SOME INTEGRAL FORMULAS OF THE GAUSSKRONECKER CURVATURE

By Bang-Yen Chen

Let $M^{2 k}$ be a compact, oriented $2 k$-dimensional manifold and $f: M^{2 k} \rightarrow E^{2 k+1}$ be an immersion of $M^{2 k}$ into a ($2 k+1$)-dimensional Euclidean space, and let B_{ν} be the bundle of unit normal vectors of $f\left(M^{2 k}\right)$, and the mapping $\tilde{\nu}: B_{\nu} \rightarrow S_{0}^{2 k}$ of B_{ν} into the unit sphere $S_{0}^{2 k}$ of $E^{2 k+1}$, be defined by $\nu(p, e)=e$ for (p, e) in B_{ν}.

Let $d V$ be the volume element of $M^{2 k}, d \Sigma_{2 k}$ be the volume element of $S_{0}^{2 k}$. Then the integral:

$$
T(f)=\int_{M^{2 k}}\left|\tilde{\Sigma}^{*} d \Sigma_{2 k}\right|
$$

is called the total curvature of the immersion

$$
\begin{equation*}
f: M^{2 k} \rightarrow E^{2 k+1} . \tag{1}
\end{equation*}
$$

Chern and Lashof [2] proves that $T(f)$ satisfies the following inequality:

$$
\begin{equation*}
T(f) \geqq\left(\sum_{i=0}^{2 k} \beta_{i}\right) c_{2 k} \tag{2}
\end{equation*}
$$

where $c_{2 k}$ denotes the volume of the unit sphere $S_{0}^{2 k}$, and β_{i} is the i-th Betti number of $M^{2 k}$. If the equality in (2) holds, then the immersion (1) is called a minimal imbedding.

Now, let N be the outer unit normal vector field on $f\left(M^{2 k}\right)$, and let

$$
\eta: M^{2 k} \rightarrow S_{0}^{2 k}
$$

be the sphere mapping defined by $\eta(p)=N(p)$, then the function $G(p)$ defined by

$$
\begin{equation*}
\eta^{*} d \Sigma_{2 k}=G(p) d V, \tag{3}
\end{equation*}
$$

where η^{*} is the dual mapping of η, is called the Gauss-Kronecker curvature of f.
The object of this note is to find some integral formulas for the GaussKronecker curvature, and to prove that these integral formulas play a main role in the minimal imbedding of even-dimensional hypersurfaces in Euclidean spaces.

1. Some integral formulas for Gauss-Kronecker curvature.

ThEOREM 1. Let $f: M^{2 k \rightarrow} \rightarrow E^{2 k+1}$ be an immersion of an compact, oriented $2 k$ -

[^0]dimensional manifold in Euclidean space of dimension (2k+1), and let $U=\left\{p \in M^{2 k}\right.$: $G(p)>0\}$, and $V=\left\{p \in M^{2 k}: G(p)<0\right\}$, then
\[

$$
\begin{equation*}
\int_{U} G(p) d V \geqq\left(\sum_{\imath=0}^{k} \beta_{2 i}\right) \frac{c_{2 k}}{2}, \tag{4}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\int_{V} G(p) d V \leqq-\left(\sum_{2=1}^{k} \beta_{2 i-1}\right) \frac{c_{2 k}}{2} \tag{5}
\end{equation*}
$$

Proof. Let $\mathcal{G}(N)$ denote the index of the unit normal vector field N of $M^{2 k}$ then by the Hopf index theorem, we have

$$
\begin{equation*}
\mathcal{G}(N)=\frac{1}{c_{2 k}} \int_{M^{2 k}} \eta^{*} d \Sigma_{2 k}=\frac{1}{2} \chi\left(M^{2 k}\right), \tag{6}
\end{equation*}
$$

where $\chi\left(M^{2 k}\right)$ denotes the Euler characteristic of $M^{2 k}$. Therefore, we have

$$
\begin{equation*}
\int_{M^{2 k}} G(p) d V=\frac{c_{2 k}}{2} \chi\left(M^{2 k}\right), \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{U} G(p) d V+\int_{V} G(p) d V=\left(\sum_{\imath=0}^{n}(-1)^{i} \beta_{i}\right) \frac{c_{2 k}}{2} \tag{8}
\end{equation*}
$$

On the other hand, by the definition of $G(p)$ and, we can easily prove that

$$
\left|\tilde{\nu}^{*} d \Sigma_{2 k}\right|=2|G(p)| d V .
$$

Therefore, by (2), we get

$$
\begin{equation*}
\int_{M^{2} / \tilde{\nu}^{*}} d \Sigma_{2 k}\left|=2 \int_{M^{2 k}}\right| G(p) \mid d V=\left(\sum_{\imath=0}^{2 k} \beta_{i}\right) c_{2 k}, \tag{9}
\end{equation*}
$$

hence, we have

$$
\begin{equation*}
\int_{U} G(p) d V-\int_{V} G(p) d V \geqq\left(\sum_{\imath=0}^{2 k} \beta_{i}\right) \frac{c_{2 k}}{2} \tag{10}
\end{equation*}
$$

Combining (8) and (10), we can easily get the inequalities (4) and (5). This completes the proof of the theorem.

Theorem 2. Let $f: M^{2 k} \rightarrow E^{2 k+1}$ be given as in Theorem 1, then the immersion $f: M^{2 k} \rightarrow E^{2 k+1}$ is a minimal imbedding if and only if

$$
\begin{equation*}
\int_{U} G(p) d V=\left(\sum_{\imath=0}^{k} \beta_{2 i}\right) \frac{c_{2 k}}{2}, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{V} G(p) d V=-\left(\sum_{\imath=1}^{k} \beta_{2 i-1}\right) \frac{c_{2 k}}{2} \tag{12}
\end{equation*}
$$

Proof. If equalities (11) and (12) hold, then by (9), we have

$$
T(f)=\int_{M^{2 k}}\left|\tilde{\nu}^{*} d \Sigma_{2 k}\right|=2 \int_{U} G(p) d V-2 \int_{V} G(p) d V=\left(\sum_{i=0}^{k} \beta_{i}\right) c_{2 k} .
$$

Therefore, the immersion $f: M^{2 k} \rightarrow E^{2 k+1}$ is a minimal imbedding.
Conversely, if the immersion $f: M^{2 k} \rightarrow E^{2 k+1}$ is a minimal imbedding, then we have

$$
T(f)=\int_{M^{2 k}}\left|\tilde{\nu}^{*} d \Sigma_{2 k}\right|=\left(\sum_{i=0}^{2 k} \beta_{i}\right) c_{2 k},
$$

that is

$$
\begin{equation*}
\int_{U} G(p) d V-\int_{V} G(p) d V=\left(\sum_{\imath=0}^{2 k} \beta_{i}\right) \frac{c_{2 k}}{2} . \tag{13}
\end{equation*}
$$

Therefore, by (8) and (13), we can easily get equalities (11) and (12). This completes the proof of the theorem.

2. Some Applications.

In this section, I want to use Theorem 1 and 2 to prove the following theorem on the minimal imbedding of a even dimensional manifold with the odd dimensional Betti numbers vanishing.

Theorem 3. Let $f: M^{2 k} \rightarrow E^{2 k+1}$ be an immersion of a compact, oriented $2 k$ dimensional manifold $M^{2 k}$ in $E^{2 k+1}$ with the Gauss-Kronecker curvature $G(p) \geqq 0$, then the odd dimensional Betti number of $M^{2 k}$ are zero, and the immersion f is a minimal imbedding.

Conversely, if the immersiou $f: M^{2 k} \rightarrow E^{2 k+1}$ is a minimal imbedding of a compact, oriented $2 k$-dimensional manifold in $E^{2 k+1}$, with the odd dimensional Betti numbers vanishing, then the Gauss-Kronecker curvature $G(p) \geqq 0$ for all p in $M^{2 k}$.

Proof. By the hypothesis, if $G(p) \geqq 0$ for all p in $M^{2 k}$, then we have $V=\phi$, and therefore by inequality (5), we have

$$
\sum_{i=1}^{k} \beta_{2 i-1}=0
$$

so that

$$
\beta_{2 i-1}=0 \quad \text { for } \quad i=1,2, \cdots, k .
$$

Furthermore, by the inequality (7), we have

$$
\begin{aligned}
T(f) & =\int_{M^{2 k}}\left|\tilde{\nu}^{*} d \Sigma_{2 k}\right|=2 \int_{U} G(p) d V=2 \int_{M^{2 k}} G(p) d V \\
& =\chi\left(M^{2 k}\right) c_{2 k}=\left(\sum_{i=0}^{2 k} \beta_{i}\right) c_{2 k},
\end{aligned}
$$

so that the immersion $f: M^{2 k} \rightarrow E^{2 k+1}$ is a minimal imbedding.
Conversely, if the immersion $f: M^{2 k} \rightarrow E^{2 k+1}$ is a minimal imbedding and $\beta_{2 i-1}=0$ for all $i=1,2, \cdots, k$. Now, let us suppose that there exist some points in $M^{2 k}$ with
the Gauss-Kronecker curvature $G(p)$ negative, then by the continuity of $G(p)$ on $M^{2 k}$, the set $V=\left\{p \in M^{2 k}: G(p)<0\right\}$ is a positive measure set on $M^{2 k}$, therefore the integral

$$
\int_{V} G(p) d V
$$

is negative, hence by (9) and (11), we have

$$
\begin{aligned}
T(f) & =\int_{M^{2 k}}\left|\tilde{L}^{*} d \Sigma_{2 k}\right|=2 \int_{U} G(p) d V-2 \int_{V} G(p) d V \\
& >2_{U} G(p) d V=\left(\sum_{i=0}^{k} \beta_{2 i}\right) c_{2 k}=\left(\sum_{i=0}^{k} \beta_{i}\right) c_{2 k} .
\end{aligned}
$$

This is a contradiction, hence $G(p) \geqq 0$ for all p in $M^{2 k}$. This completes the proof of the theorem.

In the special case, when $k=1$, then the Gauss-Kronecker curvature $G(p)$ is just the Gaussian curvature $K(p)$, hence by the fact of $c_{2}=4 \pi$, we have the following corollary:

Corollary. If $f: M^{2} \rightarrow E^{3}$ is an immersion of a compact, oriented surface in the 3-dimensional Eculidean space, then we have

$$
\begin{equation*}
\int_{U} K(p) d V \geqq 4 \pi \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{V} K(p) d V \leqq-4 g \pi, \tag{15}
\end{equation*}
$$

where $U=\left\{p \in M^{2}: K(p)>0\right\}$ and $V=\left[p \in M^{2}: K(p)<0\right\}$.
The immersion $f: M^{2} \rightarrow E^{3}$ is a minimal imbedding if and only if the equalities in (14) and (15) hold. In particular if M^{2} is a sphere, then the immersion f is a minimal imbedding if and only if the Gaussian curvature of f is non-negative everywhere.

References

[1] Chen, B. Y., A remark on minimal imbedding of surfaces in E^{4}. Kōdai Math. Sem. Rep. 20 (1968), 298-300.
[2] Chern, S. S. and R. K. Lashof, On the total curvature of immersed manifold. Amer. J. Math. 79 (1957), 306-318.
[3] Chern, S. S. and R. K. Lashof, -, II. Michigan Math. J. 5 (1958), 5-12.
[4] Ōтsuкı, T., On the total curvature of surfaces in Euclidean spaces. Japan. J. Math. 35 (1966), 61-71.

Department of Mathematics, Tamkang College of Arts and Sciences, Institute of Mathematics,
National Tsing Hua Uninersity, Hsinçuy, Taiwan, China.

[^0]: Received February 15, 1968.

