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Some Interpolation Inequalities Involving Stokes Operator 

and First Order Derivatives (*). 

PAOLOMAREMONTI 

1.  - I n t r o d u c t i o n .  

As is well known, an interpolation inequality states a priori properties of a function 

(or of its derivatives) beloging to some Sobolev spaces [2, 4, 10-12, 17, 19, 23-25, 33- 
34, 37-38, 42]. Usually, on the right hand side of such inequalities in a multiplicative 
form the L p-norm of the function and of its derivatives of maximum order appear. 
However, in the study of some partial differential equations it is required for an inter- 
polation inequality to involve on the right hand side a suitable differential operator, in- 
stead of the maximum order of the derivatives. This is the case of Navier-Stokes equa- 
tions and Stokes operator, owing to the nonlinear character of the equations and the 
fact that the maximum order of derivatives which appears in the equations is due to the 

Stokes operator (PA). 
One of the aims of the paper is to prove some interpolation inequalities involving 

Stokes operator in a multiplicative form. Our chief requirement is to state the results in 
exterior domains t2 of R n. If $2 denotes a bounded and sufficiently smooth domain, 

w(x) e W2'P(t2)A J:'P(g2) (see section 2 for notations), then the following inequality 
holds [5, 13, 15-16, 41, 43-44] 

(1,1) I w ]z, p <~ CIPAw ]p , 

where C, independent of w(x), among other parameters, takes into account of the 
Poincar~ inequality. After which by general interpolation inequalities of second order 
by Gagliardo and Nirenberg type, one is able to prove properties for w(x) and Vw(x) in 

(*) Entrata in Redazione il 10 giugno 1996. 
Indirizzo delrA.: Dipartimento di Matematica, Universit~ della Basilicata, Via N. Sauro 85, 

1-85100 Potenza. 
E-mail: maremonti@unibas.it 
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a suitable LT-space by means of an inequality of the type (1): 

] D J w ] ~ C I P A w I ~ I w I ~  -~,  j = 0 ,  1, 

where j ,  r, a, p, q satisfy a suitable relation. When t? is unbounded in any directions, 

in particular if it is an exterior domain, the above considerations fail to hold. In this 

connection, it is sufficient to think that in (1.1) C depends on Poincar4 inequality. Actu- 

ally the situation is more involved, since an inequality of the type ID2w Ip <<- CIPAw [p 
for any p >>- n/2 does not already hold [13, 15, 30]. Here we employ a technique which 

does not make use of the above inequality and it is able to prove the desidered interpo- 

lation inequalities when s is an exterior domain. Of course, as a consequence we have 

that inequality ID2w Ip <<- CIPAw Ip for any p >i n/2 is not necessary to obtain our esti- 

mates on function w(x), in particular we can say that (p > n/2) w ( x ) e L  ~ (f2). So it is 

completely avoid the use of standard Sobolev imbedding theorems. 

Another aim of this paper is to prove interpolation inequalities between H 1' P(R n) 
and H-1,  p(R n) either of the first order of derivatives. Since to explain the results it is 

necessary to introduce some notations, here we want only to point out that we can 

prove some interpolation Sobolev inequalities without require that the functions have 

traces equal zero on the boundary. Moreover, we try to give a numerical value to the 

constants which appear in interpolation inequalities of the first order (for functions bel- 

oging to the completeness of C~ (R n) in suitable norm). Of course, we consider expo- 

nents that are not connected with the cases q = n s / ( n -  s), s e [1, n) for which are 

known the results of [1, 45]. The constants are not sharp, however they are deduced in 

such a simple way that it seems interesting to communicate. 

We conclude stressing that our results also come if we substute the Stokes operator 

with some elliptic operators. As well as in the inequalities of the first order, we can sub- 

stute the operator ~,V,, with ~,A(x).V,, where A(x) is a matrix which defines an elliptic 

operator. However, the extension is not so trivial with exception of the Laplace opera- 

tor. Our technique consents to consider the case of V. (A(x). Vw(x)) e L 1 (sg) and in the 

view of the results of [39] this appears of particular interest also for the domain f2 not 
exterior. 

Finally we quote the paper [32, 47]. In [32] MASUDA for the first time considered our 

question for the case of Laplace operator. He proved an inequality of the type 

sup ]u(x)] <. CIAuI~/2 IVul~/2, u(x)19 ~ = O, where t ? c R  8 is an exterior domain. Subse- 

quently, in [47] XIE proves the same inequality considering an arbitrary domain t9 r R 3. 

Moreover he gives a precise value of the constant, in fact C = (2z) -1/2 is the best con- 
stant for the inequality. 

Further comments on the results of the paper we refer the reader to the remarks of 

section 2. 

(1) Such an inequality, in an ambit of Navier-Stokes equations, was proved and used in [8] for 
questions connected to the existence of solutions. More precisaly they proved (p =q--2 and 
r = oo)Iwl~ <~ C IPAw I~/4 I w 112/4. However in [8] the domain $2c R a is bounded. In exterior 
domains this inequality becomes interesting not only for questions connected to the existence, 
but also for problems of stability of solutions (see [18, 32]). 
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2. - N o t a t i o n s  a n d  s t a t e m e n t  o f  t h e  resu l t s .  

Throughout the paper t9 will denote an exterior domain of R ~ (n I> 2). As far as the 
regularity of ~t9 is concerned, it is specified in the statements of the below 

theorems. 
LP(~9) (p i> 1) denotes the set of all fields ~(x) on ~9 such that 

I~1~= f Icf (x) I ~dx < co ; 
~9 

L ~ ( ~ 2 )  = {Lebesgue measurable cp(x): ess sup [~ (x )  [ < oo } ; 
t2 

m 

o 

where D a of(x) denotes weak derivatives of ~(x) of order l a l .  W ~' P(~9) is the comple- 
tion of Co~ (tg) in the [" Im, p norm. ~(~9) is the whole set of C~(tg) vector field ~(x) 
with compact support on t9 such that  V.~(x) = 0; JP(tg) and Jm, P(~9) denote the com- 
pletion of ~ ( tg )  in LP(~9) and W~'P(~9) respectively. I t  is well known [13] that 
LP(~2) = JP(tg) �9 G p (~2), where GP(~) = { ~(x): tp(x) = Vh(x), h(x) e L~oc(t2)} (here 

a~2 is smooth of C2-class). As is standard, we set (f, g ) =  [f(x).g(x)dx, for any 

f(x), g(x) such that f(x).g(x) is integrable over t2. If 1/p + 1/q = 1, we have for any 
f(x)eJP(~2) and V2(x)eGP(t2), (f, tp)= (f, V h ) = 0 .  The operator Pq. is the pro- 
jector from Lq(~2) into Jq(t2); if in the context there is no ambiguity then we omit 
index q. We indicate by H0-1'P(~2) the completion of LP(~9) with respect the 

norm Icfl_l,p = sup J~(x).~(x)dx with 1/p +1/q=1. = 

~(x) E # 1 '  q(~),  I~ l l ,  q=  1 

= {~(x): I Vcf Ip < ~ } and Do ~' p (~)  denotes the completion of Co ~ (Q) with respect IV. Ip. 
Following [13, 15] we indicate by Do -1' P(Q) the completion of Co(n) with respect the 

I 

= sup ~ cp(x).lp(x) dx I with 1/p + 1/q = 1. We set 
norm Icpi_l,p v(~)~Do~.q(a), IV~lq=l 5 

H ~ ( ~ 2 )  = {w(x) eJq(Y2): Vw(x) eL~oc(t2) and PAw(x) eJP(tg)};  

HP~p(~9) = {w(x) eHP~(~9) and w(x)laQ = 0};  

o OpA 
HP,~ 1(~9) = {w(x) e Hq, p(r2) and Vw(x)la• = 0}. 

In the definition of the above sets of functions it is assumed that aQ is smooth of 
C2-elass. We denote by E(x), P(x) the Stokes fundamental solution, E(x) is a tensor 
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and P(x)  is a vector field, they have components: 

Eij(x) = 5ijln ix---i + ' P j<x)-  ixi 2'  n=2~ 

Eij(x)  2--~ ( 5i/ 1 x i x j )  l xj = - - -  + , P j ( x ) -  - -  , 
n - 2  Ixl Ixl Ixl 

n>~3,  

where w ~ is the measure of unit sphere. 

We define for w ( x ) � 9  HP,~p(to) the boundary integral quantities: 

In) i) E(X - Xo)" T(w(x) ,  z ( x )  )'-~ da = B~ , p e -~ , n , n > 2 ;  
aQ 

] T(w(x),z(x))'~da=B2, p � 9  2), n=2;  
a~ 

in the case of p I> n/> 2, with further condition 

ii) f VE(x  - Xo) 'T(w(x) ,  z ( x ) ) . ~ d a  = B 1 ; 
aQ 

where z ( x )  is the function such that P A w ( x )  = •w(x)  - Vz(x) in to and T(w(x) ,  z ( x ) )  is 
the streSSo tensor of components Tij(x) = - ~ ij z ( x )  + (~wi(x)  /axj  + awj(x)  /ax i ) .  The 

symbol SHP,~p(to) denotes the set of functions w(x)  �9 HP,~p(to) for which Bn = 0, or Bn = 
o o o 

= B 1 = 0, n I> 2. Of course it is HP~/1(to) c S HP,~p (t0), while S HP~p(to) is a subset of the 
class of solutions to Stokes system with boundary conditions w(x)la ~ = 0 and B~ = 0, or 

B~ = B~ = 0, n/> 2, whose existence was stated in [30], for the case of Laplace equation 
see [29]. 

Now we are in a position to stand our results: 

THEOREM 2.1. - L e t  to c R ~ be, n >i 2, and assume aQ of  C m class wi th  2 m  > n,  m an 
o 

even positive integer. A s s u m e  w(x)  �9 P~ Hq, p(to), with p,  q � 9  (1, ~).  Then there exists a 
constant C indipendent  of  w(x )  such that for  a �9 [0, 1] and p �9 (1, n / 2 )  (n >I 3) 

f 1-a i f  q <  ~ np Iwi~< (CIPAwlP)aIWlq n-2------p' 

(cIPAwl ) - iwl  i f  q ~  np 
n - 2 p  ' 
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where 

f 1 2 1 np [q' n---2pnp ) and 1 n )  +(1 a) ' i f  -q n - 2 p  

r �9  
[nnP-~p,q] and 1 (1 a)(  1 2 )  1 np . . . . .  + a - ,  i f  q>~ - 

r n q n - 2 p  

Moreover for p >1 n/2 (for n = 2, p > 1), there exists a constant C indipendent of w(x) 
such that 

(2.1) a 1-a 
Iwl~<- ClPA,vlp lwlq , 

provided that for a �9 [ 0, 1 ) 

where C depends on p, q, r, a and a~.  

I [q, ~] if  n<~3, 

r � 9  [ [q, ~)  i f  n = 2 ;  

1 
+ ( l - a ) -  , 

q 

THEOREM 2.2. - Let w(x) �9 WI'~(R) n NLq(Rn),  n >I 1, s � 9  [1, ~], q~> 1. Then there 
exists a constant C such that for a � 9  [0, 1] and s � 9  [1, n) (n I> 2) 

(2.3) 

where 

f (ClVwl~)~lwl~ -~ if q<~ n s 
Iwl,< n - s  

(ClVwI.)I-alwI~ if q>~ n---L 
n--8 

ns 
n--s  

r �9  

- - , q  
n - s  

anal 1) 1 
- = a  - - -  + ( l - a ) - ,  i f  q<. - ,  
r n q n - s  

and 1 ( X _ a ) ( 1  1 )  1 ns 
- =  + a - ,  i f  q > ~ - -  ; 
r s n q n - s  

constant C is the following 

! - 1  ~1-1/p~ F( l+n /2 )F(n)  ] 
~-I/2n-1/Pt~--P ) ! I F( n/p ) F(1 + n - n/p ) 

Moreover, for s �9 [n, ~ ] and r >I q we have (n >I 1) 

(2.4) iwlr<~MiVwl~ l wl ql-~ , 
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wi th  a e  [0, 1) 

- = a  - -  + ( 1 - a )  1 

r s q 

I f  r >t s, then in  (2.4) there is 

M(r ,  s, q, n)  = a -~/( ~ § 8) M~/( ~ § 8) M2/( .  § 8) + fl - 1 am(~ + 8) M~/(~ § 8) M~/(~ + 8) ; 

othe~rise for  s >I r >i q, 

/ r (s  - q), where 

1) 
a =  2 r ' 

8 _  

there is M(r ,  s, q, n) = M ( s ,  s, q, n) b with b = s ( r - q ) /  

,n(1 1) 
2 2 

M 1 = (4z)-(n/2)(1/q- 1/r)fl 1~t]/281 1 1 1 
- 1 +  - - - ;  

]~1 r q 

M2 = (4~)_(n/2)(1#_1/r)~21/2_n/2f l  2 F1 /82 (n /2  + f l ~ / 2 )  1 

F1/8~(n/2) ' f12 
- 1 +  - - - 

1 1 

r s 

THEOREM 2.3. - Let  t~r R n be, n >! 2, a~9 locally lipschitzian. Let  w(x)  e ~1 ,  8(t~) A 

A Lq(Q) .  Then there exists a constant C indipendent  of  w(x)  such that 

1-a  (2.6) Iwir <. Ci Vwl~ Iwlq , 

wi th  the fol lowing restrictions: 

(2.7) i f  s e [ 1 ,  n), 

{ [q, n~ 1 

r e  L n - s j  
then [ n S _ ,  q] 

L n - s  j 

(1 1) 1 
- = a  - - -  + ( l - a ) -  i fq<~ - ,  
r n q n - s  

and 1 ( l _ a ) ( 1  1 )  1 us 
- = + a  i f q > ~ -  , 
r s n q n - s  

wi th  a e [ O ,  1]; i f  s e [ n ,  ~), then r e [ q ,  oo) and 

1 ( 1 1 )  , 
- a  + ( l - a ) - -  . 

r s n q 

with a e [0, 1). Constant C depends on r, s, q and a. 
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THEOREM 2.4. - Let Q c R  n be, n~>2, at9 of C2-class. Let w ( x ) e D l ' ~ ( ~ ) N  

A Ho]'q(tg), s e  [n/(n - 1), ~]  and q e  [n/(n - 1), ~). Then there exist constants Co 

and C1 indipendent of w(x) such that 

(2.9) Iwlr~CllVwl21 1-a 1-b WI-I,~ + Co IVwl2 Iwl-1, q, 

with a e [1/2, 1) and be  [0, 1), provided that r >~ ~ " = max{s, q} and 

(2.10) 

1 1 1 2 1 { [  ) 
- + a (  ) + ( l - a ) - ,  us 

r n s n q ~, 
r e  n - 8  

1 
. . . .  + ( l - b ) - ,  [~, ~]  

r n q 

i f  s e [ 1 ,  n) ,  

i f  s ~ n .  

In  particular, i f  w ( x ) =  Dj~(x)  with ~(x)  eLq(Q) ,  then inequality (2.9) becomes 

(2.11) ID~I,<~C1 ID~I~ I~1~ -o, ae [1/2, 1), 

provided that relation (2.10)1 holds. I f  t9 = R ~, n I> 2, then inequality (2.9) and (2.11) 
hold for s e  [1, cr and q e  [1, cr 

I f  w( x ) ~ D 1' s (t g) A Do 1, q(~9), there exists a constant C2 ind ipendent of w( x ) such 

that 

(2.12) iwl <<.C~lVwl~lw 1 - a  I - 1 ,  q , 

provided that (2.10)1 holds. 
Finally, i f  w(x) e L  S(R ~) (T H- l 'q (Rn) ,  then w(x) e H - l ' r ( R n )  and there exists a 

constant C3 indipendent of w(x) such that 

(2.13) iwl _~,~ ~ V~ lwl~ lwl 1-~ - 1 ,  q , 

provided that for a e [0, 1) (2.10)1 holds. I f  w(x) eLS(R n) A Do 1' q(R~), then w(x) e 

eDol '~ (R  n) and there exists a constant C4 indipendent of w(x) such that 

(2.14) lwl-i, ~C~lwl ~' '~-~ r s l W l - l , q  , 

provided that for a e  [0, 1) (2.10)1 holds. 
For r = ns/(n - s) inequalities (2.9)-(2.12) hold with a = 1 and Co = O. Constants Ci 

(i = 0, 1, ..., 4) in (2.9), (2.11)-(2.14) depend on r, s, q, a and in (2.9), (2.11)-(2.12) on 

at9 also 

PA THEOREM 2.5. - L e t  t)  c R n be as in Theorem 2.1. Let w(x)  e Hq, p( D ), q, p c  (1, 00). 
Then the following inequalities hold: 

(2.15) IVwlr<~ CIPAwI~ ]Wl  1 - a  , 
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provided that p e  (1, n/2), a e  [1/2, 1), r~>~ = max{p ,  q}, and 

(2.16) 
1 1  ( 1 2 )  1 

- + a  + ( l - a ) -  , 

r n p n q 

with C indipendent of  w(x); moreover, for  p >! n /2  

+ IPAwI  Iwl + lPZwl   lw q (2.17) IVwlr.<c  IPAwl~[Wlq 

with Ci i = 5 ,  6, 7 indipendent of w(x), provided that a e [ 1 / 2 ,  1), r e  [~, ~ ]  ( r e  

e [~, ~ ) for  n = 2), relation (2.16) holds and 

b = (2.18) 

n 
np i f  n ~ 3  and p >  -- , 

2pq + n(p - q) 2 

np - e ,  V e e ( 0 ,  up ) 
2pq + n(p - q) O(2pq + n(p - q) ) 

i f  n = 2  and p >  l ,  
n 

n ~ 3  and p = - -  . 
2 

I f  r is less than n,  then inequality (2.17) holds with C7 = O. 

I f  p belongs to (1, n/2) ,  then inequality (2.15) holds with a = 1. 

Finally, inequality (2.15) fails to hold in the following cases: for  r > n and p >1 q >! 

>I n /2 ;for r = np / ( n - p ), p c [ n /2 , n )and  a = 1. Constant C, Ci ( i = 5, . . . ,  7)depend on 

r, p, q and a. 

o 

THEOREM 2.6. - Let ~ c R n be as in Theorem 2.1. Let w( x ) E HPJ~ 1( ~ ) with p >! n /2 

(p > I for  n = 2) and q e (1, co ). Then there exists a constant C indipendent of w(x)  

such that, ~ = max{q, p}, 

1 - a  [ [r '  ~ ] '  n>~3 ,  
(2.19) IVwlr<<.CIPzJwl~lWlq , r e l [ r ,  ~ ) '  n = 2 ,  

provided that for  a e [ (1/2) ,  1) 

1 1  ( 1 2 )  1 
(2.20) - + a + (1 - a) - , 

r n p n q 

where C depends on p,  q, r and a. 
o 

Moreover, i f  w(x)  c S HP,~p( ~ ), then inequality (2.19) holds with dimensional bal- 

ance (2.20) and with the following restrictions: r>~ ~ i f  p e [n/2,  n); r >~p >i q i f  

p>~n. 
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COROLLARY 2.1. - Let  E2CR n be as in  Theorem 2.1. Let w(x)  �9 ~/p,zp(Q) A ~ l , s ( ~ )  
for  some p,  q �9 (1, ~ ) and s �9 [ 1, ~ ). I f  s �9 [ 1, n), n s / ( n  - s) > q, r �9 [q, n s / ( n  - s)], 

then 

(2.21) I I ~ l P  lax l ib l 1-az-bx'  , V w , f  ,w , 

for  some constant C only dependent on r, p,  s, q, a, b, X and aQ,  provided that for  

a, b � 9  [0, 1], 

(2.22) (1 1 = a  + ( 1 -  a) 1 =b  - 

r n q 
) +  ( l - b )  1 

q 

I f  s e [1, n), n s / ( n  - s) > q, r > n s / ( n  - s), then for  any  X �9 [0, 1] 

(2.23) ]w ]~ <~ C ] P A w  ]~]Vw Is x(1 -a)[W I~ 1 -Z){1-a), 

for  some constant C only dependent on r, p,  s, q, a, X and a ~ ,  provided that for  

a e  [0, 1], 

(2.24) 
1 1) 1] 
- - - a  + ( l - a )  Z - - -  + ( l - x ) -  �9 
r n n q 

I f  s e [1, n), q > n s / ( n -  s), r e  [ n s / ( n -  s), q], then inequali ty  (2.6) holds again (in 

other words (2.21) with a = 0). Finally,  i f  s > n and r >I q, then we have again inequal- 

i ty  (2.21) with restrictions (2.23). We stress that r =  ~ m a y  be for  n >I 3, while r <  

for  n = 2, in  accord with Theorem 2.1. 

Some words of comments about the theorems. 

REMARK 2.1. - The theory of the interpolation spaces has application in several 
fields of the analisys. Apart from the pioner and fundamental results by Riesz and 
Thorin, or of their generalizations, with papers [10-11, 23-25, 37-38] by Gagliardo, Lions 
and Nirenberg the theory had a meaning devolopment and application in the field of 
the partial differential equations, as well different methods of interpolation were intro- 
duced (real and complex interpolation methods by Peetre and Calderon respectively). 
Here we cannot be exhaustive for the whole research field, thus we refer the reader to 
[2] for a general theory of the interpolation and to the books by Lions-Magenes [26], 
where the interpolation theory (of functional spaces and linear operators) is used as 
systematic tool to solve questions related to some partial differential equations. Nev- 
erthless, we refer to [27] who wants a clear and complete (at least up to 1963) matter on 
the theory of the interpolation and about its application in partial differential 
equations. 

REMARK 2.2. - We are essentially interested to interpolation inequalities which are 
not connected with ones of Sobolev exponents: s e [ 1, n) and r = n s / ( n  - s). This is 
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made since for the above exponents the theory becomes a repetition; in Theorem 2.2 
they are considered uniquely for the sake of completeness in the statement. 

The study devoloped in this paper is based on the properties of the resolving opera- 
tor associated to (unsteady) Stokes system and for Theorem 2.2 to the heat equation. In 
the papers [6, 9, 46, 48] (2) properties of symmetric Markov semigroups are connected 

with inequalities of Hardy-Littlewood-Sobolev type. More precisely, in [6] symmetric 
Markov semigroups on L2(~9) are considered and an equivalence is given between 
L ~ - L  2 estimates of semigroups and the following inequality: 

Ifl~ +4/z <<. CQ(f) Ifl~/z , 

for some constant C, Y f eD(Q)N  L 1, where Q(f) = ~aij(x)(3/3xi)f(9/axj)fdx,  tt is a 

suitable parameter connected to the L ~ - L  2 semigroup properties (concerning the 

above estimate also see the papers [7, 36]). In [46] L ~ - L p estimates of semigroups are 
considered and an equivalence is given with the Hardy-Littlewood-Sobolev inequali- 
ties. In a class of operator containing the negative of Laplace operator, the necessary 
condition of the above result is due to [48]. Although we employ properties of the re- 
solving operator associated to the Stokes problem, stated recently in [31], the approach 
to the result is completely different from [6, 46, 48]. As well as, the order of interpola- 
tion inequalities (we consider second derivatives, Sobolev spaces of negative order) and 
exponents of summability of the L P-Lebesgue space interpolated (we can consider p = 
= 1) are different from ones deduced in [6, 46, 48]. 

To obtain our Sobolev inequalities we employ an argument by duality. We consider 
the solutions of a suitable initial boundary value problem (heat equation and Stokes 

problem) as test functions for an integral variational formulation of Laplace equation 
and (steady) Stokes system. Thus the solutions are test functions with a parameter, 

that is the time variable t. After which, making use of the evolution equation we attain 
a sort of Green formula. The arbitrarity of t consent to us to obtain the inequality in a 
suitable form. Of course the choosen of the evolution equation is close connected with 

the interpolation inequality consedered. 
In this approach there is a sort of equivalence between dimensional balance of the 

inequalities (see for example (2.2), (2.5)) and properties of resolving operator of the sol- 
utions to equations (more precisely we refer to properties of Theorem 3.1-3.2). In [31] 

results of optimality have been obtained for solutions to Stokes problem in exterior do- 
mains. Among these it is proved that the exponents tt and/~' in (3.7) are sharp for p/> 
>I n/2. These results are not connected with Stokes operator, since also for the heat 
equation it is possible to obtain the same results, but to the fact that the domain Q is ex- 
terior. For a Cauchy problem (3.7) is substuted by (3.11). Now in the light of our tech- 
nique the optmality of (3.7) and (3.11) can be seen as a consequence of the dimensional 
belance stated for the inequalities of interpolation. Indeed it is not difficult to prove 
that if we modify (3.7) or (3.11), then a posteriori we can violate the dimensional be- 

(2) When this paper was completed Professor Y. GIGA informed the author of the existence of 
papers [6, 9, 46, 48]. The author wishes to express his thanks to Professor Y. GIGA for drawing his 
attention to the quoted papers. 
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lance of the interpolation inequalities, which gives an absurdum.  This last assertion 
prove the optmality. Conversely assume that it is possible to modify the dimensional 

belance of the interpolation inequalities, then it is possible to violate the optimality of 

(3.7), which is an absurdum by virtue of the results of [31]. 

REMARK 2.3. - Theorem 2.1 is our chief result. In this theorem the assumption aY2 �9 

�9 C m with 2m > n seems too much requirement (in effect, as it.will be clear from the 

proof, for p �9 (1, n / 2 )  it is sufficient to require aQ �9 C2). Moreover, for n = 2 it is re- 

quired r < ~ .  Actually both the assumptions are consequence of the results obtained in 

[31] (see Theorem 3.1 of the present paper), which are employed for the proof of the 

theorem. However both the assumptions can be removed if we consider the Laplace op- 

erator instead of Stokes one. In fact the equivalent of Theorem 3.1 for heat equation 
can be proved with at9 �9 C 2 and r = r162 for n = 2 (see sect. 2 Theorem 3.2). It is not so 

immediate, but more in general, following for example the arguments employed in [31] 

and for some estimates in [28], it is possible to extend the results of Theorem 3.1 and 

Theorem 3.2 to parabolic operator: ~r = V . ( A ( x ) . V u ( x ,  t) ) - (a /3 t )  u(x ,  t) = O. As  a 

consequence we have (2.1) with V . ( A ( x ) . V w ( x ) )  instead of PAw(x) .  Moreover for such 

elliptic operator it is possible consider (2.1) also p = 1. Taking into account the result of 

[39], our technique assume a particular interest for elliptic operator, indipendently of 

the case of exterior domain t~. 

For the validity of (2.1) in HR,(Y2) the requirement w(x)19 ~ = 0 is a necessary and 

sufficient condition. In fact to prove that the condition is necessary, it is sufficient to 

consider the set of function 3C = {w(x) such that P A w ( x )  = 0, w(x)la ~ = a(x)  # 0, a(x) .  

"nla~ = 0 and w(x)---~0 for Ix ] -o  ~ } (harmonic function in the case of Laplace opera- 
tor). It is well known that 3C is a non void set for n t> 3, with ~ c  HR,(Y2), q > n/(n  - 2). 
Therefore if inequality (2.1) holds in Pz Hq, p(~9), it implies that 3C = 0, which is an absur- 

dum.  Neverthless it is of some interest to stress that for w(x)  e HP~(~2), q > n / n  - 2, 

we can modify (2.1) as it follows. Consider the function W(x)  e ~ with W(X)la z = w(x).  
o 

Then, setting U(x) = w ( x ) -  W(x)  we have U ( x ) � 9  HPZp(~9), inequality (2.1) implies 

IuI  CIPAwI$IUI  

or in particular 

Iw]r <~ C l P ~ w [ $  IUl  + ]wl r .  

REMARK 2.4. - Here we like to recall that, contemporaneously with the quoted pa- 
pers in the introduction, as far as interpolation inequalties of the first order is con- 

cerned, in [21] Ladyzhenskaya proved the following fundamental inequality for the 
o 

theory of two dimensional Navier-Stokes system: Vw(x)  �9 W1'2(~9) ~2cR 2, Iw[4 ~< 
~< 21/4 IVwl~/2 Iwl~/2. Theorem 2.2 and Theorem 2.3 are connected to such family of in- 
equalities, they state inequalities which have the same dimensional  balance. However 
the theorems are completely different in the aims. Theorem 2.2 tries to give a value of 
constants sufficiently precise. This is trivial consequence of the results of [1, 45] on the 

best constant for exponent s �9 [ 1, n) connected to the well known Sobolev inequality. 
While for exponents of summability which are not connected to Sobolev inequality (see 
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(2.4) and (2.5)) the results are obtained making use of properties concerning the sol- 

utions of the heat equation. The employed technique makes very simple the computa- 

tion of the constants. 

In Remark 2.3 we have already observed that if we perform a suitable study for the 

parabolic equation ~e(.) = 0 (see Remark 2.3), then operator PA. in (2.1) can be substut- 

ed by V- (A(x). V. ). Also in Theorem 2.2 we have, by the same considerations, the possi- 

bility to substitute in inequality (2.4) the ,V,, with , A ( x ) . V ,  (for any s >I n, q I> 1 and r 

given in (2.5)). In this way we discover a result near to ones of [6] proved for s = 2, q = 1 
and r = 2 (the case of L ~ - L  2 estimates of semigroups already quoted in Remark 

2.2.). 
In Theorem 2.3 a quite different purpose is considered. In [14] (we do not known 

similar results in literature former ones proved in [14]) for the first time was taken in 

consideration the possibility to prove a Sobolev inequality of type (2.3) with r = n s / ( n  - 

- s), s �9 [1, n), without requiring that the function belongs to the completion of Co ~ (t?) 

in norm I V. Is, s e [ 1, n). The idea is to consider only the condition at infinity of the 

function, in other words we employ the fact that w(x) ----> 0 for I xl -o  oo in a generalized 

sense. When this last condition is not satysfied, then it is proved in [14] that for any 

function w(x)  such that I Vw] s < ~ ,  s e [ 1, n), there exists a constant w0 such that 

I w(x)  - w0 I -o  0 for I xl --* ~ in a suitable sense. An exaustive devolopment of these 
ideas it is given in [13], moreover it is given the value of w0 (for analogous results see 

also papers [20] and [3]). A natural extension of the above results is to prove inequali- 
ties interpolating function w ( x ) e W l ' s ( f 2 ) N L q ( t ? )  for s>~n, without requaring 

w(x)ls a = O. So that the results of Theorem 2.3 cannot be seen as a particular case of 

Theorem 2.2. We explicity point out that unfortunately our technique only proves Theo- 

rem 2.3 for r < ~ ,  while Theorem 2.2 holds for r ~< ~ .  However we note that from (3.4) 

of Lemma 3.3 section 3 and (2.6), we can deduce the following inequality: 

Iw(x) clvwlF Iwl  + c( )Ivwl -  I 'w q , Ve �9 (0, a].  

REMARK 2.5. - In Theorem 2.4 is proved an interpolation inequality for function 
w(x) e W~' 8(~2) N H -1, q(~9). The meaning of the inequalities is immediate. We stress 

that if t? is bounded, by virtue of Poincar~ inequality (w(x)lsQ = 0), constant Co in (2.9) 

is equal zero. It  is interesting to note that the constant Co is equal zero also in the case 
of w(x) e DJ' s(t?) n D -1, q(Q) as stated in the theorem. 

o 

REMARK 2.6. - It is well known that for any w(x)  �9 HP,~2(t?) the following inequality 
holds: IVwl2 ~< IPAwI~/2 Iwl~/2. This inequality is true for any t ? c R  n, n >I 2, whose 

boundary at? is locally lipschitzian. The aim of Theorem 2.5 is to generalize the above 
inequality compatibly to any exponents of summability. The theorem proves that the in- 
equality can not be generalized to the cases of r > n and r = n p / ( n  - p), p �9 [n/2, n). 
For r �9 (1, n] the result is not complete. Indeed inequality (2.15) holds for p e (1, n/2). 
For p >~ n /2 ,  we have estimate (2.17). We gess that estimate (2.17) can be improved 
with constant C6 = 0 in the case of r > n and, of course, with constants C6 = C7 = 0 in the 
case of r �9 [n/2, n]. 

Inequality (2.19) of Theorem 2.6 has the same dimensional balance of ones proved 
in Theorem 2.5. In Theorem 2.6 we consider the cases p/> n/2 (n i> 3), since the cases 
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o 

p �9 (1, n/2) are discussed in Theorem 2.5 in the weakner hypothesis w(x) �9 HP,~p(t~). 

In fact, the aim of the theorem is just to give no restriction on the exponents of summa- 
o 

bility obtaining (2.19). However, it is achieved by requaring that w ( x ) � 9  HPq,~/~ I(Q) or 
o 

w(x) �9 sgf~p(~) .  

REMARK 2.7. - Corollary 2.1 gives results by suitable coupling of the above interpo- 

lation inequalities. Apart of regularity of at~ (in the case of Laplace opearator a~9 can 

be choosen of C2-class) and the value of the constant C as particular case Corollary has 

the result of [47]. In fact in (2.23) for n = 3, p = s = 2, we can choose X = 1. 

3. - S o m e  p r e l i m i n a r y  l e m m a s .  

Let us consider steady Stokes system in tg: 

Au(x) + Vz(x) = f(x),  V.u(x) = 0 in t~. 

For Stokes problem we mean the Stokes system with Dirichlet boundary condi- 

tion: 

u(x)la~=O, u(x)---~O for Ixl ---~ ~ . 

The following lemma holds 

LEMMA 3.1. - Let ~9r ~ be, n>~2, at~ of C2-class. Let f(x) eJP( t ) ) ,  p e  (1, n/2) 
(n t> 3). Then, there exists a unique solution (u(x), z(x))  e W11~P(~9) to steady Stokes 

problem such that 

(3.1) ID2u]p + IVzlp <~ CI f l p .  

o 

Let u(x) eHP,~p(Q), q, p e ( 1 ,  ~),  n>~2. Then, for some z(x), (u(x) ,z (x))  �9 

�9 Wllo~P(tg) A Jq(~)  • L~oc(t~) is a solution to steady Stokes system with f(x) = PAu(x); 

moreover there exists a constant C independent of u(x) such that 

(3.2) ]D2ulp+ IVzlp<~C(If lp+ lUlLpO(~.)), p0~>l,  

where t~*c t~ is an arbitrary bounded domain such that at~ A 9 ( ~ -  ~ * ) =  0. 
Inequality (3.1) is sharp, in the sense that it fails to hold for p >i n/2.  

o 

Finally, i f u ( x )  �9 q, p e  (1, ~),  n I> 2. Then (u(x), z(x))  �9 WI~o~P(~2) N 

A Jq(Q) • L~oc(Q) is a solution to Stokes system in Q with f(x) = PAu(x) and with 
u(x)la ~ = 0 and boundary integral condition B~ = O for p �9 [n/2, n) (p > 1, n = 2) and 
B n = B 1 = 0 for p >i n. Also, there exists a constant C such that (u(x), z(x))  satisfies 
inequality (3.1). 

PROOF. - Inequality (3.1) is proved in [30] and see [44] for the case of n = 3. As far as 

inequality (3.2) is concerned, the proof is possible to deduce from the results of [30]. 
The optimality of inequality (3.1) is proved in [30]. However inequalities (3.1)-(3.2) have 
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been object of study of several authors [3, 15, 16, 20]; in [13] these results are quoted 
and, also for a more general Stokes problem, are devoloped and discussed the same 

O 

questions. Finally the case of u(x )eSHP,d , ( t ) )  is a particular case of the results for 

Stokes system proved in [30]. 

LEMMA 3.2. - L e t  t3 c_ R ~ be, n >1 2, 8E2 locally lipschitzian. Let  VF(x)eLP(U2), 

p e [ 1, n). Then, there exist constants ~ o and C such that 

 m I (r, 
(3.3) ~ 

i ~ - ~ 0 1 ~ < c i v ~ l , ,  1 / q = l / p - 1 / n ,  

where w n is the sphere of radius 1. 

PROOF. - The above lemma is proved by Galdi in [13], Chapt. II, Theorem 5.1. See 

[14] for the particular case of t~ c R ~ and at) of C2-class. 

LEMMA 3.3. - Let t2 r R n be a bounded domain having the cone property. Let  ~?(x) 

eWm'P(t2) N LP~ p~> 1 and poe [1, ~].  I f m - n / p ~ t 2 q L J  {0}, then there exist a 

constant C ( 9 ,  n,  m ,  p) indipendent of  F(x)  such that 

(3.4) IDJ I  C(IDmU, lplV, I,,o + IWl,o), 

provided that 1 / r  = l / n  + a(1/p  - m / n )  + ( 1 -  a)(1/q)  and a e [ j / m ,  1]. I f  m - 

- n / p e N k J  {0}, then (3.4) holds with a e  [ j / m ,  1). 

PROOF. - The lemma is due to Gagliardo [11] and Nirenberg [37]. See also [35] Theo- 

rem 58.X. 
Let X be a Banach space. By LP ((0, T); X) we denote the Banach space of function 

cp(v) from (0, T) in X normed by [Irf(v) l~dv} . 

o" 
Consider the nonstationary Stokes system: 

{ ~ t ( x , t ) - A ~ ( x , t ) = V p ( x , t ) ,  V ' q ~ ( x , t ) = O ,  on t 2 •  T), 

(3.5) of(x, t)la~ = 0, cf(x, t)-->0 for Ix]--> ~ ,  Vte (0, T), 

~(x, 0) = ~o0(x). 

For solutions to system (3.5) the following theorem holds: 

THEOREM 3.1. - Let E2 c_ R ~ be, n >! 2, 8s of C "~ class with 2 m  > n.  For any Cf o(X) be- 
longing to Co(t2), there exists a unique solution (q~(x, t), p(x,  t))  corresponding to 
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(f o(X) such that 

(3.6) 

(f(x,  t) ep~>lLP((O, T); Jl'P(t'~) cI W2,p(~)), 

Vp(x, t), (ft(X, t) �9 fl LP((O, T); LP(.Q)). 
p > l  

Moreover, there exists a constant M such that 

(3.7) 

I(f(t) Iq ~ Ml(fo [p t - ' ,  

IV(f(t) Iq ~< Ml(fo Ip t - " ,  

IV(f(t) Iq < Ml(fo Ipt -"", 

I (f,(t)Iq <~ Ml(fo Ipt-,", 

 (11) 
tt = - q  , 

(1, ~ ] ,  if  p = l ,  n~>3; 

qeJ[p ,  ~] ,  i f p > l ,  n~>3;  
| 

l [p ,  :r i f  p > l ,  n = 2 ;  

1 
# '  = _ + # ,  

2 

(1, n] ,  if  p = l ,  n~>3; 

q e ~ [ p , n ] ,  i f p > l ,  n~>2;  

[[p,  ~ ) ,  i f p > l ,  n~>2,  t e (O ,  1]; 

n 
i t " -  , q>~n, t>~ l ;  

2p 

it" = 1 + - , n~>3,  

I(1, oo], i f  p = l ,  

qe  [[p, o o], i f p > l .  

In estimate (3.7) M is a constant independent of (f o(X) and if  q > p it is also indipen- 
dent of p >1 1. For p >I n/2 exponent #" is sharp, in the sense that it is not possible to 
improve it in tt" + ~, Vs > O, with M indipendent of t and (f o (x). 

PROOF. - Theorem 3.1 is part of results proved in [31] Theorems 1.1-1.2, 
Lemma 3.1. 

REMARK 3.1. - In the present paper, in some proofs is crucial the property of con- 
stant M stated in Theorem 3.1. That is: constant M is indipendent of p for q > p 1> 1. 
Since this result is enclosed in paper [31], for the sake of completeness, we like here to 
repeat the proof of the property as it follows. 
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Assume that (3.7)1 holds for some constant C, with C a priori depending on p, q, 
then we can establish the existence of a constant M such that (3.7)1 holds and M is in- 
dipendent of p for q > p >I 1. 

To this end, consider two solutions of system (3.5), say (v(x, t), z(x ,  t)) with vo(x) 

e L ~ ( Q ) , p  ~> 1, and (h(x, s), ~(x,  s) )wi thh(x ,  O) = ho(X) eCo(~9). For a fLxed t > 0 ,we 
set h(x, v) = h(x, t -  v), Yve [0, t]. Multiplying (3.5)1 by h(x, v), taking into account 
(3.6), an integration by parts gives: 

(v(t), ho(x) ) = (v0, h(t) ) . 

Applying the HSlder inequality to the right hand side of the last relation, subsequently 
the L P-convexity theorem, we arrive at 

] (v(t), h0)l < Iv0 ]p Ih(t)]p, < }Vo Ip Ih(t) I ~ Ih(t) I~ :~  

q l q - p  
with q ' -  , 0 -  , V q > p ,  

q - 1  p q - 1  

Employing (3.7)1 for the solution h(x, t) with exponents q = p = q '  and q = ~ ,  p = q ', 
we obtain 

I(v(t), h0)l < (C(q', ~ ))~ q , ) ) l -o  iv ~ Ip Iho Iq ' t - ( n /2 )O/p -1 /q )  , Yho(x)e Co(Q), 

which implies 

Iv(t) ]q<. (C(q', ~))~ q'))1-8 iv ~ ]pt-(~/2)(1/P-1/~), for q > p  I> 1,  t > 0 .  

Therefore, setting M =  max (C(q', ~ ) )e (C(q ' ,  q , ) ) l - e ,  M is indipendent of p. We 
0E[0, 11 

conclude observing that, from properties of resolving operator associated to system 
(3.5), it is easy to prove the result also for M in (3.7)2-(3.7)4. 

Consider in ~9 the initial value problem for heat equation: 

(3.8) [ Aq~(x, t ) -  eft(x, t) = 0 ,  on ~9 • (0, T), 

~o(x,t)---~0 for Ix t - - - )~ ,  (p (x , t ) l a~=0 ,  c f (x ,O)=~o(x ) .  

The below theorem holds for solutions to system (3.8). It  is more complete then The- 
orem 3.1. 

THEOREM. - 3.2. - Let ~ c R ~ be, n >I 2, 3~ of C2-class. Let q~(x) e C~ ( t~ ). Then cor- 
responding to q~(x) there exists a unique solution ~p(x, t) such that 

q~(x, t) e [7 LP((0, T); Jl'P(tg) N W2'P(t~)), eft(x, t) ~ ~ LP((O, T); LP(~2)). 
p > l  p > l  
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Moreover, there exists a constant C such that 

(3.9) 

n(1 1) 
Ic;(t) ltq<<.Cl~olpt-~, tt= - q  , 

1 ,= _ + # ,  IVcf(t) lq<'Clcf~ 2 

q �9  ~ ] ,  p ~ > l ;  

Icf(t) Iq <<- CIq~o Ip t -~" 

Iq~ t(t) Iq <<- MIq~o Ip t -~'' 

( 1 , n ] ,  / f p = l ,  

q � 9  i f p > l ,  

[ [p ,  ~ ) ,  i f p > l ,  n>~2, 

n 
# " -  , q>>.n ,  t>~l; 

2p 1) 
# ' = 1 +  - , n>13, 

I (1, ~ ] ,  

q�9 liP, ~],  

t e ( 0 ,  1]; 

i f  p = l ,  

i f  p > l .  

In inequality (3.9) C is  a constant indipendent of p >I 1 a n d  q~o(X). E s t i m a t e  (3.9)8 is 
sharp for p >1 n/2. 

PROOF. - The proof of this theorem can be performed following the ideas of [31] for 
Stokes problem. However, here we want to point out some further references. As far as 
the existence is concerned we refer [22] and for some aspects on the asymptotic decay 
we recall [28]. In these theorems it is sufficient to require at) of C 2 class since we follow 
[28] to obtain (3.9)1. In [28] a different technique with respect the one of [31] is em- 
ployed. The difference of technique is essentialy due to the presence of the pressure 
term. Since we are considering the heat equation, apart of (3.9)4, we are able to prove 

the theorem for n I> 2. 

Let us consider for system (3.8) the Cauchy problem on R n, n >I 1. The following 

lemma holds: 

LEMMA 3.4. - Let q~o(X) eLP(R) ~, P i> 1. Then for the initial value problem (3.8) 
there exists a unique smooth solution cp(x, t) such that Vq >i p >I 1 

(3.10) 
f 1 1 

Icf(t)lq<~Mllq~olpt -~, V t > 0 ,  t t = 2 ( p - q ) ;  

1 + i t  IVq~(t)lq<<.M21q~olpt -~', V t > 0 ,  # '  2 
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where 

M1 = (4~)-~fl-~/2~; 1 1 

(3.11) M2 = (4z)-sf1-1/2-,~/2~ F~/~(n /2  + f l /2 )  1 _ 1 + - - --  

F1//3(n/2 ) ' fl q P 

PROOF. - The proof of (3.10) with some constants M~, M2 is well konwn. On the 
other hand we have the analogous of Theorem 3.2 already quoted for the initial bound- 
ary value problem (3.8). However here we want recall the numerical value of the con- 
stant M1, 5/2, not only their existence. The key tool to prove (3.10)-(3.11) is the Young 
theorem on convolution product. From the rapresentation of the solution by mean heat 
kernel, 

cp(x, t) = (4zt) - ' /2  f e-Ix-yl2/4tq)o(y) d y ,  

R n 

we have in virtue of the Young theorem (we set ~C(z, t ) =  (4~)-n/2e-Iz12/4t)  

Iq)(t) I q ~ ]~)~(t) I S(P,q) ]QgO I P'  

lVcf(t) I~ ~< IV c(t) I (p, q)I o Ip, 

with l i f t ( p ,  q) = 1 + 1 / q -  l i P .  Taking into account the properties of Gamma function, 
a simple computation gives 

i ~c(t) 1~(,, q) = (4 n.t)n/2~- n/2fi -~/2f __ (4~)-"fl  -n/2fl t -/~ = M 1 t -/~, 

I V:~(t) I~(p, q) = ( 4zt)n/2~-~/2t -1/2fi -1/2+n/2fl F1/Z(f l /2)  _ M 2 t  -~ /2 -~ .  
F 1/fl ( n / 2 )  

The lemma is proved completely. 

o 

LEMMA 3.5. - Le t  t~ c_ R n be, n >I 2, as in  Theorem 2.1. Le t  w (x )  ~ HP,~p(~) and  as- 

s ume  P A w ( x )  = 0 a.e. in  t ) .  Then  w(x )  is equal  zero a.e. in  Q .  

PROOF. - In our hypotheses we have that w ( x )  is a solution to system (3.1) with 
f ( x )  = 0. We consider in system (3.5) cp0(x)~ Co(t?) and multiply (3.5)1 by w(x) .  In 
virtue of the summability properties of c;(x, t) given in Theorem 3.1, integrating by 
parts on ~9 • (0, t), we have 

(3.12) (w, q~0) = (w, ~( t ) ) ,  Vt > 0.  

Applying H51der inequality to (3.12), from (3.7)1 we deduce 

I(w, 1 Iwl, < Clwl,  I,+ t V t > O ,  eE O, 
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Making t---> ~ ,  we obtain (w, r = 0. For the arbitrarity of q)o(X)e Co(f2) we con- 
clude that w(x)=  0 a.e. in f2. 

LEMMA 3.6. - Let Q c R  ~ be, n >>- 2,  a ~  C2-class. Let u(x) e Llqo~(Sg), q > 1, with u(x). 
"n laa = 0 and 

(3.13) I( u, ~)I <~Ml~Plq', V~(x)~eo(t?). 

Then there exists a function z( x ) such that ~( x ) = u( x ) - V z ( x )  e J q ( Q ). Moreover, i f  
u(x) eJP(~?), for some p > 1, then u(x) eJq(t?). 

PROOF. - For any R > d i a m ( f 2  c) we can consider on ~ =  t? N SR (SR = {xe  

e R n, Ix I ~<R}) Lq(tgR)=Jq(t~R)@Gq(QR).  We set uR(x)= u ( x ) -  VrrR(X). From 
(3.13) we deduce that l URIq ~< M, VR > diam (De). We define UR(X) = UR(X) if X e ~ R, 
otherwise 0. Since {UR(X)}R is uniformely bounded from M in Jq(~9), we can select a 
sub-sequence, again labelled by R, such that ~R(X) weakly converges to some ~(x) in 

Jq(Q) and ]glq<~M. Now we have 

(u - ~ ,  rp) = lim(u --UR, of) = l im(VZR, go) = 0 ,  
R R 

Vg(x) e eo(s9). 

Then [40] u(x) - ~(x) = Vz(x) with (d/d~) z ISa = 0, which proves the first part of the 
lemma. As far as the latter is concerned, we observe that Art(x) = 0 and, in virtue of 
summability, Vz(x) tends to zero at infinity, then Vz(x) = 0. 

4. - P r o o f  o f  t h e  t h e o r e m s .  

PROOF OF THEOREM 2.1. - The former part of the theorem is a easy consequence of 

Lemma 3.1, Lemma 3.2 and convexity theorem for Lr-spaces. In fact if q ~ np/(n - 2p) 
we have 

Iwl,-<  Iw IWI -~ 

a 1-a cIez wl ]wll-a V r e [ q ,  n-2pnp ]., 

the conversely, q >~ n p / ( n -  2p), is the same. 
To proving the latter part of the theorem, we start for some r e [~, oc ), where 

o 

= max{p, q}. Since w(x) ~ HP,~p(Q) we multiply PAw(x) by ~v(x, t) solution to system 
(3.5) with ~o(X) e eo(~9). Integrating by parts on f2 • (0, T) we obtain 

t t t 

I (PpAW, q)(v))dv = I (w, PqACp(v))dr = I (w, cfl~(v))dr = (w, cp(t)) - (w, 9o). 
0 0 0 
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Thus we have 

(4.1) 

t 

I( w, ~O) l ~ I( w, q)(t))[ ~- I I(Pz~w, ~o(T))dT I =Jl(t)--~ J 2 ( t ) .  

5 

Now we estimate Jj(t) for j = 1, 2. Applying HSlder inequality and (3.7)1 we have 

(4.2) 

J l ( t )  <- ]W[q left(t)Iq' <~Mlwlq ICPo I~,t-", 

# =  - r = r / ( r -  1), q ' = q / ( q - 1 ) .  
q - -  r ' 

For  J2(t) we again apply HSlder inequality and after inequality (3.8)1, then 

 (11) 
I I = - - ;  

(4.3) J2(t) <~ I e dw lp  Iq~(v) lp,dv<<.MlrAwl, lWo[~, v - " ' dv ,  /2 1 -~ r 
o o 

we observe that, for any a ~  [0, 1), (2.2) implies 1/1o < l / r +  2/n ,  thus the right hand 

side of (4.3) is finite for any r I> ~. Increasing the right hand side of (4.1) by mean (4.2)- 

(4.3), we deduce by simple computation: 

I(w, ~0) l <MlWo [r'(IPAwlp t1-"1 + Iwlz t - " ) ,  

2 (  1 1  ) 2 (  1 1  ) 
/ Z l =  - -  - -  , /Z---- - -  - -  . 

r T 

This last inequality holds for any rpo(x)E ~ ( D ) .  From Lemma 3.6 it follows that  

(4.4) Iwlr<~M(]PAwlpt ~-"1 + Iwlqt -") .  

In virtue of Lemma 3.5 we can assume IPAwlp~O.  Therefore, setting t =  

= (I w lq/I PAw I p )~, a = 2pq/(2pq + n(p - q)) (s) we have (2.1) with 1 - a +/~ 1 a = art = a 
or conversely ( 1 - # 1) a = 1 - a# = 1 - a,  which are equivalent to (2.2). To extend the 

above result  to the case of r -- =r (n I> 3), it is sufficient to make the following observa- 

tions. Lemma 3.1, inequality (4.4) and Sobolev imbbending theorem ensure that  w(x) 
E L ~ (t2), moreover Theorem 3.1 ensures that  inequality (4.4) holds for any r >I q (w(x) e 
e L r ( ~ ) )  with the right hand side depending on r as continuous and bounded function, 

thus making r--~ :c we dedudce (2.1) for r = oo. 
Now, we remove the hypothesis r i> ~. I f  it is the case of p < q, then the proof of the- 

orem is complete. Otherwise for q < p  we consider the convexity theorem for 

L P-space: 

1 b 1 - b  
(4.5) Iwir~< IWl~l Iwl~ -b, - + - -  , for r~>p .  

r r~ q 

(a) Since q ~< r and 1/p < 1/r  + 2/n ,  we have a > 0. 



PAOL0 MAREMONTI: Some interpolation inequalities, etc. 79 

Since rl > p ,  we increase the right hand side of (4.5) by (2.1), therefore 

1 - bc V?" > q 
IwI . <MIPZwI  I w q , 

A simple computation gives bc = a, with a satisfying (2.2). 

PROOF OF T H E O R E M  2 . 2 .  - In hypothesis s e [ 1, n) inequality (2.5) is a trivial implica- 
tion of Sobolev inequality and convexity theorem for LP-space. In fact if q <~ n s / n  - s 
we have 

a 1 - a  
a 1 -  ~ ( C I V w l s ) a l w l q  I w l r -  < Iwl  /( -.)Iwlq 

[ ns] 
Vre  q , -  ; 

n - - 8  

the conversely, q >t ns / (n  - s), is the same. As far as the value of constant C we refer to 
[1, 40]. 

Now, we consider the case ofs  t> n.  We start considering r e  [~, ~],  ~ = max{s,  q}. 
The following equation holds 

(Vw, Vq~(t)) = - ( w ,  Aq~(t)) = - ( w ,  qst(t)), Vt > O, 

where ~(x, t) is the solution to the initial value problem of heat equation (3.9) corre- 
sponding to rf(x) eL*'(Rn).  Integrating on (0, t) we have 

t 

(w, rfo) = (w, ~(t)) + f(Vw, VqJ(t))dv. 

0 

Applying the HSlder inequality and (3.10), we obtain 

t 

I( w, q~o) l <~ Iwlq ]~(t)Iq' + IVwl~] IVY(v) I~ 'dye< 
o 

<M1 IWlq I~oo I~ , t -z+ (1 --/x ')-IM2 IVwl~ Icfo I~,t 1-z' , 

where we have taken into account that (2.5) and a e  [0, 1) imply t t ' <  1 (1 /s  < 1 /n  + 
+ 1/r). The last integral inequality implies 

(4.6) Iw[r<~M1 [W[qt-Z+~(r,  s)M2 [Vwi~t 1-~', Y t > 0 .  

Since we can assume I V w l ~ 0 ,  we get with a =  
=2qs/(2sq + n ( s -  q)) and $ >  0. Therefore, after substuting this t in (4.6), we ob- 
rain 

, 1 - a  
(4.7) I W l r ~  ( M I ~  2z + (1 - ~  ) - I M 2 ~ I - / x ' ) l V ' w l  a I w l q  , 
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with a deduced from (2.5). Making on the f ight  hand side of (4.7) the minimum value 

with rispect to ~, we deduce (2.4). I f  s ~< q the proof is complete. Thus suppose s > q. 

For  any ~ [q, s], we have 

1 b 1 - b  1 - b  _ _ . } _  
(4.8) < Iw12 I W l q  , 

s q 

Increasing by (4.7) written for r = s we deduce (2.4). The numerical value of the con- 

stant  C in (2.4) is consequence of a simple computation which takes into account the ex- 
ponent a and b in (4.7)-(4.8). 

PROOF OF THE~OREM 2.3. - To prove (2.6) it is sufficient to employ the convexity theo- 

rem for LP-space and Lemma 3.2, as it has been already made in the proof of Theorem 
2.2. 

Le t  us consider the case s t> n,  q I> s and r < oo. We denote by d = diam (Y2~). More- 

over we define two cut-off functions as it follows (R > d) hi (x) = 1 for ] x I ~< R,  hi (x) = 

= 0  for Ixl ~>2R, h~(x)e  [0, 1] for Ixl e [ R ,  2R]; h2(x)=1 for Ixl <.2R, h~(x)=O 
for Ixl >I 3R, he(x) e [0, 1] for Ixl e [2R,  3R]. Moreover they satisfy the condition 

IVhl(X) l <.A,/R and IVh2(x) l <<.A2/R. Consider 

wl(x) = (1 - hl(x))w(x), w2(x) = h2(x) w(x). 

Since wl(x) is defined in the whole R ~ we can apply Theorem 2.2, then 

( 1 )o 
Iw, l~ < Cl lVWl l~ lwl l~-a <<. C1 IVWI,+-~IWlL.(R<<.Ixl~2R) IWl~-a < 

~< Cl(IVwl~ + . 

We employ Lemma 3.3, then 

1 lwlq - ~  
R 1 - n(q - s)/qs 

Iw21  C lVw l lw21 - +C lw l . 

Now two cases are possible 

I w I______~q ~ d 1 - n (q  - s) /qs  o r  [ W l q  

IVwl  IVwls 
- -  > d i - n(q - s)/qs 

In the former case we f~xed R > d and increase [wlq in estimates of I wl I r and I w~ I~ 
with d 1 - ~(q- s)/qs I Vwl s, therefore 

< IWl I, 

~< [C1(1 + ( l /R)  1 -<q-~)/q~)a + C2 + C3d a - n ( q - s ) / q s ) a ]  [VWlsa I w l l - a .  

In the latter case we modify the estimate for w2(x) and choose R subsequently in a suit- 

able way. For  any r t> q there exists an ~ e [ 1, n) such that  n~/(n  - ~ > r .  In virtue of 
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(2.6) we can get with C independent of R and we(x) 

1 - b  ClVw  

Since s > ~ and w2(x) is zero for Ixl >I 3R, applying HSlder inequality we deduce 

( 1 )b 
<<.CR ~(~-~)/a IVwI~ + -~ IWlL"(ZR,-I~I<.SR) [W]~ -b<<- 

( )b <. CR~("-~)/a IVwl ~ + 1 iwlq iwllq_ b 
R 1 - n(q - s)/qs 

We observe that for s I> n we have 1 > n(q - s)/qs,  for any q 1> 1. Now we are free to 

choose R 1 - ~(q- ~)/q~ = I w I q/I Vwl~ > d 1 - ~(q- ,)/q~. Therefore the estimate for I wl~ 
becomes 

1 - b ( 1  - f l )  1 -a  + 2bCIVwlb(1 - f l )  IWlq IWlr  < IWl Ir "~- ]W2 [r < 2ac1 IVW] a IWlq s . 

1 qn(s - ~) 
with fl = - 

s qs - n(q - s) 

Now, taking into account the value of b in (2.7) and a in (2.8), a simple computation gives 

a = b(1 - fl), then we have completed the proof in the case of q i> s I> n. Now, let us con- 
sider the case q < s. First of all we prove that w(x)  e L ~ ( Q ) .  Of course by Poincar~ 

inequality w(x)eL~c(~9) .  Moreover, introducing a smooth cut-off function k(x)  such 

that k ( x ) = l  for Ixl ~<R, k ( x ) = 0  for Ixl ~>2R, R>diam(~9~),  setting 5 ( x ) =  

= ( 1 -  k ( x ) ) w ( x ) ,  from (2.4) we have 

c i r c l e ,  I 11 -o, , 

which implies w ( x ) e L f ( f 2 -  Sz~). So we have proved w(x)eL"(~9).  Now, for w ( x ) e  
e W 1, "(f2) we have already obtained estimate (2.6). Then for any r>~ s 

(4.9) Iwlr <. Cl V w l ~  Iwl ~ -a2 . 

Applying to (4.9) the convexity theorem for LP-space, we deduce 

IWlr ~ C l V w l ~  ]wl b(1-~) Iwlgi-b)(1- ), with b - - -  
r(s - q) 

s(r  - q) 

It is immediate to deduce 

I lr clvwl l l  -~  

with a given in (2.9). To obtain the cases of r e  (q, s) it is sufficient to apply again the 
convexity theorem for L P-spaces. 
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PROOF OF THEOREM 2.4. - The case of r = ns / (n  - s) with s e (1, n)  is the ordinary 
Sobolev inequality. Thus we consider only the cases of inequalities (2.9), (2.11)- 
(2.14) 

We introduce a smooth cut-off function h(x) such that  h(x) = 1 for Ix] <~ R ,  h(x) = 0 

for Ixl ~>2R and IVh(x) l ~ < C/Ix ] . Let  us consider the following relation 

(4.10) (Vw, Vq~(t) h) = - ( w ,  Aq~(t) h) - (w, Vh.Vg~(t)) = 

= - ( w ,  c p t ( t ) h ) - ( w ,  Vh.V~( t ) ) ,  V t > 0 ,  

Where c2(x,t) is the solution of (3.8) corresponding to ~0(x) eCo~176 with 

supp{~0} c S(O,-R) for some R < R .  Integrat ing (4.10) on (0, t) we deduce 

(4.11) 

t t 

(w, ~o h) = (w, e(t) h) + f (Vw, V~(~) h) dr + f (Vw, e(~) Vh) dr + 
0 0 

t 

+ f(w, Vh.V~(v ) )dv  = l l ( t )  + I2(t) + I3(t) + I4(t), 

0 

Vt > 0 .  

Now we increase Ii(t), i = 1, 2, 3, 4. We have 

(4.12) !t IIl(t)  l ~< ]Wl_l, qlCfl(t) h]l,q,<~C]Wl_l, qlq) olr , t - l +  - # + t  
R 

n(1 1) 1 
, = - _  , / ~ ' = - -  +i t  Vt > O # -~ r 2 

where  increasing we have taken into account (3.9) and r i> q. As far as I2(t) is con- 

cerned, applying the HSlder inequality and (3.9)2 we obtain 

t 

tl-#~ (4.13) 112(t)l ~< IVwl.f  lvw(~)l.,d=<CrlVwl, lwol~, , 
0 

1 1) 
#1 '= -2  + - 2  - - - r  ' y = ( 1 - t t l ) - l .  

We stress that  (2.10)1 and r I> ~ imply # i < 1. Finally, applying HSlder inequality, in 
virtue of Theorem 3.2, we get  

(4.14) 

t 

liB(t) + I4(t) I ~ [ w J - i , q f  IVh'VcP(v)[i ,q,dv+ [Vw[~ I Vhc~(t)I~' d r <  

0 

t 

0 
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Recalling that supp {Cpo} cS(0,  R) N t~, from (4.11)-(4.14), we deduce 

( 1 ) 
(4.15) I(w, cPo) l <Clwl_ l ,  qlQ) olr, t -it+ - - t - z + t  -~' + 

R 

1 irwin)" -{- C~]('F, S)IVWls ]Cfl0 Ir, t -7(r' s)_[_ C(t)-~( ]w]-1, q 

Making R ~ ~ in (4.15) we arrive 

I(w, ~o) 1 ~< Clwl-l,q I~0 Ir,(t -~ + i-~') + ~(r, s) ClVwls I~0 Ir, t ~(~' s) 

Since supp {~o(X)} r  R)  A s for the arbitrarity of Cfo(X) we get 

(4.16) ]WlLrs(o,-~)nQ) <- C l w l _ l , q ( t - "  + t - " ' )  + CT(r, s) lVwl~t -y(~'~) �9 

On the other hand the right hand side of (4.16) is indipendent of R, therefore 

(4.17) Iwl~ ~< Clwl -1 ,  q(t -" + t -" ')  + C7(r, s) lVwl~t  -7(~, 8) 

We can assume IVwls;e0. In fact if ]Vw]~=0, then w ( x ) = 0 .  We set t =  
= ( awl - 1, q/1 vw]~ )- with a = 2 qs/(2 qs + n(s - q)). We observe that from (2.10)1 it fol- 
lows that a > 0. Substuting t in (4.17), after a simple computation, we conclude the 
proof of inequality (2.9). As far as (2.12) is concerned, then we modify estimate (4.12) as 

it follows 

( 1 )  
I l l ( t )  I ~< Iwl- l ,q  IV(h~(t))lq , ~< ClWl-l ,q  Iq)o Ir' t - i t '+ -~t  -it . 

After which it is sufficient to repeat the above argument lines. Finally to prove (2.11) 
we again modify (4.12) and precisely we have 

IIl(t) ] = I( 5 ,  Djcf(t))l <" 17~lq I v~0(t) Iq' ~Cl~)lq I (fl0 I r ' t - " ' ,  

then we repeat the above arguments. 
Taking into account Lemma 3.4 the case s --- R n is formally the same, thus the proof 

is omitted. 
Since Co(~:~ n) is dense in LP(R~), W-1, q(R_n) and D -1, q(R~), we restrict the proof of 

(2.13)-(2.14) to w ( x ) ~  C0(Rn), after which by standard arguments of density one com- 
pletes the proof. We consider the equation 

(w, eft(t)) = (w, ztq~(t) ) , 

where of(x, t) is the solution to (3.8) corresponding to Cfo(X)Ewl'r '(~n). Integrating 
the above equation on (0, t) we have 

t 

~< I(w, ~(t))] + ~ ](w, z]~p(v) ) idv=I i ( t )+I2( t ) .  ] (~,  ~o)] 
0 
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Now, with simple computation and taking into account (3.10), we obtain 

I~(t) <~ I Iw1-1, q [ cp(t)I~, ~ Clw1-1, qt -(n/2)(1/q-1/r) loll1, r, 

[ Iw l -1 ,  q [ vcf(t) I q' ~< Clwl-1,  ~t -(n/2)(1/q- 1#) i Vcf o I, '; 

I2(t) <~ f 

t 

Iwl,J" I~w(~)lp,dv < Clwlpt i/~-('/~>(1/p-~/r) lWfo It' 
0 

<~ Clwlp t1/2-(n/2)(1/p-1/~) lOPe 11,~'; 

t 

iw l ,  f i~w(v)ipdv <. Clwlptl/2-(n/2)(1/p-1/~) i Vcf ~ Ir ' -  
0 

In the above inequalities for Ii(t)  and I2(t) the former estimate on the right hand side 
is obtained to deduce (2.13). While the latter estimate is obtained to deduce (2.14). 
Therefore, following the arguments already employed to prove inequalities (2.9) and 
(2.12) one concludes the proof. 

PROOF OF THEOREM 2.5. - In virtue of Lemma 3.1 we can assume D2w(x) eLP(Q). 
We introduce a smooth cut-off function hi(x) such that  h i ( x ) =  0 for I xl >/2R, 
hi(x) e [0, 1] for Ixl e [R, 2R], hi(x) = 1 for Ix I ~<R, R > diam(Q~). Define w~(x) = 
= (1 - hi(x)) w(x). Estimate (2.11) implies 

a a a 1 - a  (4.18) IVu, [r~<C2 [D2Wl Ip ]wl I~-~ IWlwI.,(R<~I~I<.2R))lWlq , 

with a as stated in (2.10)1. Taking into account (3.4), estimate (4.18) becomes 

(4.19) IVWl I~C(IDZwl~+ IwlE~(l=l)~2~)lwl~ -~. 

If p e (1, n/2), applying HSlder inequality to the right hand side of (4.19), the Sobolev 
inequality (3.3) and inequality (3.1) we have 

(4:20) IVwt I r < C ( I D 2 w [ ~ +  Jwl~p/(n_2p))lwi~-= < 

a 1 - a  <~ C i D e w  I$ I w I{ -~ <~ CIPAw I~ I w [~-~" ~< C([D2w 1~ + [Vw I~,p/(n , ) ) l  W[q 

If p E [n/2, oo ), then we increase the right hand side of (4.19) by (3.2), after which we 
employ HSlder inequality. Then we obtain (f2"r f2 is a bounded domain including f21 
and R <~ I xl ~<2R). 

(4.21) IVWl ir<~C(IPAwI~+ Iwi~p(e),)lwiql-a ~ < 

< C(IPAwl~o Iwl l - a  + [wl?.,o(~,) Iw I1-~),  po~>l .  
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(4.25) 

I f  p >t n/2 from 

= max {p, q}, 

Now, if n I> 3 and p > n/2 we can choose P0 = ~ ,  otherwise for p = n/2 (n >I 3) and 

n = 2 exponent Po can be choosen sufficiently large but  less then infinity. Therefore em- 

ploying (2.1) we obtain from (4.21) 

(4.22) ]Vwl ],.~< C(IPAw]~ ]w]~ -a  + ]PAw]~ ]w]~-ab) ,  

with b as s tated in (2.2). Let  h2(x) be another smooth cut-off function with support  in 

S(O, 3R)  with h ~ ( x ) = 1  for Ix I <~2R and he(x) e [0, 1] for 2 R <  Ix I ~<3R. Define 

w2(x) = h2(x)w(x) and apply (3.4), thus we have (Q2 = ~2 NS(O, 3R) )  

a 1 - a  
]VW2 ]r  ~ C2(]n2w2 ]LP(Q2) ]W2 ]Lq(Q2) 21- ]W2 ]Lq(Q2)) 

~ ~ 1-~ C]w2 <<- C(IDUwl~ + IWlw ,~(~2))IWlL~(~) + ]Lq(~2) �9 

Finally applying inequality (3.4), we have 

a 1-~ C]w2 ]L~(~2) �9 (4.23) IVw2 I <<-C(ID wlp+ + 

Since Q2 is bounded, for p ~ (1, n/2) we apply HSlder inequality as it follows 

~ 1-~+CiWiL,(Q~) s>~q. (4.24) ]Vw2 [r<~ C(]D2wIp + ]Wlnp/(n_2p ) ]W]q 

From Sobolev inequality (3.3) I w I ~p/(~- 2p) ~< C I Vw ] ~p/(~_ p) ~< C] D 2 w I p; moreover  for 

1/s = 1 / r -  1/n estimate (2.1) gives Iw ]~ ~< CIPAw ]~ Iw ]1-% Therefore, taking into 
account (3.2), for p c  (1, n/2), inequality (4.24) becomes 

a 1-a p e ( 1 ,  n/2). ]Vw2  Iv ~ C]PAw]p ]W]q , 

(4.23) applying (3.3) and HSlder inequality we have, ~ =  

a a 1 - a  ]Vw2 I,.<<-C(IPAw]$ Iwl~- + IWlz,(~)lWlz,<~,)+ lWlz,(~)) < 

a 1 - a  <-C(]PAwlplw]q + ]W]Lsl(~2)), 8 1 ~ .  

Now, for n ~> 3 and p > n/2 we set 81 ~ ~ ,  for p = n /2  (n I> 3) and n = 2 we choose 

sl < ~ but  arbi t rary greater  then ~. Thus from (2.1) we deduce for p >I n/2 

(4.26) IVw2 Ir<~ C(IP/lwl~ Iwl~-a + IPAwt~ [wl l -b) ,  

with b as stated in (2.15). Coupling (4.20) and (4.25) we deduce (2.15), while coupling 
(4.25)-(4.26) we deduce (2.16). In the case of r < n,  then we can modify (4.26). Indeed, 
we can choose 1 /s l  = 1 / r -  1/n,  thus via (2.1) (4.26) becomes 

IVw~ I <ClPAwl~ Iwl ~-~ r q 

This last estimate and (4.25) ensure (2.17) with C7 = 0. 
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To complete the proof of the theorem we must prove that (2.15) is not true for r > n 

with p >i q >i n /2  and r = n p / ( n  - p) with p = �9 [n/2,  n). Assume that inequality (2.15) 

holds for some r > n and p t> q. Applying this inequality to solutions of system (3.5), we 
obtain 

I v ~ v ( t ) I ~  < CIP, dqo(t)[~ Iqo(t)[~q-~ = Clgvt(t)[~ [9 ( t ) [~-~< Ct -a(l+(n/2)(1/q-1/p)) IqgO I q '  

with 1 / r  = 1 I n  + a(1 /p  - 2 In )  + (1 - a)(1/q) .  A simple computation gives a(1 + 

+ ( n / 2 ) ( 1 / q  - l / p ) )  = 1/2 + ( n / 2 ) ( 1 / q  - l / r )  > n / 2 q ,  which denies the optimality of 

(3.8)2. Therefore (2.15) is not true. In the case of p �9 [n/2,  n) and r = n p / ( n  - p) again 

we assume ab absurdum that (2.15) is true. As consequence from inequality (3.2), ap- 

plying the Poincard inequality and HSlder inequality, we deduce 

ID2w[p < C(IP~wlp + Iw ILp(~,)) ~ C( [PAwlp + IVw IL,(~,>) < 

< C(( IPAw I~ + I vw IL"/<'-'>(~*)) ~< CIP, Jw l , .  

This last result contradicts the optimality of (3.1) stated in Lemma 3.1. Thus (2.15) for 

r = n p / ( n  - p) and p �9 [n/2,  n) is not true. 

PROOF OF THEOREM 2.6. - The proof of the former part of the theorem is very similar 
o 

to one of Theorem 2.1. We assume w(x)�9 and multiply PAw(x )  by 

(9/Sxj)  el(X, t) = Dcf(x, t), where 9(x ,  t) is the solution to system (3.5) corresponding 

to gv0(x) �9 e0(~9). Integrating on t9 > (0, T) we obtain 

t t 

f ( P A w ,  Dcf(v))dv = f[(Aw, D~(v)) - (Vz, D(p(v))] dv = 

0 0 

t t 

= f (Aw,  D c f ( v ) ) & -  f l i m ( V ~ ,  Dcf(v) )dv= 
0 0 

t t 

= f ( V D w ,  VqJ(T))dv + f l im ( V D ~ ,  ~v(v))dv= 

0 0 

t t 

= - f (Dw, Acf(T))v= -- ~ (Dw, q ~ ( v ) -  V/3(T))dz= 

0 0 

t 

= (Dw,  ~Vo) + (w, Dcf(T)) - f l im(w,  VD/5~(v)) = 

0 

= ( D w ,  ~o) + (w, D~(~:)), Vt >0; 

in above equation ~(x) is an extension of :r(x) inside of t-2 c, in such a way that we can 
consider the mollification (V~(x))~ = V~(x) ,  quite analogous is the meaning of/5(x, t). 
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Therefore we deduce 

t 

I(Dw, ~0) l<~ I(w, Dcp(t))] + I f ( P A w ,  Dcp(v))dr[ = I i ( t ) +  h ( t ) ,  (4.27) 

0 

Now, we apply the HSlder inequality and (3.7)2 to I~(t), i = 1, 2. Then we have 

(4.28) I~(t) ~ [W[q [V(p(t)[q, <~M[w[q [q~o [~,t-~", 

1 1) 
2 2 r 

Since r~> q and (2.18) imply l i p  < 1/r+ l /n ,  it is possible to increase I2(t) as it 
follows: 

Vt > 0.  

t 

(4.29) I2(t)~< IPAu, lpI lV~(r)lp,dr<~MIPAwlpl~ol~,tl-, '~, 
0 

1 n ( 1  1 )  
r ' � 9  p ' ) ,  t t i =  2 + -  - - -  " 

2 r 

Since Lemma 3.1 and (2.11) imply Dw(x)eJ~(Y2), increasing the right hand side of 
(4.27) by mean (4.28)-(4.29), for the arbitrarity of qp o(X) �9 ~(t2) ,  in virtue of Lemma 3.6, 
we get 

(4.30) IDwl~<<.M(IPAwlpt~-"'~+ IWlqt-" ') ,  Y t > 0 .  

We again set t = (Iw[q/IPAw Ip) ~ with a = 2pq/(2pq + n(p - q) ), therefore the above 
inequality implies (2.19). If n I> 3, to obtain the case of r = oo it is sufficient to observe 
that  for any r >I q Dw(x) �9 and the right hand side of (4.30) depend on r as con- 
tinuous and bounded function, thus making r--* oo we deduce (2.19) for r = oo. 

Now we prove the latter part  of the theorem. We begin considering the case o f  
p � 9  [n/2, n). Let k(x) be a smooth cut-off function with k(x)= 0 for I xl ~<R, 
R > d i a m ( t 2 0 ,  k ( x ) = l  for Ixl~>2R and k ( x ) � 9  for I x l e [R ,2R] .  Define 
W 1 (X) = (1 - -  k ( x ) )  w ( x ) .  Estimate (2.11) implies 

a 1 - a <  (4.31) I Vw~ I~ <" CID2wl Ip }wl Iq 

a 1 - a  <-C(ID~wl, + IVwlL'(R-~I~I~-2~)+ IWI~'(~-~I~,-~)) IWI~ 

Since it is n p / ( n -  p) >t r >I p, after applying the HSlder inequality to the right hand 
side of (4.31), taking into account Lemma 3.2 and the Poincar~ inequality, we 
have 

(4.32) ] V W l  Ir ~ 

<<- c(I D~w I,, + IVw IL-,/r ,,~R-< I~l-<~R) + Iw I L~,/~--,<~-< I~1 _<~))a IW I ~-"-< 

<~ C(I D2w I, + IVw I-,/r I=l-<~))~ Iw I~ 

CI D2w I~ I w I 1-~ ~ CIPAw Ipa IW ]ql-a �9 
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Now, we consider I Vw ]L~(~ n z2R). From Lemma 3.3, applying the HSlder inequality and 
the Poincar~ inequality, we deduce 

I V w i ~ )  <~ C(ID~wl~ iwi~ -~ + l w I . ~ ) )  <- 

<~C(ID~wI,+ I Vw I.,/(o-,~<. ~ ) ) ~  I wl~-a . 

From Lemma 3.2 and inequality (3.1), we obtain 

(4.33) I Vw~ ILr(.nS.~) <~ CIPAw I~ I w I~ -~.  

Estimates (4.32) and (4.33) imply (2.19). 
Now we consider the case of p I> n. We commence cosidering the case of r = p = q. 

Making an integration by parts and applying the HSlder inequality, we have 

IVwl~ = ~ IVw(x)lP-2Vw(x): Vw(x) dx ~< 

~< ( p -  1 ) ]  IVw(x)[p-2 ]D2w(x) l ]w(x) ]dx <~ (p - 1)]Vw]; -2 ID2wIp IwIp . 
Q 

Therefore, from (3.1) 

(4.34) I vw I, <~ CIPAw I~/2 I w I~/2 " 

Now, we consider the case q ~< p. From (2.1) it follows that w(x) eJP(D) and Iw Ip ~< 
<<. CIPAw]~ ]w] 1-b with b given in (2.2). Thus, from (4.34) we deduce also 

(4.35) I Vw I~ ~< C IP~w I~/~ + ~/~ l w I~/~- ~/~ . 

Finally, if r I> p I> q, before we note that inequality (4.35) ensures that Vw(x) e L P(D), 

after which we can apply inequality (2.6) and obtain 

(4.36) I V w l ~ <  CI D2wl~ I VwI~ - ~  

with c given in (2.7). We estimate the right hand side of (4.33) by inequality (3.1) and 

(4.32): 

( 1 / 2 ) ( 1  - b ) ( 1  - c )  I Vw Ir ~< cI PAw I~ n § (bn)(1-c)Iw Iq 

Making a simple computation we have a = 1 / 2 + c / 2 + ( b / 2 ) ( 1 - c )  and l - a =  
= (1/2)(1 - b)(1 - c). The theorem is completely proved. 

PROOF OF COROLLARY 2.1. - The proof of the corollary is very easy. Infact to prove 
(2.21) we observe that from (2.1) and (2.6) the following inequalities holds: 

( 4 . 3 1 )  Iwl~<<.ClP,~wl,~lwl~ - ~  , ~e [0,'1], 

(4.32) Iwl~"~ClVwl~ 'lwl~ , e~[o,  1], 
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Therefore  a suitable coupling (4.31) and (4.32) implies (2.21) with X = ~/(~ + ~]) and X' = 

= ~/(~ + ~]). To prove (2.23) we observe that  ~ �9 [q, n s / ( n  - s)] we have from (2.1) 

(4.33) ]w]~ <~ CIPAw I~ I w 11-~, 

with a satysfying (2.2). On the other  hand in virtue of Theorem 2.3 

1 -  X Iwl <-ClVwl lwl  

Substuting this last inequality (4.33) we have (2.23). The arbi t rar i ty  choosen of ~ �9 

E [q, n s / n  - s] implies one ofx  �9 [0, 1]. Fo r  s �9 [ 1, n), q > n s / ( n  - s), r �9 [ns / (n  - s), q], 

we have (2.6) since (2.1) does not hold. Finally for s > n and r I> q to prove (2.21) it is 

sufficient to repea t  the argument  lines already employed for the above case of 

s �9 [ 1, n), n s / ( n  - s) > q, r �9 [q, n s / ( n  - s)]. 

Acknowledgment  - This paper  is performed under  the auspices of Italian CNR and 

Murst  Contracts 40%-60% at the University of Basilicata (Potenza). 

R E F E R E N C E S  

[1] TH. AUBIN, Problems isopdrimdtriques et espaces de Sobolev, J. Diff. Geom., 11 (1976), pp. 
573-598 

[2] J. BERGH - J. LOFSTROM, Interpolation Spaces, Springer-Verlag, 223 (1976). 
[3] W. BORCHERS - T. MIYAKAWA, Algebraic L 2 decay for Navier-Stokes flows in exterior do- 

mains, Acta Mathem., 165 (1990), pp. 189-227. 
[4] L. CAFFARELLI - R. KOHN - L. NIRENBERG, First order interpolation inequalities with 

weights, Compos. Math., 39 (1984), pp. 259-275. 
[5] L. CATTABRIGA, Su un problema al contorno relativo al sistema di equazioni di Stokes, 

Rend. Sere. Mat. Univ. Padova, 31 (1961), pp. 308-340. 
[6] E. B. DAVIES, Heat Kernels and Spectral Theory, Cambridge University Press (1989). 
[7] E. B. FABES - D. W. STROOK, A new proof of Moser's parabolic Harnark inequality via the 

old ideas of Nash, Arch. Rational Mech. Anal., 96 (1986), pp. 327-338. 
[8] H. FUJITA - T. KATO, On the Navier-Stokes initial value problem, Arch. Rational Mech. 

Anal., 16 (1964), pp. 269-315. 
[9] M. FUKUSHIMA - Y. OSHIMA - M. TAKEDA, Dirichlet Forms and Symmetric Markov Proces- 

ses, Walter de Gruyter (1991). 
[10] E. GAGLIARDO, Proprietd di alcune classi di funzioni in pi~ variabili, Ricerche Mat. Univ. 

Napoli, 7 (1958), pp. 102-137. 
[11] E. GAGLIARDO, Ulteriori proprietd di alcune classi di funzioni in pi~t variabili, Ricerche 

Mat. Univ. Napoli, 8 (1959), pp. 24-51. 
[12] E. GAGLIARDO, Caratterizazione costrnttiva di tutti gli spazi di interpolazions fra spazi di 

Banach, Symposia Mathematica, 2 (1969), pp. 95-106. 
[13] G. P. GALDI, An Introduction to the Mathematical Theorey of the Navier-Stokes Equations, 

Springer-Verlag, 38 (1994). 
[14] G. P. GALDI - P. MAREMONTI, Monotonic decreasing and asymptotic behavoir of the kinetic 

energy for weak solutions of the Navier-Stokes equations in exterior domains, Arch. Ratio- 
nal Mech. Anal., 94 (1986), pp. 253-266. 



90 PAOLO MAREMONTI: Some interpolation inequalities, etc. 

[15] G. P. GALDI - C. G. SIMADER, Existence, uniqueness and L q estimates for the Stokes problem 
in an exterior domain, Arch. Rational Mech. Anal., 112 (1990), pp. 291-318. 

[16] Y. GIGA - H. SOHR, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo, 36 
(1989), pp. 103-130. 

[17] K. K. GOLOVKm, On embedding theorems, Dokl. Akad. Nauk SSSR, 134 (1960), pp. 
19-22. 

[18] J. H. HEYWOOD, The Navier-Stokes equations: on the existence, regularity and decay of sol- 
utions, Indiana Univ. Math. J., 29 (1980), pp. 639-681. 

[19] V. P. IL'IN, Certain inequalities in function spaces and their application to the analysis of 
convergence in variational processes, Trudy Mat. Inst. Steklov, 66 (1959), pp. 64-127 
(Transl.: Amer. Math. Soc. Transl., ser. 2, 81 (1969), pp. 1-66). 

[20] H. KOZONO - H. SonR, New a priori estimates for the Stokes equations in exterior domains, 
Indiana Univ. Math. J., 40 (1991), pp. 1-28. 

[21] O. A. LADYZHENSKAYA, Solution in large of the nonstationary boundary value problem for 
the Navier-Stokes system with two space variables, Comm. Pure Appl. Math., 12 (1959), pp. 
427-433. 

[22] O. A. LADYZHENSKAYA - V. n. SOLONNIKOV - N. N. URAL'CEVA, Linear and quasilinear equa- 
tions of parabolic type, Translations of Math. Monographs, AMS, 23 (1968). 

[23] J. L. LIONS, Espaces intermgdiaires entre espaces hilbertiens et applications, Bull. Math. 
Soc. Math. Phys. Roumanie, 50 (1958), pp.419-432. 

[24] J. L. LIONS, Thdr~mes de trace et d'interpolation: I-V, Ann. Sc. Norm. Sup. Pisa, 13 (1959), 
pp. 389-403; Ann. Sc. Norm. Sup. Pisa, 14 (1960), pp. 317-331; J. Math. Pures Appl., 42 (1963), 
pp. 195-203; Math. Annal., 151 (1963), pp. 42-56; An. Acad. Brasil. Ci., 35 (1963), pp. 

1-10. 
[25] J. L. LIONS, Properties of some interpolation spaces, J. Rat. Mech., 11 (1962), pp. 

969-978. 
[26] J. L. LIONS - E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications: 

I-III, Springer-Verlag, 181-183 (1972). 
[27] E. MAGENES, Spazi di interpolazione ed equazioni a derivate parziali, Atti VII Congresso 

UMI, Ed. Cremonese (1965), pp. 134-197. 
[28] P. MAREMONTI - R. RUSSO, On the Existence and Pointwise Stability of Periodic Solutions to 

a Linear Parabolic Equation in Unbounded Domains, Appl. Analisys, Gordon Breach, 44 

(1992). 
[29] P. MAREMONTI - V. n. SOLONNIKOV, Estimates of the solution of the Dirichlet problem for the 

Laplace operator in exterior domains, Zap. Nauch. Sem. LOMI, 180 (1985), pp. 92-101 (in 
Russian); J. Soviet Math., 40 (1988), pp. 72-79. 

[30] P. MAREMONTI - V. t .  SOLONNIKOV, An estimate for solutions of the Stokes system in exterior 
domains, Zap. Nauch. Sem. LOMI, 180 (1990), pp. 105-120 (in Russian); J. Math. Sci., 68 

(1994), pp. 229-239. 
[31] P. MAREMONTI - V. A. SOLONNIKOV, On the nonstationary Stokes problem in exterior do- 

mains, Ann. Sc. Norm. Sup. Pisa, Ser. IV, 24 (1997), pp. 395-449. 
[32] K. MASUDA, On the stability of incompressible viscous fluid motions past objects, J. Math. 

Soc. Japan, 27 (1975), pp. 294-327. 
[33] C. MIRANDA, Su alcune diseguaglianze integrali, Mem. Acc. Lincei, 7 (1963), pp. 1-14. 
[34] C. MIRANDA, Su alcuni teoremi di inclusione, Annales Polonici Math., 16 (1965), pp. 

305-315. 
[35] C. MIRANDA, Istituzioni di analisi funzionale lineare, U.M.I., Oderisi, Gubbio, 1 (1978). 
[36] J. NASH, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math, 80 

(1958), pp. 931-954. 
[37] L. NIRENBERG, On elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa, 13 

(1959), pp. 123-131. 



PAOL0 MAREMONTI: Some interpolation inequalities, etc. 91 

[38] L. NIRENBERG, An extended interpolation inequality, Ann. Sc. Norm. Sup. Pisa, 20 (1966), 
pp. 733-737. 

[39] D. ORNSTEIN, A non-inequality for differential operators in the L 1 norm, Arch. Rational 
Mech. Anal., 11 (1962), pp. 40-49. 

[40] C. G. SIMADER - H. SOHR, The Helmholtz decomposition in L q and related topics, in Math- 
ematical Problems Related to the Navier-Stokes equations, G. P. Galdi Ed., Advances in 
Math. Appl. Sciences, 11 (World Scientific), pp. 1-35. 

[41] V. A. SOLONNIKOV, On the estimates of the tensor Green's function for certain boundary 
problems, Soviet Math. Doklady, 1 (1960), pp. 128-131. 

[42] V. A. SOLONNIKOV, Inequalities for functions of the class Wp(R~), J. Soviet Math., 3 (1975), 
pp. 549-564. 

[43] V. A. SOLONNIKOV, General boundary value problems for Douglis Nirenberg elliptic system 
H, Proc. Steklov Inst. Math., 116 (1970), pp. 123-170. 

[44] V. A. SOLONNIKOV, Estimates for solutions of nonstationary Navier-Stokes equations, J. So- 
viet Math., 8 (1977), pp. 467-528. 

[4,5] G. TALENTI, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), pp. 
353-372. 

[46] N. TH. VAROPOULAS - L. SALOFF-COSTE - T. COULHON, Analysis and Geometry on Groups, 
Cambridge University Press (1992). 

[47] W. XIE, A sharp pointwise bound for functions with L 2-Laplacian and zero boundary 
values on arbitrary three-dimensional domains, Indiana Univ. Math. J., 40 (1991), pp. 
1185-1192. 

[48] A. YOSHIKAWA, Fractional powers of operators, interpolation theory and embedding theo- 
rems, J. Fac. Sci. Univ. Tokyo, 18 (1971), pp. 335-362. 


