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Abstract. In this manuscript, we prove that the newly introduced F -metric spaces are Hausdorff and first
countable. We investigate some interrelations among the Lindelöfness, separability and second countability
axiom in the setting of F -metric spaces. Moreover, we acquire some interesting fixed point results concern-
ing altering distance functions for contractive type mappings and Kannan type contractive mappings in
this exciting context. In addition, most of the findings are well-furnished by several non-trivial examples.
Finally, we raise an open problem regarding the structure of an open set in this setting.

1. Introduction

As a generalization of Euclidean geometry and a common setting for continuous functions, topology
of normed spaces is one of the most fascinating and instrumental branches of research in contemporary
mathematics. This fact has prompted many mathematicians to deal with the topology induced by a norm
defined on a linear space on a non-empty set in plenty of research articles. Therefore the topology of
b-metric spaces, dislocated metric spaces and several other abstract spaces are thoroughly investigated and
also improved by several authors (see [3, 7, 12] and references therein).

On the other hand, metric fixed point theory appears as one of the most salient means to work out
various research ventures in non-linear functional analysis and a variety of other fields in science and
technology. It all emerged with the illustrious Banach contraction principle in the setting of a complete
metric space, due to Banach [1], in 1922 and subsequently, plenty of results appeared which complement,
extend and obviously improve the pioneer one [2, 5–7, 9, 10].

Right through the years, mathematicians got involved with improving the underlying metric structure
of the previous result and in a very recent article, Jleli and Samet [8] proposed the notion of an F -metric
space which is another interesting framework to work with. The authors made use of a certain class of
auxiliary functions to coin the idea of such abstract spaces. We begin with the collection of such functions.

Let F be the set of functions f : (0,∞)→ R satisfying the following conditions:
(F1) f is non-decreasing, i.e., 0 < s < t⇒ f (s) ≤ f (t).
(F2) For every sequence (tn) ⊆ (0,+∞), we have

lim
n→+∞

tn = 0⇐⇒ lim
n→+∞

f (tn) = −∞.
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Example 1.1. The following are some examples of the previously discussed kind of auxiliary functions:

(i) - 1
t , where t ∈ (0,∞);

(ii) -e
1
t , for all t ∈ (0,∞).

Utilizing such functions, the authors generalized the concept of usual metric spaces and originated the
notion of F -metric spaces as follows:

Definition 1.2. [8] Let X be a non-empty set, and let d : X × X → [0,∞) be a mapping. Suppose that there exists
( f , α) ∈ F × [0,∞) such that

(D1) (x, y) ∈ X × X, d(x, y) = 0⇐⇒ x = y.
(D2) d(x, y) = d(y, x), for all (x, y) ∈ X × X.
(D3) For every (x, y) ∈ X × X, for each N ∈N,N ≥ 2, and for every (ui)N

i=1 ⊆ X with (u1,uN) = (x, y), we have

d(x, y) > 0 =⇒ f (d(x, y)) ≤ f
( N−1∑

i=1

d(ui,ui+1)
)

+ α.

Then d is said to be an F -metric on X, and the pair (X, d) is said to be an F -metric space.

We observe that any metric on X is an F -metric, but the converse is not true, which is given in [8, Example
2.1]. The succeeding example is an example of one such.

Example 1.3. We consider the set X = [1, 4] and define a mapping d : X × X→ R by

d(x, y) =


0, when x = y;
x + y, when x , y and x, y ∈ [1, 2];
2(x + y), when x , y and x, y ∈ [2, 3];
3(x + y), when x , y and x, y ∈ [3, 4];
1, elsewhere.

Then it is easy to note that (X, d) is an F -metric space with f (t) = − 1
t and α = 2.

Further, the notions of completeness, convergence and Cauchy sequences in this framework along with
some other terminologies can be found in [8].

In this literature, we assert a couple of topological observations concerning the newly introduced F -
metric spaces. In fact, being a vast generalization of usual metric spaces, such kind of spaces still hold some
beautiful topological properties like Hausdorff and also first countability. Further, we prove that a Lindelöf
F -metric space is separable as well as second countable. On the other hand, we also enquire into a few
exciting fixed point results involving altering distance functions in the later half of this article. Finally, we
construct several non-trivial examples to validate the obtained theorems.

2. Results on topology of F -metric spaces

In this section, we deal with the topological developments of F -metric spaces which is equipped with
the F -metric topology τF . First of all, we attest that such metric spaces are Hausdorff.

Theorem 2.1. Every F -metric space is Hausdorff.

Proof. Let (X, d) be an F -metric space, so there exists ( f , α) ∈ F × [0,∞) satisfying the conditions (D1-D3) of
Definition 1.2. Let x, y be two arbitrary points in X with x , y, and take an =

d(x,y)
n . Then (an) is a sequence

in (0,∞) and an → 0 as n→∞. So by (F2), we have,

f (an)→ −∞ as n→∞.
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We claim that B(x, an
2 ) ∩ B(y, an

2 ) = ∅ for some n ∈ N. Suppose to the contrary that B(x, an
2 ) ∩ B(y, an

2 ) , ∅ for
each n ∈N. Then we can find a sequence (zn) in X such that zn ∈ B(x, an

2 ) ∩ B(y, an
2 ) for all n ∈N. Therefore,

d(x, zn) <
an

2
and d(y, zn) <

an

2
.

Since, d(x, y) > 0, so using (D3), we get,

f (d(x, y)) ≤ f (d(x, zn) + d(zn, y)) + α

≤ f
(an

2
+

an

2

)
+ α

= f (an) + α.

Taking limit as n→∞ in both sides of above equation we get

f (d(x, y)) ≤ −∞,

which is a contradiction.
Therefore, B(x, an

2 )∩B(y, an
2 ) = ∅ for some n ∈N. Now, we consider A = int

(
B(x, an

2 )
)

and B = int
(
B(y, an

2 )
)
,

where int (Y) stands for the interior of Y, which, by definition, are open. Clearly, x ∈ A and y ∈ B and

A ∩ B = ∅.

Hence we are done.

Remark 2.2. It is worthy to mention that the Hausdorff property is a sufficient condition to claim the uniqueness of
a limit for a convergent sequence. Therefore, this property holds good for every F -metric space also.

Now we study the first countability axiom in the following result.

Theorem 2.3. Every F -metric space (X, d) is first countable.

Proof. Let x ∈ X be arbitrary. Then the family

β =
{
int

(
B
(
x,

1
n

))
: n ∈N

}
is a countable set of open neighborhoods of x. Let U be an open neighborhood of x. Then by the definition
of an F -open set, B(x, r) ⊆ U, for some r > 0. By the Archimedean property, there exists n ∈ N such that
0 < 1

n < r and therefore we have

B
(
x,

1
n

)
⊆ B(x, r) ⊆ U

⇒ int
(
B
(
x,

1
n

))
⊆ B

(
x,

1
n

)
⊆ B(x, r) ⊆ U.

Hence β is a local basis at x. Hence any F -metric space is first countable.

In the next theorem, we relate the Lindelöfness and separability of F -metric spaces.

Theorem 2.4. Every Lindelöf F -metric space is separable.

Proof. Let (X, d) be a Lindelöf F -metric space and takeAn = {int
(
B(x, 1

n )
)

: x ∈ X}. ThenAn is an open cover

of X for each n ∈ N. Since (X, d) is Lindelöf, An has a countable subcover, sayA′n = {int
(
B(xni ,

1
n )

)
: i ∈ N}

for all n ∈N.
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Let D = {xni : i,n ∈ N}. Then D is a countable subset of X. Next, we show that D = X. Let x ∈ X be
arbitrary and U be an open set in X containing x. Then there exists r > 0 such that x ∈ B(x, r) ⊆ U. Let us
choose m ∈N such that 1

m < r. Since,A′m = {int
(
B(xmi ,

1
m )

)
: i ∈N} is an open cover of X, x ∈

{
int

(
B(xmk ,

1
m )

)}
for some k ∈N. Therefore,

d(xmk , x) <
1
m
< r⇒ xmk ∈ B(x, r) ⊆ U.

Also, xmk ∈ D. Thus D ∩U , φ, and hence x ∈ D. So D = X and consequently X is separable.

We now establish a relationship between Lindelöfness and second countability axiom of F -metric spaces
in the following theorem.

Theorem 2.5. Every Lindelöf F -metric space is second countable.

Proof. Let (X, d) be a Lindelöf F -metric space and take An = {int
(
B(x, 1

n )
)

: x ∈ X} for all n ∈ N. Then
An is an open cover of X for all n ∈ N. Since (X, d) is Lindelöf, An has a countable subcover, say
A
′
n = {int

(
B(xni ,

1
n )

)
: i ∈N} for each n ∈N.

LetA = {int
(
B(xni ,

1
n )

)
: i,n ∈N}. ThenA is a countable collection of open sets in X. Now, we show that

A is a base for the topology on X. To prove this, let U be an open set in X and x ∈ U. So there exists r > 0
such that x ∈ B(x, r) ⊆ U. Let us choose n ∈N such that 1

n < r. Then B(x, 1
n ) ⊆ B(x, r) ⊆ U.

Then by (F2), there exists δ > 0 such that

0 < t < δ⇒ f (t) < f
(1

n

)
− α. (1)

Again, choose m ∈N such that 1
m < δ. Since,A′2m is an open cover of X, x ∈ int

(
B(x2mi ,

1
2m )

)
for some i ∈N.

Let, y ∈ B(x2mi ,
1

2m ). Then we have,

d(y, x2mi ) + d(x2mi , x) <
1

2m
+

1
2m

=
1
m
< δ.

So, by Equation (1) we have,

f (d(y, x2mi ) + d(x2mi , x)) < f
(1

n

)
− α.

If y = x, then clearly y ∈ B(x, 1
n ) ⊆ U. If not, then by (D3) we get,

f (d(y, x)) ≤ f (d(y, x2mi ) + d(x2mi , x)) + α < f
(1

n

)
− α + α

= f
(1

n

)
⇒ d(y, x) <

1
n

⇒ y ∈ B
(
x,

1
n

)
⊆ U.

Therefore,

B
(
x2mi ,

1
2m

)
⊆ U

⇒ x ∈ int
(
B
(
x2mi ,

1
2m

))
⊆ B

(
x2mi ,

1
2m

)
⊆ U

⇒ x ∈ int
(
B
(
x2mi ,

1
2m

))
⊆ U, where int

(
B
(
x2mi ,

1
2m

))
∈ A.



A. Bera et al. / Filomat 33:10 (2019), 3257–3268 3261

Therefore,A is a countable base for the topology on X and hence (X, d) is second countable.

Therefore it is interesting to note from the above theorems that some of the important topological
properties of usual metric spaces hold good in this structure. However, we are not sure about certain other
important properties hold good or not in it. In this context, we pose the following open problem:

Open Problem 2.6. Is every open ball an open set in F -metric spaces?

3. Fixed point results via altering distance functions

In this section, we present a few fixed point results concerning some special kinds of self-maps via
altering distance functions. To begin with, we recall a crucial notion of an altering distance function which
was originally coined by Khan et al. [11].

Definition 3.1. A function ϕ : [0,∞)→ [0,∞) is called an altering distance function if

(i) ϕ is continuous,
(ii) ϕ is non-decreasing,

(iii) ϕ(t) = 0⇐⇒ t = 0.

In 1962, Edelstein [4] obtained the following version of the Banach contraction principle [1] relevant to the
contractive mappings.

Theorem 3.2. [4] Let (X, d) be a compact metric space and T : X→ X be a self-map. Assume that

d(Tx,Ty) < d(x, y)

holds for all x, y ∈ X with x , y. Then T has a unique fixed point in X.

Now, employing the idea of altering distance functions, we generalize Theorem 3.2 inF -metric setting. The
following result assures the existence and uniqueness of a fixed point arising of contractive type mappings
in this framework.

Theorem 3.3. Let (X, d) be a sequentially compact F -metric space and T be a self-map on X such that

ϕ(d(Tx,Ty)) < ϕ(d(x, y))

for all x, y ∈ X with x , y, where ϕ is an altering distance function. Also, assume that the F -metric d is continuous.
Then T has a unique fixed point and for any x ∈ X, the sequence (Tnx) is F -convergent to that fixed point.

Proof. Let x0 ∈ X and we define a sequence (xn) by xn = Tnx0 for n ∈ N. If xn = xn+1 for some n ∈ N,
then xn ∈ X is a fixed point of T. So, we assume xn , xn+1 for all n ∈ N. Since (X, d) is a sequentially
compact F -metric space, there exists a convergent subsequence (xnk ) of (xn) that converges to z. Since T is
continuous, it follows that the subsequence (xnk+1) converges to Tz. Take sn = ϕ(d(xn, xn+1)) for all n ∈ N.
Then we have,

sn+1 = ϕ(d(xn+1, xn+2))
< ϕ(d(xn, xn+1))
= sn.

This shows that the sequence of non-negative real numbers (sn) is a decreasing sequence and hence conver-
gent to some a ≥ 0. Next, if a > 0, then we have

0 < a = lim
k→∞

ϕ(d(xnk , xnk+1)) = ϕ(d(z,Tz)).
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Also we have
0 < a = lim

k→∞
ϕ(d(xnk+1, xnk+2)) = ϕ(d(Tz,T2z)) < ϕ(d(z,Tz)) = a,

which leads to a contradiction. So we must have a = 0. Thus the sequence (sn) converges to zero. Therefore
we obtain

lim
n→∞

ϕ(d(xn, xn+1)) = 0

=⇒ lim
n→∞

d(xn, xn+1) = 0.

Now we show that z is a fixed point of T. On the contrary, let z , Tz. Then d(z,Tz) > 0 and so by (D3), we
have

f (d(z,Tz)) ≤ f
(
d(z, xnk ) + d(xnk , xnk+1) + d(xnk+1,Tz)

)
→ −∞ as k→∞,

which is a contradiction. So we must have z = Tz, i.e., z is a fixed point of T.
Now, to prove the uniqueness of the fixed point, if possible, we assume T has two fixed points z1, z2 ∈ X

with z1 , z2, i.e., Tz1 = z1 and Tz2 = z2. Then

ϕ(d(z1, z2)) = ϕ(d(Tz1,Tz2))
< ϕ(d(z1, z2)),

which is impossible. Therefore, we obtain z1 = z2. Hence T has a unique fixed point. Hence, we prove that
the sequence (xn) converges to z. If xn = z for finitely many n ∈ N, then we can exclude those xn from (xn)
and assume that, xn , z for all n ∈N. Then from the sequentially compactness, we have

lim
k→∞

d(xnk , z) = 0,

that is, z is the accumulation point of the sequence (xn). Again, if z1 be another accumulation point of (xn),
then there exists a subsequence of (xn) which converges to z1. Then continuing as above discussion, we can
show that z1 is a fixed point of T, which implies that z = z1. So, z is the unique accumulation point of (xn).

Now, we consider a sequence (αn) of real numbers where αn = ϕ(d(xn, z)) for all n ∈ N. Therefore,
αnk = ϕ(d(xnk , z)) → 0 as k → ∞, which implies (αn) has a subsequence (αnk ) that converges to 0. So 0 is an
accumulation point of (αn). Now, we have,

αn+1 =ϕ(d(xn+1, z))
=ϕ(d(Txn,Tz))
<ϕ(d(xn, z))
=αn

for all n ∈ N. Hence (αn) is a monotone decreasing sequence of non-negative real numbers and 0 is
an accumulation point of (αn). Then (αn) must converge to 0. Therefore, letting n → ∞, we obtain
ϕ(d(xn, z))→ 0. This implies

lim
n→∞

d(xn, z) = 0.

Hence (xn) converges to z and so (Tnx0) converges to z. Since x0 ∈ X is arbitrary, (Tnx) converges to z for
each x ∈ X.

From the above theorem, we can establish the subsequent corollary by taking ϕ(t) = t for all t ∈ [0,∞).

Corollary 3.4. Let (X, d) be a sequentially compact F -metric space and T : X→ X be a mapping such that

d(Tx,Ty) < d(x, y)

for all x, y ∈ X with x , y, where ϕ is an altering distance function. Then T has a unique fixed point in X and for
any x ∈ X, the sequence (Tnx) converges to that fixed point.



A. Bera et al. / Filomat 33:10 (2019), 3257–3268 3263

The succeeding example authenticates previously discussed Theorem 3.3.

Example 3.5. Let X = [0, 1] and define the metric d : X × X→ [0,∞) by

d(x, y) = |x − y|

for all x, y ∈ X. Also consider a self-map T on X by

T(x) = 1 −
x
2
,

for all x ∈ X. Then (X, d) is a F -metric space with f (t) = ln t and α = 0 and also F -compact. Now, consider
ϕ(t) = t2, t ∈ [0,∞). Then we have,

ϕ(d(Tx,Ty)) = ϕ(|Tx − Ty|)

= |Tx − Ty|2

=
(
1 −

x
2
− 1 +

y
2

)2

=
1
4

(x − y)2

< (x − y)2

= ϕ(d(x, y)),

for all x, y ∈ X with x , y. Therefore,
ϕ(d(Tx,Ty)) < ϕ(d(x, y))

holds for all x, y ∈ X with x , y. Thus T satisfies all the hypotheses of Theorem 3.3 and hence possesses a unique fixed
point x = 2

3 ∈ X.

In the next theorem, we consider Kannan type contractive mappings defined on an F -metric space.

Theorem 3.6. Let T be a self-mapping on an F -metric space (X, d) and assume that the F -metric d is continuous.
Suppose there exists x0 ∈ X such that the orbit φ(x0) = {Tnx0 : n ∈ N} has an accumulation point z ∈ X. If T is
orbitally continuous at z and there exists an altering distance function ϕ such that

ϕ(d(Tx,Ty)) <
1
2
{ϕ(d(x,Tx)) + ϕ(d(y,Ty))}

holds for all x, y = Tx ∈ φ(x0) with x , y, then z is the unique fixed point of T.

Proof. Let us define a sequence (xn) by xn+1 = Txn for n ∈ N0. If xn = xn+1 for some n, then T has a fixed
point. So, we assume xn , xn+1 for every n ∈ N0. Let αn = ϕ(d(xn, xn+1)) for all n ∈ N0. Then by the given
condition it follows that

αn+1 = ϕ(d(xn+1, xn+2))
= ϕ(d(Txn,Txn+1))

<
1
2
{ϕ(d(xn,Txn)) + ϕ(d(xn+1,Txn+1))}

=
1
2
{ϕ(d(xn, xn+1)) + ϕ(d(xn+1, xn+2))}

=
1
2
{αn + αn+1}

⇒
1
2
αn+1 <

1
2
αn

⇒ αn+1 < αn.
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This shows that (αn) is a strictly decreasing sequence of positive reals and hence convergent to some non-
negative real number a. Since z is an accumulation point ofφ(x0), there exists a sequence of positive integers
(nk) such that (xnk ) converges to z ∈ X. Therefore, by orbitally continuity of T, we get (xnk+1) converges to
Tz.

Now, we claim that a = 0. If a , 0, then we have

0 < a = lim
k→∞

ϕ(d(xnk , xnk+1)) = ϕ(d(z,Tz)).

Also we have
0 < a = lim

k→∞
ϕ(d(xnk+1, xnk+2)) = ϕ(d(Tz,T2z)) < ϕ(d(z,Tz)) = a,

which leads to a contradiction. So we must have a = 0. Thus the sequence (αn) converges to zero. Let there
exists ( f , α) ∈ F × [0,∞) satisfying the conditions (D1-D3) of Definition 1.2. Then by (F2), for a given ε > 0,
there exists a δ > 0 such that

0 < t < δ ⇒ f (t) < f (ϕ(ε)) − α. (2)

Now,

ϕ(d(xn, xn+1)) <
1
2
{ϕ(d(xn−1,Txn−1)) + ϕ(d(xn,Txn))}

=
1
2
{ϕ(d(xn−1, xn)) + ϕ(d(xn, xn+1))}

=
1
2
{ϕ(d(Tn−1x0,Tnx0)) + ϕ(d(Tnx0,Tn+1x0))}.

Finally we obtain,

m−1∑
i=n

ϕ(d(xi, xi+1)) <
m−1∑
i=n

1
2
{ϕ(d(Ti−1x0,Tix0)) + ϕ(d(Tix0,Ti+1x0))}.

Since
lim
n→∞
{ϕ(d(Tn−1x0,Tnx0)) + ϕ(d(Tnx0,Tn+1x0))} = 0,

there exists some N ∈N such that

0 <
m−1∑
i=n

ϕ(d(xi, xi+1)) < δ,

holds for all n ≥ N. Hence by (2) and (F1), we have

f
( m−1∑

i=n

ϕ(d(xi, xi+1))
)
< f (ϕ(ε)) − α. (3)

Now, we show that
d(xn, xm) < ε

for all m > n ≥ N. Let m,n ∈ N be fixed but arbitrary such that m > n ≥ N. If d(xn, xm) = 0, then clearly
d(xn, xm) < ε and if d(xn, xm) > 0, then using (D3) and (3), we get

ϕ(d(xn, xm)) > 0

⇒ f (ϕ(d(xn, xm))) ≤ f
( m−1∑

i=n

ϕ(d(xi, xi+1))
)

+ α

< f (ϕ(ε)),
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which gives by (F1) that

ϕ(d(xn, xm)) <ϕ(ε)
⇒ d(xn, xm) <ε.

This proves that (xn) is F -Cauchy. Since (xn) has a subsequence (xnk ) which converges to z, the limit of (xn)
will be z. This means that

lim
n→∞

d(xn, z) = 0. (4)

This implies that (xn) converges to z and by orbitally continuity of T, we get (Txn) converges to Tz. Since
Txn = xn+1, we have, by the uniqueness of limit of sequence, z = Tz. Hence z is a fixed point of T. For
uniqueness, let z∗ be another fixed point of T. Then

ϕ(d(z, z∗)) = ϕ(d(Tz,Tz∗))

<
1
2
{ϕ(d(z,Tz)) + ϕ(d(z∗,Tz∗))}

< 0,

a contradiction. Therefore z is the unique fixed point of T.

Remark 3.7. The following example shows that, if we take any two points x, y = Tx ∈ φ(x0) with x , y satisfying
the inequality

ϕ(d(Tx,Ty)) <
1
2
{ϕ(d(x,Tx)) + ϕ(d(y,Ty))},

then the sequence of iterates (Tnx0) may not converge to the accumulation point of φ(x0).

The following example validates the previous remark.

Example 3.8. Let X = {2,−2, 2 + 1
3n ,−2 − 1

3n+1 : n ∈N} and define the metric d : X × X→ [0,∞) by

d(x1, y1) = |x1 − y1|

for all x1, y1 ∈ X. Then (X, d) is an F -metric space with f (t) = ln t, for t > 0 and α = 0. Now, we define T on X by

T(2) = −2, T(−2) = 2, T
(
2 +

1
3n

)
= −2 −

1
3n + 1

and T
(
− 2 −

1
3n + 1

)
= 2 +

1
3(n + 1)

.

Now, for x0 = 2 + 1
3 , we have

φ(x0) =
{
2 +

1
3
,−2 −

1
4
, 2 +

1
6
,−2 −

1
7
, 2 +

1
9
,−2 −

1
10
, · · ·

}
.

Then it can be easily verified that the inequality

ϕ(d(Tx,Ty)) <
1
2
{ϕ(d(x,Tx)) + ϕ(d(y,Ty))}

is satisfied for all x, y = Tx ∈ φ(x0) with x , y and ϕ(t) = t, t ≥ 0. Whenever z = 2 in φ(x0), we have Tz = −2.
Moreover, T is orbitally continuous at z. But still z is not a fixed point of T.
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Example 3.9. Let (ei
n)n∈N be the sequence of real numbers whose i-th term is i and all other terms are 0. Take

X = {(ei
n)n∈N : i ≥ 1}. Define d : X × X→ R by

d(x, y) =

 1 +

∣∣∣∣∣ 1
supn |e

i
n |
−

1
supn |e

j
n |

∣∣∣∣∣ , if x = (ei
n)n∈N and y = (e j

n)n∈N with x , y;

0, if x = y.

Then it is easy to note that (X, d) is an F -metric space with f (t) = ln t and α = 0. Also, it is clear that (X, d) is
F -complete but not F -compact.

Now, define a mapping T : X→ X by
T((ei

n)n∈N) = (e3i
n )n∈N

for all (ei
n) ∈ X. Therefore, for i < j, we have

d(T(ei
n),T(e j

n)) = 1 +

∣∣∣∣∣ 1
3i
−

1
3 j

∣∣∣∣∣
= 1 +

1
3i
−

1
3 j
< 1 +

1
3i

whereas,

1
2
{d((ei

n),T(ei
n)) + d((e j

n),T(e j
n))} =

1
2

{
1 +

∣∣∣∣∣1i − 1
3i

∣∣∣∣∣ + 1 +

∣∣∣∣∣1j − 1
3 j

∣∣∣∣∣}
= 1 +

1
3i

+
1
3 j
> 1 +

1
3i
.

So,

d(T(ei
n),T(e j

n)) <
1
2
{d((ei

n),T(ei
n)) + d((e j

n),T(e j
n))}.

In a similar manner, we can show that

d(T(ei
n),T(e j

n)) <
1
2
{d((ei

n),T(ei
n)) + d((e j

n),T(e j
n))}

if i > j. Therefore,

d(Tx,Ty) <
1
2
{d(x,Tx) + d(y,Ty)}

for all x, y ∈ X with x , y, but T does not possess any fixed point.

From the above example, we observe that the completeness of X can not alone guarantee the existence of a
fixed point for the Kannan type contractive mappings.

Theorem 3.10. Let (X, d) be an F -complete metric space and T be a continuous self-map on T such that

ϕ(d(Tx,Ty)) <
1
2
{ϕ(d(x,Tx)) + ϕ(d(y,Ty))} (5)

for all x, y ∈ X with x , y, where ϕ is an altering distance function. Also assume that for any x ∈ X and for any
ε > 0, there exists δ > 0 such that

ϕ(d(Tix,T jx)) < ε + δ⇒ ϕ(d(Ti+1x,T j+1x)) ≤ ε

for any i, j ∈ N. Then T has a unique fixed point, and for any x ∈ X, the sequence of iterates (Tnx) converges to that
fixed point.
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Proof. Let x0 ∈ X be arbitrary but fixed. We consider the sequence (xn) in X, where xn = Tnx0 for all natural
numbers n. Also, we take the sequence of real numbers (sn) defined by sn = ϕ(d(xn, xn+1)) for all n ∈N.

If xn = xn+1 for some n, then it is easily noticeable that xn is a fixed point of T. So now we assume that
xn , xn+1 for all n ∈N. Putting x = xn, y = xn+1 in (5), we get,

ϕ(d(Txn,Txn+1)) <
1
2
{ϕ(d(xn,Txn)) + ϕ(d(xn+1,Txn+1))}

⇒ ϕ(d(xn+1, xn+2)) <
1
2
{ϕ(d(xn, xn+1)) + ϕ(d(xn+1, xn+2))}

⇒ sn+1 <
1
2
{sn + sn+1}

⇒ sn+1 < sn.

Therefore, (sn) is a decreasing sequence of non-negative real numbers and hence convergent to some a ≥ 0.
We claim that a = 0. If a > 0, then by the given condition there exists δ > 0 such that

ϕ(d(Tix,T jx)) < a + δ⇒ ϕ(d(Ti+1x,T j+1x)) ≤ a (6)

for any i, j ∈N. But since (sn) converges to a, there exists n ∈N such that

sn < a + δ.

Then using (6) we get,
sn+1 ≤ a,

which contradicts the fact that (sn) converges to a. Therefore, (sn) converges to 0.
Now, we show that (xn) is a Cauchy sequence. To show this, we put x = xn, y = xm in (5) and get,

ϕ(d(Txn,Txm)) <
1
2
{ϕ(d(xn,Txn)) + ϕ(d(xm,Txm))}

⇒ ϕ(d(xn+1, xm+1)) <
1
2
{sn + sm} → 0 when n,m→∞.

Therefore, the double sequence (ϕ(d(xn, xm))) of real numbers converges to 0. So for any ε > 0, there exists
N ∈N such that

ϕ(d(xn, xm)) < ϕ(ε)

for all n,m ≥ N, which gives
d(xn, xm) < ε

for all n,m ≥ N. Therefore (xn) is a Cauchy sequence in X. Again, as X is F -complete, (xn) converges to
some z ∈ X. Since, T is continuous, (Txn) converges to Tz, i.e., (xn) converges to Tz. So we have z = Tz, i.e.,
z is a fixed point of T. The uniqueness of the fixed point can be similarly derived as in Theorem 3.6.
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