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SOME INTEGRAL FORMULAS OF THE GAUSS-
KRONECKER CURVATURE

By BANG-YEN CHEN

Let M?* be a compact, oriented 2k-dimensional manifold and f: M2%*—E2k+t be
an immersion of M? into a (2k-+1)-dimensional Euclidean space, and let B, be the
bundle of unit normal vectors of f(#?¥), and the mapping ¥ B,—S¥ of B, into
the unit sphere S of E?¢+! be defined by v(p, e)=e for (p,e) in B,.

Let dV be the volume element of M?, dX,; be the volume element of SZ.
Then the integral:

7(5)={ sl

is called the total curvature of the immersion

(1) fi MR+,
Chern and Lashof [2] proves that 7'(f) satisfies the following inequality:
2%k
(2) r(n=(g ﬁi)m

where ¢z denotes the volume of the unit sphere S, and f; is the i-th Betti
number of M?*, If the equality in (2) holds, then the immersion (1) is called a
minimal imbedding.

Now, let N be the outer unit normal vector field on f(M?*), and let

7. M*—S2
be the sphere mapping defined by 7(p)=N(p), then the function G(p) defined by
(3) 7*d3u=G(p)dV,

where 7* is the dual mapping of 7, is called the Gauss-Kronecker curvature of f.
The object of this note is to find some integral formulas for the Gauss-

Kronecker curvature, and to prove that these integral formulas play a main role

in the minimal imbedding of even-dimensional hypersurfaces in Euclidean spaces.

1. Some integral formulas for Gauss-Kronecker curvature.

THEOREM 1. Let f: M*—E?*+*1 be an immersion of an compact, orviented 2k-
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dimensional manifold in Euclidean space of dimension (2k+1), and let U={peM?*:
G(p)>0}, and V={peM?* :G(p)<0}, then

(4) [ ctrav=(5 e )5
and
(5) SVG(@dVé—(;; ﬁm-_l)%".

Proof. Let 9J(N) denote the index of the unit normal vector field N of M?%*
then by the Hopf index theorem, we have

1 1
(6) gm)=—\  rrasu= a0,
where y(M?*) denotes the Euler characteristic of M?%. Therefore, we have
_ Cox
(7) [, Giprav =2y,
so that
(8) [, cwav+ cwav= (3 -1r8) 2.
U 14 =0

On the other hand, by the definition of G(p) and, we can easily prove that
P3| =2(G(p)|d V.
Therefore, by (2), we get

(9) [ mazai=2{ i6onav=(5a)e
hence, we have
(10) SUG(p)dV—SVG(p)dVg(ﬁ}oﬁi)cg .

Combining (8) and (10), we can easily get the inequalities (4) and (5). This com-
pletes the proof of the theorem.

THEOREM 2. Let f: M¥*—E?** be given as in Theorem 1, then the immersion
[ M*—E?%+ is g minimal imbedding if and only if

a § cmar=(Z )%
and
12) SVG( HAV=— (é 192“) =

Proof. If equalities (11) and (12) hold, then by (9), we have
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T(f)= SM%w*dzzk[ — 2SUG( p)dV—ZS G- @, pi> Cane

Therefore, the immersion f: M?*—E?*1 is a minimal imbedding.
Conversely, if the immersion f: M?*—E?%**! is a minimal imbedding, then we
have

2k
T(f)=S %A Sy = ( 3 ﬁi) ot
M2k =0
that is

3) [, cav—{ cav—(E )%

2=

Therefore, by (8) and (13), we can easily get equalities (11) and (12). This com-
pletes the proof of the theorem.

2. Some Applications.

In this section, I want to use Theorem 1 and 2 to prove the following theorem
on the minimal imbedding of a even dimensional manifold with the odd dimensional
Betti numbers vanishing.

THEOREM 3. Let f: M*—E?*! be an immersion of a compact, oriented 2k-
dimensional manifold M?* in E¥**' with the Gauss-Kronecker curvature G(p)=0,
then the odd dimensional Betti number of M are zero, and the immersion f is a
minimal imbedding.

Conversely, if the immersion f: M*—E%**Y is a minimal imbedding of a com-
pact, oriented 2k-dimensional manifold in E%*®*, with the odd dimensional Betti
numbers vanishing, then the Gauss-Kronecker curvature G(p)=0 for all p in M?*.

Proof. By the hypothesis, if G(»)=0 for all p in M?®*, then we have V=g,
and therefore by inequality (5), we have

k
21132{-1=0:

so that
,Bzi—1=0 for i=1,2, - k.
Furthermore, by the inequality (7), we have

T( f)=SM2k|ﬁ*d22k| - 2S G(pav= 2SMG( DAV

=y (M*)cor= (:é) ,Bi) Cars

so that the immersion f: M*—E?%*+! {s a minimal imbedding.
Conversely, if the immersion f: M?*—FE?%*! is a minimal imbedding and Bs-1=0
for all ;=1,2,---,k. Now, let us suppose that there exist some points in M?** with
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the Gauss-Kronecker curvature G(p) negative, then by the continuity of G(p) on
M?*, the set V={pe M :G(p)<0} is a positive measure set on M?*, therefore the
integral

S G(p)AV
14
is negative, hence by (9) and (11), we have

rn={_ wazui=o cwav-2f cwav

> 206V = (5 Jou= (2 )

1=

This is a contradiction, hence G(»)=0 for all p in M?*, This completes the proof
of the theorem.

In the special case, when k=1, then the Gauss-Kronecker curvature G(p) is
just the Gaussian curvature K(p), hence by the fact of ¢,=4x, we have the follow-
ing corollary:

COROLLARY. If f: M?—E? is an immersion of a compact, oriented surface in
the 3-dimensional Eculidean space, then we have

(14) S K(p)dV=4n,
U

and

(15) S K(p)dV=—4gn,
v

where U={peM?: K(p)>0} and V=[peM?: K(p)<O0}.

The immersion f: M?*—E?® is a minimal imbedding if and only if the equalities
in (14) and (15) hold. In particular if M? is a sphere, then the immersion f is
a minimal imbedding if and only if the Gaussian curvature of f is non-negative
everywhere.

REFERENCES

[1] Cuen, B. Y., A remark on minimal imbedding of surfaces in E4 Kodai Math.
Sem. Rep. 20 (1968), 298-300.

[2] Cuern, S. S. anp R. K. LasHor, On the total curvature of immersed manifold.
Amer. J. Math. 79 (1957), 306-318.

[3] Cuern, S. S. anp R. K. LasHor, ——, II. Michigan Math. J. 5 (1958), 5-12.

[4] Orsuki, T., On the total curvature of surfaces in Euclidean spaces. Japan. J.
Math. 35 (1966), 61-71.

DEPARTMENT OF MATHEMATICS,

TAMKANG COLLEGE OF ARTS AND SCIENCES,

INSTITUTE OF MATHEMATICS,

NaTtional TsiNng Hua UNINERsITY, HsiNcHu, TAIwWAN, CHINA.



