown below.

Demand Scheduling: At each scheduling epoch, a maximal combination (for the remaining jobs in system) is chosen for processing.

The next result to be presented will apply to Case 2 (i.e., with demand scheduling imposed on Case 1); thls result demonstrates that the minimum schedule completion tlme T_{2} will always be the same as that possible for Case 1 where demand scheduling is not required.

Lemma 2. The minImum schedule completion time T_{2} for Case 2 (PreemptiveResume Rule, No Precedence Constraints, Demand Schedullng) will always be equal to the value T_{1} of Lemma 1 .

Proof. Given a schedule of minimum length T_{1} given by Lemma 1 , a schedule which meets the requirements of demand scheduling may always be constructed using the algorithm given in Appendix 1.
Demand scheduling has the effect of Imposing constralnts on the order in which combinations may be processed because, whenever a combination C_{i} is properly contained in some combination C_{j}, comblnation C_{j} may be chosen for servicing only if it is impossible to form combination C_{J} from the remaining uncompleted jobs in system.

Job precedence constralnts specify a partial ordering on the set of jobs, where

$$
J_{1}<J_{n} \quad i \leqslant n
$$

implies that the \underline{i} th Job must be processed to completion before the servicing
of the nth job can commence. The effect of an arbitrary set of job precedence constralnts is illustrated in the following lemma:

Lemma 3. The minImum schedule completion tlme T_{3} for Case 3 (Pre-emptive-Resume Rule, Precedence Constraints, Non-Demand Scheduling) will always be greater than or equal to the value $T_{\text {, }}$ of Lemma 1 . Proof. Consider the effect of the job precedence constraints on the possible schedules that might be generated for Case 3.
(a) We must first eliminate from consideration any job combination C_{m} such that $J_{i} \in C_{m}, J_{n} \in C_{m}$, and $J_{i}<J_{n}$ for $i \neq n$.
(b) For the remaining job combinations, the job precedence relations have the following effect:
(i) A combination precedence relation between C_{k} and C_{m} wlll be denoted as $C_{k}<C_{m}$ if each job precedence relation between a job $\ln C_{k}$ and one $\ln C_{m}$ is of the form $J_{i}<J_{n}$, where $J_{1} \in C_{k}$ and $J_{n} \in C_{m}$.
(II) If $J_{i}<J_{n}$ and $J_{J}<J_{\ell}$ for some $J_{i}, J_{\ell} \in C_{k}$ and $J_{j}, J_{n} \in C_{m}$, then combinations C_{k} and C_{m} may not be present in the same schedule. That is,

$$
t_{k}>0 \text { implies } t_{m}=0
$$

and

$$
t_{m}>0 \text { implies } t_{k}=0
$$

where t_{k} and t_{m} are combination processing times.
(IIi) If there are no precedence relations between any pair of different Jobs, one in comblnation C_{j} and the second in combination C_{m}, there is no combination precedence relation defined between C_{i} and C_{m}.
The meaning of a combination precedence relation, $C_{f}<C_{m}$, is that a schedule containing combination scheduling intervals for both C_{i} and C_{m} must be such that the interval for C_{j} precedes the one for C_{m}. The proof is completed as follows. A well-known LP result is that the solution to the minimization problem of Lemma liles at an extreme point for which at most I combinations are assigned non-zero combination
processing times
one or more of the extuations (a) and ($b-i i$) described above cause of the job precedence constraints, and excluded due to the presence We complete the coverage of the four it follows that $T_{3} \geq T_{1}$. of having both precedence cons considering the effect ing (Case 4). The approach taken here and a requirement for demand processthat it wlll be shown that, given a solution may always construct a demand schedule solution to the Case 3 situation, one We again interpret demand scheduling toving the same completion time. (for the remaining jobs in system) is mean that a maximal combination ever, the presence of precedence constraisen at each scheduling epoch. Howcombination to be modified: Jobs $\left\{J_{n}\right\}$ having non-zero (remalning) processing) Given a set A of only those comblnations which can be forocessing times, we consider having the following properties: $B=\left\{J_{n} \mid J_{n} \in A\right.$ and $A J_{m} \ni\left(J_{m}<J_{n}\right.$ and $\left.\left.J_{m} \in A\right)\right\}$
That is (in the context of the jobs in A), we consider only those jobs for which either no precedence relations are defined or which no Job precedes. A (feasible) combination C_{f} is said to be a maximal combination If there does not exlst any other (feasible) combination C_{j} such that C_{i} is properly contalned in C_{j}, where both C_{i} and C_{j} are
formed from jobs in B only. Lemma 4. The minlmum schedule completion time T_{4} for Case 4 (Pre-emptive-Resume Rule, Precedence Constraints, Demand Schedull (Prealways be the same as the minimum schedule, Demand Scheduling) will Case 3. 3 shedule completion time T_{3} for Proof. Given a minimum length schedule for Case 3, a schedule for Case 4 may always be constructed using the same algorithm given in present is glven in Appendix 2.

The preceding lemmas will allow the following summary to be given for the relative effects of Job precedence constraints and demand scheduling on minimum schedule completion time for preemptive-resume rules for multiresource systems.

Theorem. For a multiple-resource system with a set of N jobs $\left\{J_{n} \| 1 \leq n \leq N\right\}$ to be scheduled, where each Job J_{n} has an associated resource requirement V_{n} and processing time P_{n}, let T_{j} denote the minimum schedule completion time possible under each alternative-i listed below:
(1) Preemptive-Resume Rule, No Precedence Constraints, NonDemand Scheduling
(2) Preemptive-Resume Rule, No Precedence Constraints, Demand Scheduling
(3) Preemptive-Resume Rule, Precedence ConstraInts, Non-Demand Scheduling
(4) Preemptive-Resume Rule, Precedence Constraints, Demand Scheduling

The relative values of T_{1}, are g liven by the following relations:

$$
\begin{array}{lll}
T_{1}=T_{2} ; & T_{1} \leq T_{3} ; & T_{2} \leq T_{3} ; \\
T_{1} \leq T_{4} ; & T_{2} \leq T_{4} ; & T_{3}=T_{4} .
\end{array}
$$

Proof. Immediately follows from Lemmas 1-4.

No mention has been made concerning the effect of non-preemptive scheduling; this has been avoided because non-preemptive disciplines considerably complicate matters. Non-preemptlve scheduling requires that one become aware of the allowable transitions between Job combinations, and the description of such transitions is somewhat unwieldy for the general case. It is interesting to note that no anomalies have been observed in the above theorem; this suggests that anomalies such as those observed for multiple-server systems are due to the Interaction between the constraints Imposed by nonpreemptive scheduling and those omen the conconstraints and demand scheduling.

Summary

This paper consldered the deterministic scheduling problem for a multiple-resource system when preemptive~resume rules may be employed. The suggestion was made that the proper viewpoint to be taken for such a system is that the scheduling rule should be concerned with choosing the next combination of Jobs to be serviced rather than wlth the selection of the next job for processing. Under the condltion that schedule completion time is taken to be the objective function to be minimized, the following statements may be made when preemptive-resume rules are employed:
--- Job precedence constraints may cause an increase in the minimum schedule completion time over that possible if the constraints were not present.
--- Demand scheduling never causes the minimum schedule completion time to be greater than that possible if demand scheduling were not required.
--- The problem of minimizing schedule completion time when there are neither job precedence relations nor the requirement for demand processing is a conventional Linear Programing problem in which one determines the amount of time that each job combination should be serviced.

Bibliography

1. Omahen, K. Capacity bounds for multi-resource queues. Tech. Rpt. CSD-TR 137, Computer Sclence Department, Purdue University, March 1975.
2. Kafura, D. G. Analysis of Scheduling Algorithms for a Model of a Multiprocessor Computer System. Ph.D. Dlssertation, Computer Science Department, Purdue University, August 1974.

Appendix 1

Suppose that we are given a schedule $S_{\text {, }}$ for Case 1 having minlmum completion time and that we wish to construct a schedule for Case 2 by means of an algorithm which, at the kth step, Insures that the combination chosen for the k th epoch meets the requirements of demand scheduling. Define:

$$
\begin{aligned}
P_{n}(k)= & \text { remaining processing.time for } j o b J_{n} \text { after the completion } \\
& \text { of the } k \text { th comblnation scheduling Interval in schedule } S_{2}(k) . \\
S_{2}(k)= & {\left[\left(i_{1}, t_{1}\right),\left(i_{2}, t_{2}\right), \ldots,\left(i_{K}, t_{K}\right)\right] } \\
= & \text { schedule whlch results after } k \text { steps of the algorithm given } \\
& \text { below, where } S_{2}(0)=S_{1} \text {. Note that } K \text { need not have the same } \\
& \text { value for all } S_{2}(k) .
\end{aligned}
$$

The algorithm consists of repeating the following step for $k=1,2, \ldots$ until a demand schedule is obtained.

Step - k: Assume that the flrst k-l combination scheduling intervals each satisfy the requil rements of demand scheduling. Examine the kth combination in schedule $S_{2}(k-1), i_{k}$:
(a) If j_{k} is a maximal combination for the set of jobs $\left\{J_{n} \mid P_{n}(k-1)>0\right.$, $1 \leq n \leq N\}, S_{2}(k)$ is taken to be $S_{2}(k-1)$, and we proceed to (c). Otherwise, go to (b).
(b) Given $C_{I_{k}}$ is properly contained in some maximal comblnation $C_{I_{k}}{ }_{\mathbf{k}}$ ' we may redistribute the remaining processing times of those jobs included in combination i_{k} but not in i_{k}. Let B denote a set of job indices defined as follows:

$$
B=\left\{n \mid J_{n} \in:_{I_{k}}, J_{n} \notin C_{I_{k}}\right\}
$$

We replace the k th combination scheduling Interval in $S_{2}(k-1)$, (i_{k}, t_{k}), with the interval (i_{k}, t_{k}^{i}), where

$$
\left.t_{k}^{\prime}=\min \left[t_{k}, \min _{n \in B}\left[P_{n}(k-1)\right]\right]\right) .
$$

For each $n \in B$, we systematically modify the remalnder of the schedule $S_{2}(k-1)$ so as to subtract the portion of the processing
(b)

Continued.
times which are now included in the kth interval. The quantity t_{k}^{\prime} represents the amount of processing time for job J_{n} which must be subtracted off from the remaining combination scheduling intervals. These remaining intervals (${ }_{k+1}, t_{k+1}$), etc. must be sequentially examined and modifled until this amount of processing time t_{k}^{\prime} for job J_{n} has been properly subtracted. Suppose that we are examining (i_{j}, t_{j}) for $j>k$ and that w_{n} represents the processing time for $j o b J_{n}$ which has yet to be subtracted (w_{n} a t_{k}^{\prime} inltially). If $J_{n} \notin C_{j}$, we proceed to the next comblnation interval. Otherwise, one of the following actions takes place:
(I) If $t_{j} \leq W_{n}$, we replace (i_{j}, t_{j}) In the schedule with interval (I_{j}, t_{j}), where $C_{j}=C_{j}=J_{n}$. Also, we decrement quantity w_{n} by amount t_{j}.
(ii) if $t_{j}>w_{n}$, replace (i_{j}, t_{j}) in the schedule with two combination scheduling intervals ($\left.i j, w_{n}\right),\left(1, t_{j}-w_{n}\right)$ where $C_{I j}=C_{j}-J_{n}$. Also, quantity w_{n} is set to zero.
For a given value of n, additional combination scheduling intervals are examined ε modified until the amount of processing time t_{k}^{\prime} for job J_{n} has been subtracted entirely. Thls process is then repeated until all values of n included in the set of indices B have been treated. The resulting schedule is then defined as $S_{2}(k)$.
(c) Update the remalning processing times; i.e.,

$$
P_{n}(k)=P_{n}(k-1)-x_{m n}{ }^{*} t_{k} \text { for } n=1,2, \ldots, N
$$

where $\left(i_{k}, t_{k}\right)$ is the k th combination scheduling interval in $S_{2}(k)$
and $m=i_{k}$. This process is guaranteed to terminate in a finite number of steps, and the final value of $S_{2}(k)$ is a demand schedule of the same length as S_{1} because the algorithm never causes the completion time to increase and a decrease In completion time would contradict the assumption that S_{1} is of minimum length.

Appendix 2

The algorithm described In Appendix 1 works equally well when we are given a schedule S_{3} for Case 3 having minimum completion time possible and wish to construct the corresponding demand schedule S_{4} for Case 4. The key to belleving that the algorithm still works properly is to understand the implications of the definltion of demand scheduling when precedence constraints are present. As mentioned in the main body of the paper, the jobs included in a maximal combination are not preceded by any of the remaining jobs in system. It is this characteristic that prevents any conflicts in precedence constralnts from arising when the algorithm systematically modifles the schedule.

