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Mathematical logic originated when mathematical methods were brought
to bear on traditional questions of logic, especially the problem of what con-
stitutes a valid proof. For the most part work in this field has remained close
to foundational questions. Recent results, however, have indicated the possi-
bility that the methods of mathematical logic may be of use in tackling spe-
cific problems in other branches of mathematics. This possibility is illus-
trated in the present paper, which presupposes no knowledge of mathematical
logic.

1. Some concepts of logic. We shall first focus our attention on algebraic
structures consisting of a set D on which two binary operations are defined.
Rings are familiar examples of such structures; but to begin with we do not
make any restrictions on the nature of the binary operations. Instead, we
proceed to construct a simple, specialized language, L, which can be used to
refer to any one of our structures. First we provide two symbols, " + " and
" ■," to be used as names of the operations. Next we wish to have symbols
(called individual constants) which can be used as names of particular ele-
ments in D. In the case of rings, for example, it is customary to employ the
symbols "0" and "1" in this way; for our more general purpose, however,
we shall reserve the letter "v," to be used with various distinguishing sub-
scripts. In addition to referring to particular elements of D we wish to make
general statements about all elements of D, and for this purpose we intro-
duce further symbols "x," "y," "z," "xi," ay%," ■ ■ ■ (called individual vari-
ables), which will be used as variables whose range is D. Additional symbols
are to include parentheses, an equality sign, and the following words:
"wo/," "and," "or," "if," "then," "all," "exists."

The symbols of L are used in constructing formulas and sentences as
follows. An individual symbol (constant or variable) is called a term, and the
result of putting a " + " or "•" between two terms and enclosing the result
in parentheses is also a term. Basic sentences are formed by placing an equality
sign between two terms, and further sentences are built up from these basic
ones in the following ways. If A and B are sentences, so are (not A), (A and B),
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(A or 73), (if A then 73); and if, furthermore, a is any of the individual vari-
ables, then (all a)A and (exists a)A are also sentences. Example:

(all x)(If((x- %)■ x) = vxthen (x = vx or (exists y)((y + y) = »o and (y-y) = x))).

An interpretation of Z, consists of selecting a particular domain D as the
range for the variables of L, choosing two specific binary operations on D as
denotations for the symbols "-f" and "•," and designating definite elements
of D as denotations for each of the individual constants of L. A domain
closed under two binary operations will be called a model. As soon as such an
interpretation has been given, each sentence of L becomes either true or
false, according to the familiar way of giving meaning to the sentences(2).
For example, if D is a ring with unit element, "-\-" and "•" denote respec-
tively ring addition and multiplication, while "vo" and "vx" are assigned as
names of 0 and 1 respectively, then the sample sentence given above will be
true if and only if every ring element whose third power is unity is either the
unit element itself, or else is the square of an element which is its own addi-
tive inverse. In general, it is a simple matter in the case of any particular
sentence of L to write down a necessary and sufficient condition that it be
true, as in the above example. However, it is also possible to give a precise,
mathematical definition of what we mean in general by a true sentence of L
(with respect to an arbitrary interpretation), as was first shown by Tarski(3).

We have seen that a sentence of L may be true under certain interpreta-
tions and false under others. However, there are some sentences which are
true under every interpretation, and these are called valid. Example:

(all x) (x + x) = (x + x).

It might be thought that all valid sentences have such a simple character,
and that their validity can be so readily determined in each case that they
cannot constitute a mathematically interesting class of sentences. However,
this is not so, for it can be proved that there is no algorithm which can de-
cide in a finite number of steps whether an arbitrarily given sentence of L is
valid. Furthermore, many outstanding, unsolved problems of mathematics
can be reduced to the question of the validity of some sentence of L.

Mathematical logicians have long been interested in systematizing the
valid sentences of languages like L, and in providing a criterion whereby
their validity could be recognized in specific cases. To this end certain
sentences are selected and called axioms, and certain operations are specified

(2) A sentence in which an individual variable occurs freely (that is, not within the scope
of one of the quantifiers (all a) or (exists a)) is interpreted as if the quantifier (all a) were pre-
fixed to the sentence.

(3) Alfred Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Philosophica
vol. 1 (1936) pp. 261-405. The definition proceeds by induction on the length of the sentence;
we shall not give details here.
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for deriving one sentence from another (or from several others). The axioms
and operations are described without reference to the meaning of the sen-
tences of L under interpretation, but rather the description is given in purely
formal terms(4).

After the axioms and operations are specified, a formal proof is defined to
be a (finite) column of sentences each of which is either an axiom, or else
arises from preceding elements of the column by one of the specified opera-
tions; and the last line of such a formal proof is called a formal theorem. If
we have chosen as axioms only formulas which we know to be valid, and if
we have selected operations which lead only to valid sentences when applied
to valid sentences, then a simple argument (involving induction on the length
of formal proofs) shows that all formal theorems will be valid. The converse
question, whether all valid sentences are formal theorems, is usually much
more difficult to answer. A set of axioms and operations sufficient to yield all
valid sentences as formal theorems is called complete. Gödel(6) was the first
to show (for a language similar to L) that a certain set of axioms and opera-
tions is complete.

Let us imagine that we have selected some standard set 2 of axioms and
operations for the sentences of L, which is complete. We can form new
formal deductive systems from this by adding to the axioms of 2 some new
set of sentences, T (and retaining the operations of 2). A set of sentences T
is called consistent if the system (2, T) obtained in this way does not yield as
formal theorems some sentence B, and also {not B).

This definition of consistency is purely formal, insofar as it involves refer-
ence only to axioms and operations. By contrast, the definition of satisfiabil-
ity is given in terms of meanings: A set T of sentences is called satisfiable
if there exists an interpretation of L which makes every sentence of T true.

Although the definitions of consistency and satisfiability are of very dif-
ferent kinds, the two notions can be proved equivalent. The proof that every
satisfiable T is also consistent« is quite simple, and depends on the fact
that the operations of 2 not only preserve validity, but also preserve the
property, with respect to each interpretation of L, of being a true sentence;
from which it follows by induction that when T is satisfiable so is the set A
of all formal theorems of (2, V), whence we cannot have both B and (not B)
as formal theorems. However, the proof that consistency implies satisfiabil-

(4) We do not require the axioms to be finite in number. However, it is required that a
method be supplied to decide in a finite number of steps whether any given sentence is an axiom
or not. Similarly, in connection with the operations, it is required that a method be supplied to
decide finitely whether a given sentence arises from one or more other given sentences by one of
the operations.

(6) Kurt Gödel, Die Vollständigkeit der Axiome des logischen funktionen Kalküle, Monats-
hefte für Mathematik und Physik vol. 37 (1930) pp. 349-360.

(6) This fact, of course, is familiar enough among mathematicians, who often establish
the consistency of some axiom set by furnishing a model which satisfies it.
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ity(7) is much more difficult. Indeed, the depth of this result is seen from the
fact that the completeness of S is a simple consequence of it. For let 73 be a
valid sentence of L. Then (not B) is false for every interpretation of L, and
so is not satisfiable. If we have established that consistency implies satisfiabil-
ity, it thus follows that (not B) is inconsistent. But if (not 73) leads to a
formal contradiction, then (just as in ordinary mathematical reasoning)
this furnishes a formal proof of 73. That is, every valid sentence is a formal
theorem, and so 2 is complete.

We intend to apply to problems in abstract algebra the result described
above, in the following stronger form which can be proved : If T is a consistent
set of sentences of L, then there exist interpretations satisfying T in which the
domain D has at most the same cardinal number as the set of symbols of L.
It should be mentioned that in order to establish this result it appears neces-
sary to well-order the sentences of L, so that when L contains a nonde-
numerable number of individual constants recourse is made to the axiom of
choice. The structure of the model satisfying T depends on this well-ordering.

Actually, we shall only have to use the following corollary of the quoted
theorem.

Let T be any set of sentences of L. Suppose every finite subset of T is satis-
fiable. Then there exist interpretations satisfying T in which the domain D has
cardinality at most equal to that of the set of symbols of L.

To establish this corollary, it is necessary only to observe that the
hypothesis guarantees that T must be consistent. For suppose T were incon-
sistent. Then in the system (2, T) we could find two formal proofs, one of
some sentence 73 and the other of (not 73). But since these formal proofs are
finite columns of formulas, we see that some finite subset of T is already in-
consistent. This, however, is incompatible with the hypothesis that every
finite subset of T is satisfiable, since we had previously noted that satisfi-
ability implies consistency(8).

(') The first formulation and proof of this theorem was given by Gödel, loe. cit., although
an idea which is easily converted into a proof appears earlier in Th. Skolem, Über einige Grund-
lagenfragen der Mathematik, Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, 1929,
no. 4. These proofs were formulated for systems which resemble L in all significant respects,
except that the number of individual constants is considered to be at most denumerable—a
restriction on which we have not insisted. A. Malcev (Untersuchungen aus dem Gebiete der
mathematischen Logik, Matematiceskij Sbornik, N.S. vol. 1 (1936) pp. 323-336) showed that
Gödel's proof could be extended to cover systems in which a nondenumerable number of con-
stants were admitted. A more direct proof of the general result can be found in L. Henkin,
The completeness of the first order functional calculus, Journal of Symbolic Logic vol. 14 (1949)
pp. 159-166.

(8) It is curious that although this corollary deals only with sentences and models used to
interpret them, any proof of the corollary seems tobring in references to formal deductive sys-
tems, with their paraphernalia of axioms and operations of formal inference. It is true that we
know of a systematic way to eliminate such reference, but the resulting proof then appears
highly artificial and cumbersome.
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In the sequel we shall refer to this corollary as "our basic result from logic."
2. Applications to algebra. Given a sentence S of L, and a model(9) D

with respect to which L can be interpreted, we have seen that 5 takes on a
definite value, truth or falsity. Thus, with each sentence 5 there is associated
a property of models, namely the property Ps which holds just for those
models D which make .S true; or, instead of speaking of properties we may
speak of classes(10) of models, Ps being simply the class of models D for
which 5 is true. A property or class associated in this way with a sentence of
L is called an arithmetical class(11). For example, the property of being a
group is arithmetical, since each group axiom can be expressed by a sentence
of L, and the conjunction 5 of these sentences yields the class of groups as its
associated class Ps- Similarly (as may easily be seen), the class of rings, the
class of integral domains, the class of fields, the class of fields of characteristic
two—are all arithmetical classes. On the other hand (as we shall show), the
class of finite groups, and the class of fields of characteristic zero, are not
arithmetical. A model having the arithmetical property P will be called a
P-model.

Theorem 1. Let P be an arithmetical class. Let D be any infinite model. A
sufficient (and trivially necessary) condition that D have an extension E which is
a P-model is : that every finite subset of D be isomorphic to a subset of a P-model.
Furthermore, such extensions E exist having the same cardinality as D(12).

(An isomorphism 4> of D' into E, where D' is a subset of D, is a one-one
mapping of D' into E which preserves sums and products of elements of D'
when these sums and products are also in D'.)

Proof of Theorem 1. For each element a of D we provide an individual
constant va in L, to serve as a name for it. Now form the set, T, of sentences
of L, as follows. For each distinct pair a, b of elements of D we place the
sentence (not va = Vb) in T. Whenever we have a relation a+b = c (resp.
a-b = c) holding among elements a, b, c in D, we place in T the sentence(13)
(va-\-Vb) =Vc (resp.  (va-Vb)=vc). Finally, we place in r a sentence 5 which

(9) In this section we shall frequently speak of a model D, when strictly we should speak of
an interpretation of L whose domain is D. This is a generalization of the innocent confusion
which one finds in discussions of algebra when there is reference to "a group, G," when what
is meant is a group whose operations are defined on a set G.

(10) The classes involved here are so large (e.g. the class of all rings) that precautions must
be taken in order to avoid the classical paradoxes. One method is to consider our whole theory
to be relative to some large, fixed set from whose elements all models are to be constructed.

(u) This terminology is due to Tarski, who pioneered in the investigation of these classes;
Tarski showed that it is possible to define them in a purely algebraic manner, without making
any reference to sentences of languages like L. Cf. Sur les ensembles définissables de nombres
réels. I, Fund. Math. vol. 17 (1931) pp. 210-239; and Arithmetical classes and types of mathe-
matical systems, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 63-64.

(12) Of any standard set of axioms for group theory.
(") That is, r contains the addition and multiplication tables for D.
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defines P (i.e. such that Ps is the given P) ; this must exist since P is arith-
metical.

Now let T' be any finite subset of T, and let D' be the (finite) subset of D
consisting of those elements a such that va occurs in a sentence of T'. By
hypothesis (that is, by the condition whose sufficiency we are trying to estab-
lish), there exists a P-model E' and an isomorphic mapping <p of D' into E'.
Now use E' as a model with which to interpret L, assigning the individual
constant va as a name of <b(a) for each a in D' (and for other a assigning the
denotation of va in an entirely arbitrary way). Under this interpretation every
sentence of T' is true—as one sees by remembering that 4> is an isomorphism,
and examining in turn each kind of sentence that may appear in D'. (In the
case of the sentence S, this will be true since E' is a P-model.)

We have thus shown that any finite subset T', of T, is satisfiable. By our
basic result from logic it follows that there is an interpretation of L, satisfying
T, in which the domain E has a cardinality at most equal to that of the set of
symbols of L. Since the symbols other than the individual constants are de-
numerable, and since there is one symbol va for each element of (the infinite
set) D, we see that E can be chosen to have a cardinal number at most equal
to that of D.

Now define a mapping \p of D into E by setting \p(a) equal to that element
of E which is denoted by va in the interpretation which satisfies T. Clearly
\p is one-one since E satisfies (not va = Vb) whenever ay^b. Similarly, \f/ is an
isomorphism since E satisfies (va-\-Vb) =va+b and (va-Vb) = va-b for all pairs a, b
of D. Finally, E is a P-model since it satisfies S. Thus D is isomorphic to a
submodel of the P-model E. This completes the proof of the theorem.

An application of Theorem 1. Every Boolean ring R is isomorphic with a
ring of sets(li). If R is infinite, these sets can be chosen so that their union will
have at most the same cardinality as R.

It will be recalled that a ring is called Boolean if for every element a,
aa = a; from this it follows that multiplication is commutative and addition
nilpotent (a-\-a = o). The subsets of a fixed set form a Boolean ring when
multiplication is defined as intersection, and addition as union minus inter-
section ; a subring of such a ring is called a ring of sets.

An element a, oí a Boolean ring 7?, is called an atom if aj±o and ab is
either a or o for each b in 7?. Let 7?* be the ring of all sets of atoms of 7?. For
any b in 7?, let <b(b) be the set of all atoms a such that ab = a. From the defini-
tion of atom and the Boolean properties of addition and multiplication listed
above, it is a simple matter to see that <f> is a homomorphism of 7? into 7?*.
This fact was recognized early in the study of Boolean rings(15) ; but it does

(") This is the well known representation theorem for Boolean rings. See M. Stone, The
theory of representations for Boolean algebras, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 37-111.

(I6) E. V. Huntington, New sets of postulates for the algebra of logic, Trans. Amer. Math.
Soc. vol. 35 (1933) pp. 274-275.
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not make the representation theorem trivial because for many Boolean
rings (j> is not a one-one mapping (i.e. there are elements b^o such that
<p(b) =o). However, it is easy to show that for every finite Boolean ring R, <¡>
is one-one; for starting with any nonzero element b, each maximal sequence
of nonzero terms b, be, bed, • • • , in which the successive factors b, c, d, • • ■
are all distinct, must terminate in an element of <p(b).

Now it is easy to see that the class of Boolean rings R for which <f> is
one-one is an arithmetical class. For let So be the following sentence of L:

(all x)(If (not x = v0) then (exists y)((y-x = y and (all z)

(y-z = Vo or y-z = y)) and (not y = Vo))).

Let Si be the sentence (all x) x-x = x, and let S2, • • ■ , Sk be sentences of L
expressing any standard set of axioms for rings (using the symbols "-j-"
and " • " of / to denote ring addition and multiplication respectively, and
using "vo" to denote the zero element of the ring). Finally, let Sat be the sen-
tence ( • • • ((So and Si) and S2) and • • • and Sk). Then the class Psat of
models which make S„t true is precisely the class of Boolean rings for which
4> is an isomorphism of R into R*.

Since Psai is arithmetical, we may contemplate an application of Theorem
1. For this purpose, let R be any Boolean ring, and let R' be any finite subset
of its elements. The ring E' generated by R' must also be finite. (For since
multiplication is commutative and all powers of an element are equal to the
element itself, at most 2" elements can be formed by multiplication alone, n
being the number of elements in R'; and since addition is commutative and
nilpotent, it follows that E' can have at most 22" elements.) But E', being a
finite Boolean ring, must be a Psoi-model, as previously observed. Thus R'
can be mapped isomorphically into a Psoi-m°del by the identity mapping.
The hypothesis of Theorem 1 being verified, the conclusion follows: R is
isomorphic to a Psai-model with cardinality at most equal to that of R(16).
This is precisely our representation theorem(17).

The representation theorem for distributive lattices may be accomplished
in a manner entirely analogous to the treatment we have employed for repre-
senting Boolean rings. In these cases we apply our Theorem 1 to show that
every model of some arithmetical class Q can be extended to a model having
some specified arithmetical property P, by showing that: (i) every finite

(16) Of course some (but not all) Boolean rings R can be represented as an algebra of sets,
using points whose cardinality is actually less than that of R. We do not know of any algebraic
characterization of those R for which this is possible. Compare Horn and Tarski, Measures in
Boolean algebras, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 467-497.

(") It will be observed that our proof of the representation theorem proceeds by establish-
ing the equivalent theorem that every Boolean ring can be extended to an atomistic one. This
technique for proving representation theorems has been used in connection with structures
which are Boolean rings having additional operations. Cf. Jónsson and Tarski, Boolean algebras
with operators, Amer. J. Math. vol. 73 (1951) pp. 891-939.
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0-model is a P-model, and (ii) every finite set of elements of a 0-model gen-
erates a finite 0-model (and hence can be extended to a P-model).

Now in general, if we know merely that every finite 0-model is a P-model
(where P and Q are arithmetical) we cannot conclude that every 0-model can
be extended to a P-model. (For example, let Q be the class of ordered fields,
and let P be the empty class.) We can only use Theorem 1 to conclude that
if every finitely generated 0-model can be imbedded in a P-model, then so
can every 0-model.

Thus, in the case of each particular arithmetical 0 we can raise the ques-
tion: Does the condition that all finite 0-models have some arithmetical
property P imply that every 0-model can be extended to a P-model? We see
(by Theorem 1) that a condition sufficient to insure this is that every finite
set of elements selected from an arbitrary 0-model be isomorphic to a set of
elements of some finite 0-model.

For example, this condition holds for the class 0 of abelian groups(18). To
see this, consider first the case of an infinite cyclic group generated by an
element a. Any finite set of elements ail, ai2, ■ ■ ■ , ain can be mapped iso-
morphically into a cyclic group of order 7£ = maxig¡g„ \it\ by the function
<b(ail) =bil (where b is an element of order K). Next observe that if <b maps
elements alt ■ ■ • , an oí a group G isomorphically into a finite group Gx,
while \p maps elements bx, • ■ ■ , bm (of some other group H) into a finite group
Hi, then the elements a,bj of the direct product GXH are mapped iso-
morphically into the finite group GiXHi by the function o-(a¿¿»y) = (j>(ai)\p(bj).
Since every finitely-generated abelian group is the direct product of cyclic
groups, it now follows that any finite set of elements of an abelian group can
be imbedded in a finite abelian group. Thus any arithmetical class P which
contains all finite abelian groups contains an extension of every abelian
group.

However, we do not know whether the corresponding theorems are true
for arbitrary groups.

We next derive two theorems which throw some light on the nature of
arithmetical classes, but whose principal interest is due to applications which
can be made of certain generalizations.

Theorem 2. Let M be any infinite model of some arithmetical class P, and
let a be any cardinal number equal to or greater than that of M. Then P contains
a proper extension of M having cardinality a.

Proof. For each element a of M furnish an individual constant va in the
language L. Form a class T of sentences by taking all sentences of the forms :
(not va = vb) for a¿¿b, (va+vb) =va+b, and (va-vb) =va.b. Add tola new indi-
vidual constant v and put in T all sentences (not v = va) for each a of M.
Finally, add to T a sentence defining P.

(ls) This was pointed out to me by John Täte.
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Now Af itself will satisfy any finite set of sentences of T, since Af is an
infinite model in P. Hence, by our basic result from logic, there is a model
satisfying every sentence of T, and this will clearly be a proper extension of
Af which is also in P. To obtain extensions of arbitrarily high cardinality it is
only necessary to modify the argument by adding to L not merely one new
individual constant v, but a whole set of constants i\- (where i ranges over a
set of any preassigned cardinality). All sentences (not Vi = v¡), for distinct i,j,
must be added to T to secure the desired extension.

Theorem 2 shows that no particular infinite model—for instance the field
of rationals—can be characterized arithmetically. However, every finite
model can be so characterized (to within isomorphism). For an example,
consider the arithmetical class defined by the sentence

((all x)(x = Vo or x = Vi) and (not Vo = Vi)),

which consists of all two-element models. By conjoining further clauses to
this sentence we could obtain, e.g., the arithmetic class consisting solely of
two-element fields.

Theorem 3. If an arithmetical class P contains arbitrarily large finite models,
it must also contain an infinite model.

Proof. Form a set T (of sentences of L) by adding to the sentence defining P
the following infinite list i> of sentences.

not (exists y)(all x)x = y,

not (exists y)(exists z)(all x)(x = y or x = z),

not (exists y)(exists z)(exists yi)(all x)((x = y or x = z) or x = yO,

Any set of sentences of this list which is contained among the first n will
be satisfied by any model with n or more elements. Since P contains arbi-
trarily large finite models, it must contain a model satisfying all sentences of
this list (by our basic result from logic). But this is clearly an infinite P-model.

3. Generalizations. Instead of considering the set of models which make
some one sentence of L true, we may consider the set of all models which
satisfy each member of some preassigned class of sentences of L. Such a set
(or property) of models I call quasi-arithmetical. In general a quasi-arith-
metical class defined by a set of sentences V is contained in, but not equal
to, the intersection of the arithmetical classes defined by the separate
sentences of T(19). It is easily seen that all of the theorems and remarks

(19) Mention should be made here of the very interesting and suggestive classification given
by Tarski at the 1950 International Congress of Mathematicians. Using "AC" to denote an
arithmetical class of models, Tarski calls an A C¡ {A C„) any countable intersection (union) of
A C's, and then goes on to consider the notion of an A C¡c, A C„j, A Q„j, etc., in analogy with the
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stated in the previous section for arithmetical classes hold also for quasi-
arithmetical classes, and we shall henceforth refer to Theorems 1,2, and 3 in
this extended form. To modify the proofs of the theorems so as to obtain the
stronger results, it is only necessary (in forming sets T of sentences) to
replace the single formula defining an arithmetical class P by a set of formulas
defining a quasi-arithmetical class.

The class of all infinite fields is quasi-arithmetical since it is defined by
adding a set of axioms for fields to the set 4> of sentences described in the
proof of Theorem 3. However its complement, the class of all finite fields, is
not quasi-arithmetical (and so surely not arithmetical) as we see at once
from Theorem 3. Hence the class of infinite fields is an example of a class
which is quasi-arithmetical but not arithmetical; for if it were arithmetical it
would be defined by a sentence S, and so the sentence (not S) would define
the class of all finite fields to be arithmetical.

If P is any quasi-arithmetical but not arithmetical class, then (as in the
case above) its complement Q cannot be quasi-arithmetical. For suppose A
and T are sets of formulas defining P and 0 respectively. Since P is not arith-
metical, no finite subset of A defines P (else the conjunction of the sentences
of such a finite subset would be a single sentence defining P). Thus, every
finite subset of A is satisfied by some model from the complement of P, and
hence every finite subset drawn from the union of A and T is satisfied (by
a model of 0). By our basic result from logic, this means that there is a model
satisfying all sentences of the union of A and T—contrary to the fact that A
and T define disjoint classes.

Another respect in which the results of the previous section generalize
has to do with the symbols of L. Instead of having just two symbols, +
and •, denoting binary operations, L may have any number of symbols each
denoting (in each interpretation) a particular w-ary operation (with n not
necessarily the same for all symbols). Further, in addition to (or instead of)
symbols denoting operations, L may have symbols (constants) denoting
classes and relations. The basic result from logic holds for all such languages,
and so our discussion remains pertinent.

For example, arithmetical classes composed of ordered sets are studied by
means of a language L containing a single symbol, say <, which is used to
denote a binary relation (so that the basic sentences of this L have the forms
a<ß and ct = ß, where a and j3 are any individual variables or constants).

Using Theorem 1 for this language we immediately obtain "the ordering

familiar construction of Borelian sets on the real line. The notion of an AC¡ is similar to, but
not the same as, that of a quasi-arithmetical class. For example, the set of all fields isomorphic
to an extension of the field of real numbers is quasi-arithmetical, but not an ACg. The result
established below that the class of well-ordered systems is not quasi-arithmetical is thus a
strengthened form of the theorem, established by Tarski in 1936 (Grundzügedes Systemenkalküls),
that this class is not an A C¡.
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theorem" to the effect that every set can be ordered by a transitive relation
which holds in exactly one direction between any two elements. This fol-
lows from the obvious facts that any finite subset of elements drawn from an
arbitrarily given set can be so ordered, while an ordering of some extension of
the given set automatically furnishes an ordering of the set itself.

If we could strengthen this result to obtain a proof of the we//-ordering
theorem, it would show that our basic result from logic was equivalent to the
axiom of choice (with whose help it was established). However, it seems un-
likely that this can be done, for the well-ordered systems do not form a quasi-
arithmetical class. To see this, it is only necessary to remark that if the prop-
erty of being well-ordered were quasi-arithmetical, we could use Theorem 1 to
conclude that every ordered system can be extended to a well-ordered sys-
tem (since every finite subset of an ordered system is well-ordered) ; but this
is manifestly impossible since if an ordered set contains an infinite, descend-
ing sequence of elements so does every extension.

The precise determination of the relative strength of the axiom of choice
and our basic result from logic thus remains open. One plausible conjecture is
that any property of sets (such as the ordering theorem) which can be proved
with the axiom of choice, and which can be expressed by a set of sentences of
a first-order language L, can also be proved using our basic result from logic.

We now come to a simple but important generalization of Theorem 2.

Theorem 4. Let Ë be any infinite family of disjoint arithmetical classes Ci.
Let Q be the union of the C,-, and let Q be its complement. If P is any quasi-
arithmetical class which meets infinitely many C„ then P also meets 0(20).

Proof. Let A be a set of formulas defining P, and (for each i) let 5, be a
sentence defining C,. Form T by adding to A every sentence (not S¡). Given
any finite subset of T there is a model making each of its sentences true; for
by hypothesis, being given any finite collection of the C, we can find a model
of P not in any of them. Hence we can apply our basic result from logic to T
to obtain Theorem 4.

By combining the technique of this proof with that of Theorem 1 we can,
in some cases, obtain a stronger conclusion.

Theorem 5. Let 6 be an infinite class of disjoint arithmetical classes C„

(20) The substance of this theorem was apparently known to Tarski as early as 1946. At
the Princeton Bicentennial Conference in December, 1946, he cited as an application the possi-
bility of proving the existence of non-Archimedean ordered fields. (For this application C,- is
taken as the arithmetical class defined by the sentence (iv2<vz and (not (i-r-l)»s<»i)), i
= 1, 2, 3, • • • , while P is defined by a set of ordered field axioms together with the sentences
(all x) x-v0 = vo, v0<vs, and v¡¡<vz. Thus any model which is in both P and Q is an ordered field
in which Vi is a positive element, v2<v3, while for no i=\, 2, 3, • ■ • is ivi<v3^(i + l)vi.) The
theorem was rediscovered independently by me (but later—in the spring of 1947), and several
applications were included in my doctoral dissertation.
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0 their union, and Q its complement. Let P be a quasi-arithmetical class, let A
be a model, and suppose that any finite set of elements of A can be imbedded in
the intersection PC\Cifor infinitely many Ci. Then there is an extension of A in
the intersection PC\Q.

Proof. Add to the language L new individual constants va, one for each
element a of A. Add to the set T (in the proof of Theorem 4) the basic
sentences defining the structure of A (as in the proof of Theorem 1). Then
apply our basic result from logic.

With the aid of Theorem 5 we can extend the bare existence theorem
mentioned in footnote 20 to show that if F is any ordered field and x any of
its elements >0, there exists a non-Archimedean extension of F containing
elements y and z such that y"<x and xn<z for all n = 1, 2, 3, ■ ■ ■ .

Interesting applications of these theorems arise when C¿ is taken to be
the class of fields of characteristic g¿, where g, is the ¿th prime. C¿ may be de-
fined by the sentence(21) (A and (all x) qtX = Vo), where A is the conjunction of
some set of field axioms in which the symbol t>o denotes the zero element.

Thus from Theorem 4 we learn that if there are fields, with some quasi-
arithmetical property P, of infinitely many different prime characteristics,
then there must also be a field of characteristic zero having the property P.
While from Theorem 5 we can infer that if a quasi-arithmetical class P con-
tains every field having the prime characteristic g¡, for infinitely many i,
then P contains an extension of every field of characteristic zero. This last
inference is possible because any finite set of elements from any field of char-
acteristic zero can be imbedded in fields of prime characteristic q, for all but
a finite number of i, as the following argument(22) shows.

We classify our finite set of elements into those which are in the prime
field (which can be represented as rational numbers), next a sequence of
elements x, y, ■ • ■ , z each transcendental over the field obtained by adjoin-
ing the others to the field of rationals, and finally the remaining elements
which will be algebraic over the field R(x, y, ■ ■ ■ , z). Thus we can think of
our elements as algebraic functions in the "letters" x, y, ■ • • , z. Now it is
known that any finite set of algebraic relations (equalities and inequalities),
holding among a finite set of such functions, can be preserved when the
letters are "specialized" to suitably chosen rational numbers (and the func-
tions replaced by an appropriate set of their values) (23). Thus we can repre-
sent our finite set of field elements as a set of algebraic numbers. And now it

(21) It should be borne in mind that the symbol "g¡x" which occurs here is, like "A," an
abbreviation. It stands for a row of q¡ occurrences of the symbol "x" separated by plus signs
(and with parentheses suitably introduced so that the whole is a term of the language L). The
symbol "g¿" itself is not part of L. Similar remarks apply to the formulas of footnote 20.

(n) This argument is due to Emil Artin.
(23) Cf. van der Waerden, Moderne Algebra, 2d ed., §92. The theorem is there proved for

single relations, but is easily extended to the case of finite sets of relations.
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is clear that the ideal generated by these numbers can have only a finite num-
ber of prime ideals as divisors, while any other prime ideal leads to a quotient
field of prime characteristic in which our given set of elements can be im-
bedded.

Notice, from this proof, that if we start with a finite set of elements in an
algebraic number field, then we can imbed them in fields of prime character-
istic, for almost all primes, which are simply obtained from the given field by
forming the quotient field with respect to some prime ideal. Hence if an
arithmetical class P contains infinitely many such quotient fields, for some
given algebraic number field F, then P must also contain an extension of F.
For instance, if a polynomial in several variables over F factors modulo in-
finitely many prime ideals, then the polynomial must factor in an extension
of F.

Other interesting applications of Theorems 4 and 5 arise when we take C,
to be the class of groups for which i is the maximum order of any element. In
this case, however, we do not know whether any finite set of elements taken
from an arbitrary group can be imbedded in a group with elements of
bounded order.

Still another type of structures to which these methods are applicable is
the infinite group with finite layers(24). For example, let G be such a
group, and let K, be the (finite) set of elements of G whose order is
¿i,i=l, 2, 3, ■ ■ ■ . Let P be a quasi-arithmetical class and suppose that, for
each i, Ki can be extended to a P-group, G%. Then G itself can be extended to a
P-group. Further, if the extensions G, can be obtained without adding to K
any new elements of order ^i, then the new elements in the extension of G
will all have infinite order.

Although the theory of arithmetical classes has been suggested by the
study of interpretations of the language /, it can be established in a purely
algebraic fashion. This was first observed by Tarski(25), by whom the theory
has since been developed more elaborately, as well as applied to algebraic
problems(26).

4. Languages of higher order. Although, in the previous section, we have
allowed ourselves wide latitude in the kind of constants which could be in-
corporated into the language L, we have retained only one type of variable—
namely, variables which range over elements of the model when L is given an
interpretation. This is the characteristic feature of what logicians call a first-
order language.

(24) These are groups which have only a finite number of elements of order n, for each
» = 1, 2, • • • . Cf. S. N. Cernikov, Infinite groups with finite layers, Mathematiceskii Sbornik
N. S. vol. 22 (1948) pp. 101-133.

(ffi) Cf. Tarski, Sur les ensembles définissables de nombres réel, I. Fund. Math. vol. 17 (1931)
pp. 210-239; and Grundzüge des System Kalküls, Fund. Math. vol. 26 (1936) pp. 283-301.

(2«) Cf. Bull. Amer. Math. Soc. vol. 55 (1949) pp. 63-65. Also the Proceedings of the Inter-
national Congress of Mathematicians at Harvard.
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Now many properties of algebraic models which are discussed in the
literature are described with the aid of other types of variables. For example,
a simple group is a nontrivial group which satisfies the sentence

(all G) (if sub (G) then (all x)(if i£G then x = Vo)),

where sub(G) is an abbreviation for the conjunction of sentences stating that
G is a proper normal subgroup. Here the variable G ranges over all sets of
model elements, while G is interpreted as denoting the relation of member-
ship.

An extension of the language L is called second-order if it contains the
symbol £, and in addition variables which may range over sets of model
elements and relations defined on model elements, as well as over functions of
n model elements whose values are model elements. (That is, variables are
permitted for all categories which were represented by constants in the first-
order languages). Of course the definition of "term" is broadened, in setting
up this language formally, so as to permit the new function variables to
operate on terms to form new terms, while the definition of "basic sentence"
is enlarged to include expressions of the forms t£<Ï>, where r is any term and
$> any set-variable, ^(n, • • • , rn), where ^ is a relation-variable, $i = <í,2,
and ^i =^2.

Higher order languages contain constants denoting, and variables rang-
ing over, sets whose elements may be sets or functions of model elements,
as well as functions and relations defined over sets or functions of model ele-
ments(27). And then there are languages of still higher order. The study of
these languages leads to a theory of types.

Consider for the moment a second-order language in which only variables
ranging over sets of model elements have been added. A standard interpreta-
tion for such a language consists in specifying a particular domain (the model)
as the range for the individual variables, and assigning denotations of the
appropriate type to each constant of the language. Under such an interpreta-
tion each sentence takes on a definite truth value, truth or falsity, it being
understood that a sentence of the form (all G)A is to be read "for every class
G of model elements, A." Thus each sentence defines a property (or class)
of models—namely those models for which the sentence becomes true. In
this way we are led to consider second-order classes where previously we
studied arithmetical (or first-order) classes of models. And then we may go
on to study higher-order classes.

Naturally we are led to inquire whether our basic result from logic holds

(") Another type of variable which occurs in many mathematical papers (including this
one) is a variable ranging over natural numbers. However, no special provision need be made
for these, for it is well known (since the time of Frege) that the natural numbers can be identified
with certain nameable sets of sets of model elements, and that the collection of these "numbers"
can be described by a formula of a suitably high-ordered language.
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for these higher order languages as well as for the first-order case. But it is at
once apparent that this cannot be true. For example, let 5 be the second-
order sentence which states that for every complete order-relation there is a
last element. (Thus 5 determines the second-order class consisting of all finite
models.) Take individual constants p<, i=\, 2, 3, • • • , and form a set T of
sentences by adding to 5 all sentences (not Vi = v¡) for ig*j. Clearly every
finite subset of T is satisfiable, while T itself is not(2S).

However, there exists a simple class of interpretations for the higher-
order languages which is more extensive than the standard interpretations.
Reverting again to the simple case of a second-order language where only
set-variables have been added to the first-order language, we may consider
as model any set of elements—together with a specified family (not necessarily
all) of sets of these elements. Calling the sets of this family admissible, we may
now reinterpret the sentences of our language with the understanding that a
sentence of the form (all G)A is to mean "for every admissible class G of model
elements, -4"(29). Similarly, in the case of higher-order languages, we consider
general models in which a family of admissible classes, relations, or functions
is specified as the range for each type of variable which appears.

The formal axioms and rules of inference which logicians had set up for
giving structural organization to the sentences which are true under every
standard interpretation turn out to yield (as formal theorems) sentences
which are true for all general models (which we will call valid sentences).
Indeed, it has been proven(30) that for every set of sentences which is con-
sistent with respect to these rules, there is a model(31) making every sentence
of the set true (under the broad interpretation) ; and hence the rules must be
complete, in the sense that they yield as formal theorems all valid sentences.

(28) Since every finite subset of r is satisfiable, T is consistent; i.e., no formal contradiction
can be inferred from r when appropriate formal rules of inference are supplied for second-order
languages. Thus there are consistent sets of sentences which are not satisfiable. In fact, there
are single sentences which are consistent but not satisfiable—although this is very much harder
to show. This last fact is equivalent to the incompleteness of the formal rules of deduction—a
famous result due to Gödel.

(29) Of course the family of admissible sets cannot be chosen in a completely arbitrary
way, if every sentence of the language is to have a meaningful interpretation with respect to
the model. For example, because of the presence of the words not, and, or, in our language, the
family of admissible sets must be closed under the Boolean operations. Because of the presence
of quantifiers such as (all x) and (exists x) the admissible sets must also be closed under the
operations which Tarski has called cylindrifications. The presence of quantifiers on set-variables
imposes still further restrictions on the families which may be proposed for the admissible sets
in an interpretation of the language. And similar considerations apply in the case of languages
of higher order.

(30) Cf. Leon Henkin, Completeness in the theory of types, Journal of Symbolic Logic vol. 15
(1950) pp. 81-91.

(31) The elements, together with all admissible sets, relations, and functions of this model,
can be so chosen that their cardinal number is no greater than that of the set of all symbols
of the language.
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From these facts there emerges the following generalized form of our
basic result from logic: // T is any set of sentences of a higher-order language,
and if every finite subset of T is satisfied by some general model, then there is a
general model for which every sentence of T is true.

Let us call a property (or class) of models definable if it consists of all
general models which make some given sentence (of any higher-order lan-
guage) true. Similarly, a set of models satisfying a set of sentences will be
called quasi-definable. Thus our basic result from logic (in its generalized
form) can be rephrased to assert that a family of quasi-definable classes in
which the members of every finite subfamily have models in common must
itself have a nonempty intersection.

We can speak of a definable class of second order, or higher order, accord-
ing to the type of variables which appear in the defining sentence. A first
order definable class is simply an arithmetical class.

Remember that a standard model is one in which each family of ad-
missible classes (or relations or functions), of any type, consists of all classes
(or relations or function«) of that type. The intersection of a definable class
of models with the family of all standard models will be called a standard-
definable class. The class of topological spaces, the class of rings with descend-
ing chain condition, and the class of well-ordered systems are familiar ex-
amples of standard-definable classes.

Except in the arithmetical (first order) case, no definable class containing
an infinite model is a standard-definable class, since every such definable
class contains a model whose admissible classes have the same cardinality as
its domain of elements, according to our basic result from logic. On the other
hand there are nonempty definable classes which contain no standard models,
as follows from Gödel's example of a consistent sentence which is not true
for any standard model. It is this last fact which severely curtails the range
of interesting applications of our basic result from logic, since nonstandard
models of higher-order axiom systems are generally ignored by mathe-
maticians.

It thus appears that the interesting applications are limited to sets of
sentences for which we can be sure, in advance, that the existence of a
general model satisfying them entails also the existence of a standard model
satisfying them(32). However, this still leaves us a certain leeway.

For instance, consider a set T of second-order sentences such that no class,
relation, or function variables appear in any universal quantifier, while every
such variable which occurs in a sentence appears in a single existential quanti-
fier placed at the beginning of the sentence (except possibly for other quanti-
fiers). A moment's reflection will show that if one general model makes the
sentences of T true, so will any other model consisting of the same elements,

(ffl) In this connection see Andrzej Mostowski, On absolute properties of relations, Journal
of Symbolic Logic vol. 12 (1947) pp. 33-42.
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but with a family of admissible classes, relations, and functions which contains
those of the first model properly. Hence, in particular, the standard model
with the same elements will satisfy all sentences of T.

To take a specific example from the literature, consider the following
theorem(33) first proved by Everett and Whaples. Let / be a set of indices,
and for each t'G/ let 7\ be a finite set. A sufficient (and trivially necessary)
condition for the existence of a choice function/ such that f(i) G Ti for each
î'G/, while/(ti) 5¿/(í2) for ix^i2, is that the union of the sets Ti, for any set
of n indices (« = 1, 2, 3, • • • ), contains at least n distinct elements. In the
case where / is a finite set of indices the result was obtained by elementary
methods by P. Hall. We shall assume Hall's result, and show that the gen-
eralization is a simple consequence of our basic result from logic.

For this purpose, suppose / and sets Ti given, satisfying the condition.
Consider a higher-order language which contains the following symbols: An
individual constant v¡ for each i in /, and a class-constant Gi which will be
used to denote /; an individual constant ua for each element a in one or more
of the sets 7"¿; a constant S, having the type of functions from individuals to
classes, to be used so that S(vî) denotes the class 2"»; and variables, such as g,
having the type of functions from individuals to individuals. In this language
form the set T containing the following sentences.

(i) w0GS(zJ¿), for each a and i such that a is in 7\;
(ii) (all x) (if xÇiS(vi) then (x = uax or ■ ■ ■ or x = uan)), for each i, where

a-i, • ■ • , an are all of the elements of the (finite) set Ti',
(iii) ViÇiGi, for each i in I;
(iv) (exists g) ((all x) (if xÇzGi then g(x)GS(x)) and (all x) (all y) (if

(not x = y) then (not g(x) =g(y)))).
Now any finite subset T' of T contains only a finite number of the symbols

Vi, and hence (by Hall's theorem) there is a model satisfying each of the
sentences of T'. Applying our generalized result from logic we see, therefore,
that there must be a model for which all sentences of T are true. By (iii),
such a model will contain a set /' (denoted by Gr) oí individuals, of which a
subset can be identified with /. By (i) and (ii), there will be a function (de-
noted by S), whose value for each i in / is 7\. And by (iv) there will be a func-
tion / (denoted by g) which, when restricted to the range /, fulfills the
promise of the theorem.

It should be noted that if one of the classes Ti is infinite, this proof will
not work. For in that case the corresponding sentence (ii) could not be formed,
according to our rules for forming sentences in these languages. And if we
omit the sentence from T, the class denoted by S(vi) will contain (but not
necessarily equal) 7\; hence there is no guarantee from (iv) that g(v¡) will

(33) Cf. C. J. Everett and George Whaples, Bull. Amer. Math. Soc. Abstract 53-5-170. This
theorem was evidently considered so fascinating that two other proofs were subsequently pub-
lished—to which we now add a fourth.
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be in T,. Of course this limitation is not serious, since the theorem is false if
the Ti are allowed to become infinite.

A more widespread use of the basic result from logic in the case of higher-
order systems must wait until more information has been gathered concern-
ing the structure of general models (34).

University of Southern California,
Los Angeles, Calif.

(M) Historical note (added December 15, 1952). Since this paper was written two works have
appeared which overlap it in content: Tarski, Some notions and methods on the borderline of
algebra and metamathematics, Proceedings of the International Congress of Mathematicians,
1950, vol. 1, pp. 705-720, and Abraham Robinson, On the metamathematics of algebra, Amster-
dam, North-Holland, 1951. It seems appropriate, therefore, to write a few words about the his-
tory of these ideas.

There is no doubt that credit for first envisaging the possibility of applications of "our
basic result from logic" is due to Tarski. Related ideas appear in his papers as early as 1931,
and an announcement of results was made in 1946 to the Princeton Bicentennial Conference,
although without a description of methods. Explicit published references to the theory appeared
in 1949 in the form of several abstracts in Bull. Amer. Math. Soc. vol. 55 (1949) pp. 63-65. A
full account appears in the above-mentioned paper presented at the 1950 International Con-
gress; it will be observed that Theorem 20 (17) is closely related to our Theorems 2 and 3 (4).
A further development of the theory was described by Tarski at the Colloquium Lectures of
the American Mathematical Society in September, 1952.

The possibility of applying "our basic result from logic" to problems of algebra was re-
discovered by me in the Spring of 1947. Aside from detailed applications, two new basic ideas
were added to those which had been developed by Tarski. One was the use of individual con-
stants, together with addition and multiplication tables, to represent a particular structure in
the language L—as is done in our Theorem 1. The other was the generalization to higher-order
languages described in our last section.

Finally, in the period September 1947-April 1949, the basic ideas were once again found in
independent work by Abraham Robinson. Using both the "basic result from logic" and the
technique of individual constants, he obtained some of our results relating to the characteristic
of models in an arithmetical class of commutative fields, adding important new examples. He
also obtained further results in this direction, including the important theorem that an arith-
metical class containing one algebraically closed field contains all others of the same character-
istic (which was obtained by Tarski in a very different way). Results on non-Archimedean
ordered fields also appear in Robinson's work, and further original material having no counter-
part in our work.
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