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Abstract. The current tuning process of parameters in global

climate models is often performed subjectively or treated as

an optimization procedure to minimize model biases based

on observations. While the latter approach may provide more

plausible values for a set of tunable parameters to approx-

imate the observed climate, the system could be forced to

an unrealistic physical state or improper balance of budgets

through compensating errors over different regions of the

globe. In this study, the Weather Research and Forecasting

(WRF) model was used to provide a more flexible frame-

work to investigate a number of issues related uncertainty

quantification (UQ) and parameter tuning. The WRF model

was constrained by reanalysis of data over the Southern Great

Plains (SGP), where abundant observational data from vari-

ous sources was available for calibration of the input parame-

ters and validation of the model results. Focusing on five key

input parameters in the new Kain-Fritsch (KF) convective pa-

rameterization scheme used in WRF as an example, the pur-

pose of this study was to explore the utility of high-resolution

observations for improving simulations of regional patterns

and evaluate the transferability of UQ and parameter tun-

ing across physical processes, spatial scales, and climatic

regimes, which have important implications to UQ and pa-

rameter tuning in global and regional models. A stochastic

importance sampling algorithm, Multiple Very Fast Simu-

lated Annealing (MVFSA) was employed to efficiently sam-

ple the input parameters in the KF scheme based on a skill

score so that the algorithm progressively moved toward re-

gions of the parameter space that minimize model errors.

The results based on the WRF simulations with 25-km grid

spacing over the SGP showed that the precipitation bias in the

model could be significantly reduced when five optimal pa-

rameters identified by the MVFSA algorithm were used. The

model performance was found to be sensitive to downdraft-

and entrainment-related parameters and consumption time of

Convective Available Potential Energy (CAPE). Simulated

convective precipitation decreased as the ratio of downdraft

to updraft flux increased. Larger CAPE consumption time

resulted in less convective but more stratiform precipitation.

The simulation using optimal parameters obtained by con-

straining only precipitation generated positive impact on the

other output variables, such as temperature and wind. By

using the optimal parameters obtained at 25-km simulation,

both the magnitude and spatial pattern of simulated precipi-

tation were improved at 12-km spatial resolution. The opti-

mal parameters identified from the SGP region also improved

the simulation of precipitation when the model domain was

moved to another region with a different climate regime (i.e.

the North America monsoon region). These results suggest

that benefits of optimal parameters determined through vig-

orous mathematical procedures such as the MVFSA process

are transferable across processes, spatial scales, and climatic

regimes to some extent. This motivates future studies to fur-

ther assess the strategies for UQ and parameter optimization

at both global and regional scales.

1 Introduction

Sound strategies and decisions making in climate change

mitigation and adaptation require not only robust projections

of the mean or most likely scenario but also the occurrence of
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low probability but high-impact events (IPCC, 2007). Uncer-

tainty quantification (UQ) is the science of quantitative char-

acterization and reduction of uncertainties in applications. It

determines how likely certain outcomes are if some aspects

of the system are not exactly known. UQ of predicted future

climate is usually based on the ability of models to produce

the current climate (Allen et al., 2000; Tebaldi et al., 2005).

The full probability density functions (PDFs) of occurrence

for both present climate and future prediction are needed to

predict the probability of extreme weather or climate events.

Different approaches have been applied to generate en-

semble simulations and construct PDFs for variables of cli-

mate model output. These approaches include perturbing

the initial conditions, perturbing the input parameters of the

model, ensemble simulations with multiple parameterization

schemes, or ensemble simulations with multiple models, and

so on (Allen et al., 2000; Giorgi and Mearns, 2002; Stain-

forth et al., 2005; Lopez et al., 2006). Covey et al. (2011)

found that the variability of globally averaged upwelling

longwave radiation and surface temperature induced by per-

turbation of initial condition is much smaller than that in-

duced by perturbation of model input parameters. Hawkins

and Sutton (2009) estimated the contributions to the total cli-

mate change prediction uncertainty from internal variabil-

ity, model uncertainty, and scenario uncertainty and found

that their relative contributions depend on the prediction lead

times. Furthermore, for the decadal time scales and regional

spatial scales (∼2000 km), model uncertainty is of greater

importance than internal variability. Quantifying and reduc-

ing the uncertainty of tunable input parameters in climate

models can improve our understanding of the physical pro-

cess in climate systems as well as reduce the uncertainty for

projecting future climate change.

Parameterizations in climate models typically contain

many input parameters that are determined based on the

physical processes being parameterized or estimated based

on tuning to obtain qualitative agreement between the sim-

ulations and observations from limited local measurements

or global observations. Larger number or ranges of input pa-

rameters usually result in higher uncertainties in climate sim-

ulations because of nonlinear interactions and compensating

errors of parameters (Gilmore et al., 2004; Molders, 2005;

Min et al., 2007; Murphy et al., 2007). Perturbed-Parameter

Ensembles (PPE) with the same climate model but different

combinations of several key input parameters, within reason-

able ranges, have been employed to assess future climate un-

certainty (Murphy et al., 2004; Jackson et al., 2003, 2008;

Collins et al., 2011).

To approximate the posterior probability distribution of in-

put parameters in physical parameterizations, many sampling

strategies have been proposed, such as grid search method,

Metropolis/Gibbs algorithm (Metropolis et al., 1953; Kirk-

patrick et al., 1983; Sen and Stoffa, 1996), Monte Carlo or

Quasi Monte Carlo (QMC), (Moskowitz and Caflisch, 1996),

Latin Hypercube selection (Stein, 1987), Multiple Very Fast

Simulated Annealing (MVFSA) (Ingber, 1989; Jackson et

al., 2004), among others (Tierney and Mira, 1999; Haario

et al., 2001). Grid search is a straightforward method to

test the sensitivity of parameters by subdividing each pa-

rameter space into equally spaced intervals and evaluating

uncertainty arising from those combinations. However, this

method may require huge computational resources. For ex-

ample, around 105 simulations are needed if five parameters

with 10 intervals for each parameter are to be explored. Thus,

high-efficiency sampling methods are needed for applica-

tions related to climate modeling. MVFSA is a stochastic

importance sampling algorithm that can progressively move

toward regions of the parameter space that minimize model

errors and more efficiently provide useful information for

optimizing or generating accurate measures of the posterior

distribution (Villagran et al., 2008). Jackson et al. (2008) ap-

plied MVFSA to optimize six parameters related to the cloud

process in a Global Climate Model (GCM) because cloud

processes play a critical role in the hydrological cycle and

uncertainty of climate response to doubling of CO2 forcing

(Colman, 2003; Webb et al., 2006; Medeiros and Stevens,

2011). Constrained by different sets of observations, their

work provided a six-member ensemble of optimized model

configurations with a narrower range of future temperature

change projection.

Currently, UQ and parameter tuning in climate study are

typically applied in GCMs, with more focus on global cli-

mate sensitivity and large-scale climatic features. Equal

weighting of the state fidelity globally could compromise pa-

rameter tuning in GCMs because the processes being tuned

may only be relevant for particular regimes. Furthermore,

global tuning may produce parameter settings that approxi-

mate the observed global climate, but at the expense of yield-

ing unphysical states or improper balance of budgets at the

local or regional scales. Even if the calibration produces real-

istic regional means, important spatial variability may not be

reproduced if observed spatial patterns from high-resolution

measurements are not utilized in the global tuning. Hacker

et al. (2011) evaluated the impacts of initial condition and

model parameterization uncertainties on a WRF-based en-

semble prediction system and found that different combina-

tions of parameterization schemes associated with perturbed

parameters could generate the most skillful ensemble predic-

tion.

This study applies UQ and parameter tuning to a Regional

Climate Model (RCM), which offers more flexibility in terms

of model configuration and is computationally more econom-

ical, allowing some of the above issues to be explored in

more details. More specifically, we explore the utility of

high-resolution observations for improving simulations of re-

gional patterns. We further investigate three important ques-

tions. First, can calibration of specific physical parameter-

izations lead to improvements in aspects not directly influ-

enced by the parameterizations? Second, can model cali-

bration performed at a coarser scale improve simulations at

Atmos. Chem. Phys., 12, 2409–2427, 2012 www.atmos-chem-phys.net/12/2409/2012/



B. Yang et al.: Some issues in uncertainty quantification and parameter tuning 2411

a finer scale? Lastly, can optimal parameters obtained by

calibration in one climate regime lead to improvements in

other climate regimes? These questions aim at evaluating the

transferability of UQ and parameter tuning across physical

processes, spatial scales, and climatic regimes, which have

important implications to UQ and parameter tuning in global

and regional models.

With the rapid growth of computing resources in the past

decades, some climate models can now be applied at a

cloud-resolving scale (Khairoutdinov et al., 2001; Tao et

al., 2009). However, because of simulation length and the

need for ensemble modeling, climate models being used in

projecting climate change still use grid spacing of 25 km

or larger where cumulus processes have to be parameter-

ized. Since convective process contributes disproportion-

ately to the magnitude and intensity of precipitation, and

the diabatic heating from convective process is an impor-

tant driver of global and regional circulation, it is important

to better understand and constrain the convective parame-

terizations used in climate and weather forecasting models

(Warner and Hsu, 2000; Liu et al., 2001). Many different

Convective Parameterization Schemes (CPS) have been de-

veloped over the past decades (Janjic, 1994; Emanuel and

Zivkovic-Rothman, 1999; Gregory et al., 2000; Grell and

Devenyi, 2002). Among them, the Kain-Fritsch (KF) scheme

(Kain and Fritsch, 1993; Bechtold et al., 2001), including

more recent updates (Kain, 2004), is commonly used in re-

gional models including the Weather Research and Forecast-

ing (WRF) model (Skamarock et al., 2001).

This study applies UQ and model calibration to the WRF

regional model to address the questions discussed above.

Simulations were performed with WRF constrained by re-

analysis data over the Southern Great Plains (SGP), where

abundant observational data from various sources are avail-

able for calibration of the input parameters and validation

of the model results. The MVFSA importance sampling al-

gorithm was applied to quantify the uncertainty ranges and

identify the optimal values of five key input parameters in

the new KF CPS used in the WRF model. Because of its

importance and sensitivity to model physics, precipitation

is used as the constrained variable in the optimization pro-

cess. The impact of precipitation-based optimization on a

few other variables, such as temperature and wind, was an-

alyzed. Furthermore, parameter transferability across spatial

scales and climate regimes was investigated using sensitivity

experiments.

This paper is organized as follows. Parameter selection in

the new KF CPS, the MVFSA sampling algorithm, observa-

tional data, and the WRF model configuration are described

in Sect. 2 and the optimization results, sensitivities of model

performance, precipitation and other output variables to pa-

rameters in the KF scheme, and dependence of optimization

on model configurations are presented in Sect. 3. The con-

clusion is discussed in the last section.

2 Parameters, approach and experiment design

2.1 The new KF CPS and five key parameters

CPSs are appropriate for use in RCMs with a moderate grid

spacing of 10–100 km. This spacing is large enough so that

a cloud ensemble within the grid can be treated as a statis-

tical entity but small enough to keep the uniform character-

istics of the cloud environment. The new KF CPS, which is

commonly used in many mesoscale models including WRF,

was developed based on a mass flux parameterization (Kain,

2004). Using a Lagrangian parcel method (Simpson and

Wiggert, 1969; Kreitzberg and Perkey, 1976), the new KF

CPS operates by searching for the Updraft Source Layer

(USL), which has a potential for inducing shallow or deep

convection, starting from the surface upward to within the

lowest 300 hPa of the atmosphere. When the USL is iden-

tified, updraft flux is initialized with a velocity based on at-

mospheric instability and grid-scale vertical motion at USL

(Kain and Fritsch, 1990). Air mass is exchanged between

the updraft and the environment through entrainment and de-

trainment at each layer. The rate of entrainment flux is re-

lated to the cloud radius that varies from 1000 to 2000 m de-

pending on the large-scale vertical velocities. The intensity

of updraft flux decreases with altitude as the thermal contrast

between the cloud and the environment is reduced by mixing.

Convective downdrafts, which play an essential role in deter-

mining the heating profile and humidity features in the lower

troposphere (Johnson, 1976; Cheng, 1989), are driven by the

evaporation of condensate generated within the updrafts. The

strength of the downdraft mass flux is related to the relative

humidity of environmental air (Knupp and Cotton, 1985; Fer-

rier et al., 1996; Shepherd et al., 2001). The fluxes of updraft,

entrainment/detrainment, downdraft, as well as of grid-scale

compensating subsidence are parameterized and used to cal-

culate the convective temperature, water vapor and cloud wa-

ter tendencies that are used to advance the respective large-

scale fields.

Five key parameters related to the downdraft flux rate and

starting height, environmental entrainment flux rate, turbu-

lent kinetic energy (TKE) in the sub-cloud layer, and the

consumption time of Convective Available Potential Energy

(CAPE) in the new KF CPS in the WRF are thought to be im-

portant in the KF CPS, but the range of their possible values

is quite wide (J. Kain, personal communications, 2011).

The intensities of both downdraft and entrainment fluxes

are proportional to the updraft mass flux at the top of USL

in the KF CPS. In this study, two parameters Pd and Pe are

defined as additional scale factors to modulate the rates of

downdraft and entrainment fluxes from 1/2 to 2 times of their

original values, respectively.

MUSL
d

MUSL
u

= 2×(1−RH)×2Pd ,Pd ∈ (−1,1), (1)
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δMe

MUSL
u

=
−0.03×δp

R
×2Pe ,Pe ∈ (−1,1). (2)

In Eqs. (1) and (2), MUSL
u and MUSL

d are the updraft and

downdraft mass fluxes at the top of USL, respectively. RH is

the mean relative humidity of environment air from the start-

ing layer of downdraft to cloud base. R is the cloud radius,

δp is the pressure thickness of a model layer and δMe is the

maximum possible entrainment rate of this layer. More de-

tails can be found in Kain and Fritsch (1990).

Downdraft is assumed to start from 150 hPa above USL in

the standard KF CPS. The starting height of downdraft Ph

controls the downdraft structures and also affects the atmo-

spheric properties in the sub-cloud layer. We set the range of

Ph as 50–350 hPa to allow a larger degree of freedom in the

downdraft structures from tall and narrow to short and wide.

Shallow or deep convection are based on different closure

assumptions. For shallow convection, the intensity of updraft

mass flux at USL is assumed to be a function of TKE in the

sub-cloud layer. For deep convection, the KF scheme incre-

mentally rearranges the updraft, downdraft and other mass

flux until the CAPE is reduced by at least 90 % within a

specified time, called CAPE consumption time. The CAPE

consumption time is related to the vertical shear defined as

the difference between horizontal wind at the cloud base and

500 hPa level (Bechtold et al., 2001). The TKE and average

CAPE consumption time are referred to as Pt and Pc, with

values of 5 m2 s−2 and 2700 s in the standard KF CPS. We

allowed a range from 3 to 12 m2 s−2 for Pt and from 900 to

7200 s for Pc. The default value in the standard KF scheme

and range of value for each parameter are shown in Table 1.

2.2 MVFSA optimization approach

Very Fast Simulated Annealing (VFSA) is a stochastic im-

portance sampling algorithm with high converging efficiency

toward the optimal results (Ingber, 1989; Jackson et al.,

2004). For most optimization applications, multiple extreme

values (i.e. local minimum/maximum) may exist and the se-

lected parameter values may be trapped by some local mini-

mums within the parameter space in one VFSA procedure.

Repeating the VFSA multiple times with different initial

starting parameter set (i.e. MVFSA) can help prevent such

local trapping and identify the global minimum (Jackson et

al., 2008; Villagran et al., 2008). The steps in the MVFSA

algorithm, which is adapted from Jackson et al. (2004, 2008),

are the following;

1. Take random points in the parameter spaces and run a

simulation at each step. At the first step, an initial start-

ing parameter set (m0) is randomly selected to run the

first WRF simulation.

2. Quantify the differences between simulation and obser-

vation in terms of a scalar skill score or “cost,” referred

to as E(m), where m is the parameter set. If Gaussian

errors exist in the model results, E(m) is usually de-

fined as

E(m)=

N
∑

i=1

1

2N

{

[dobs−g(m)]T ×C−1 [dobs−g(m)]
}

i
. (3)

N refers to different sets of observations/variables. dobs

refers to observations and g(m) refers to simulations

with a specific parameter set m. C−1 is the inverse of the

data covariance matrix, which could include a weight

coefficient for different variables. In this study, only

one set of observation (precipitation) is used with equal

weight at each grid point in the observation constraint

in Eq. (3), so E(m) is simplified as:

E(m) =

{

K
∑

k=1

I
∑

i=1

J
∑

j=1

[

dobs,ijk −gijk(m)
]2

/Cijk

}/

(I ×J ×K), (4)

where i, j are the horizontal grid points in the model

domain, and k represents the number of time steps. In

Eq. (4), the model biases are assumed to be spatially or

temporally uncorrelated (i.e. the data covariance matrix

C−1 in Eq. (3) only contains nonzero elements along the

diagonal). The frequency of precipitation rate tends to

have an exponential distribution rather than a Gaussian

distribution, which indicates that the score function of

the model based on Eqs. (3) and (4) is dominated by

the upper range in the observation. Given that our case

study has strong convection over a limited region during

a short time period, the use of Eq. (4) is appropriate in

this study (see Sect. 2.3).

3. Reselect the parameter values based on the skill score so

that the algorithm progressively moves toward regions

of the parameter space that minimize modeling errors.

Starting from the second round of the procedure, the

parameters will be perturbed to a new set of m
new as

follows:

mnew
i = m0

i +yi(m
max
i −mmin

i ), (5)

yi ∈ (−1,1), (6)

mmin
i ≤ mnew

i ≤ mmax
i , (7)

where mmin
i and mmax

i represent the possible minimum

and maximum values of each parameter, and yi is drawn

from a Cauchy distribution which is dependent on an

annealing coefficient T :

yi = sgn(RND−0.5)Tk

[

(

1+
1

Tk

)|2RND−1|

−1

]

. (8)
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Table 1. The short name, default, minimum and maximum values, and the descriptions of the five parameters in the KF convective parame-

terization scheme in WRF 3.2.1.

Parameter Default Minimum Maximum Description

Pd 0 −1 1 coefficient related to downdraft mass flux rate

Pe 0 −1 1 coefficient related to entrainment mass flux rate

Ph 150 50 350 starting height of downdraft above USL (hPa)

Pt 5 3 12 maximum TKE in sub-cloud layer (m2 s−2)

Pc 2700 900 7200 average consumption time of CAPE (s)

Within Eqs. (5)–(8), subscript i, k are the parameter

number and iteration number, respectively. sgn is the

sign operator and RND represents a random number

from a uniform distribution between 0 and 1. At itera-

tion k, the annealing coefficient T is lowered according

to

Tk = T0exp[−0.9×(k−1)1/2]. (9)

If the results with a new set of parameters show an im-

provement over the old one, in effect, 1E = E(mnew)−

E(m0) < 0, then the new set of m is accepted as the ba-

sis for the next iteration, that is, m
0 = m

new. If not, the

new set of parameters can still possibly be accepted with

a probability

P = exp

(

−1E

Tk

)

. (10)

With a lower T , the VFSA algorithm moves progres-

sively toward regions of the parameter space that min-

imize model errors since the width of the Cauchy dis-

tribution will be incrementally focused on the current

accepted parameter set, facilitating the VFSA algorithm

to converge more efficiently. In this study, we lower T

every two steps with an initial value of T0 as 10.

4. To get global optimal values, we repeat the VFSA pro-

cedure three times with different starting parameter set

(i.e. three chains). We conducted 50 experiments in

each chain. Only 148 simulations are valid because in-

stability occurred in two of the simulations. The three

chains nearly converge to the same region within the pa-

rameter spaces (not shown), indicating that three chains

are probably enough for this case study.

Figure 1 shows the best values averaged for three itera-

tions based on three independent MVFSA chains. As seen

in Fig. 1, the averaged best values monotonically decrease as

the number of model integrations increases and finally reach

convergence after 28 integrations.

In climate model calibration, we are interested in not only

the magnitudes of model bias (e.g. standard deviation) but

Fig. 1. The best values obtained using MVFSA method as a func-

tion of the number of model evaluations.

also the similarity of spatial pattern (e.g. spatial correlation

coefficient) between observed and modeled large-scale fields

(Taylor, 2001). We define

C(m) =

N
∑

n=1

SC
[

dobs,n,gn(m)
]

/

N, (11)

where SC[dobs,g(m)] refers to the spatial correlation coeffi-

cient between the observation and simulation, and n repre-

sents the time series. Both E(m) and C(m) are normalized

so they can be considered together as EC(m), EC(m) = E(m)

− C(m). Doing so accounts for both the magnitude of bias

and similarity of spatial pattern. For brevity, E(m), C(m) and

EC(m) are denoted as E, C, and EC, respectively hereafter.

The University of Washington (UW) 1/8 gridded meteoro-

logical data set includes daily precipitation, maximum and

minimum 2-m temperature and 10-m wind speed (Maurer

et al., 2002). Only the daily precipitation data are used in

the observation constraint in Eq. (4). The maximum and

minimum temperatures at 2-m height and wind speed at 10-

m height are used to evaluate the WRF simulation perfor-

mances that used the optimal parameters derived by con-

straining the precipitation alone.

2.3 Model configuration

The Advanced Research Weather Research and Forecast-

ing model Version 3.2.1 (WRF Version 3.2.1, Skamarock et

www.atmos-chem-phys.net/12/2409/2012/ Atmos. Chem. Phys., 12, 2409–2427, 2012
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Fig. 2. WRF model domain (Southern Great Plain/SGP, 25–44◦ N

and 112–90◦ W) with grid spacing of 25 km. Shades indicate the

terrain (Unit: m).

al., 2008) is used in this study. WRF is a fully compress-

ible and non-hydrostatic model that uses a terrain-following

hydrostatic-pressure vertical coordinate and an Arakawa C-

grid staggering spatial discretization for variables. The sim-

ulation domain is located within 25–44◦ N and 112–90◦ W

over the SGP region (see Fig. 2), with horizontal grid spac-

ing of 25 km and 36 sigma levels from the surface to 100 hPa.

Wind, temperature, water vapor, pressure, and underlying

surface variables used to generate initial and boundary con-

ditions are derived from the North American Regional Re-

analysis (NARR) data with 32-km horizontal resolution and

3-h time intervals.

To obtain a reasonable simulation result for precipitation

over the SGP region before starting the optimization pro-

cess, we compared two different radiation schemes, RRTMG

(Rapid Radiative Transfer Model for GCMs, Barker et al.,

2003; Pincus et al., 2003) vs. CAM (Community Atmo-

sphere Model 3.0, Collins et al., 2004), and two different mi-

crophysics schemes, WSM6 (WRF Single-Moment 6-class,

Hong and Lim, 2006) vs. Morrison 2-Moment (Morrison

et al., 2005). Figure 3 shows the observed and simulated

monthly mean precipitations for June 2007 with different ra-

diation (RRTMG vs. CAM) and microphysical parameteri-

zation schemes (WSM6 vs. Morrison) while the standard KF

CPS was used in both simulations. The results show that

more than 70 % of the rainfall is contributed by convective

precipitation, indicating the importance of the CPS in simu-

lating precipitation for the region in the summer. We find that

the simulated precipitation is more sensitive to different ra-

diation schemes than different microphysical schemes in this

study. While the CAM radiation scheme tends to underesti-

mate the amount of precipitation, the RRTMG seems to pro-

duce a more realistic magnitude and spatial pattern of precip-

itation. However the RRTMG scheme produces larger areas

of precipitation than observed, especially over the northeast

corner of the domain. Simulation result with the Morrison

scheme is slightly better than with WSM6. Finally, RRTMG

radiation and Morrison microphysics schemes, as well as the

Mellor-Yamada-Janjic (MYJ, Janjic, 2002) PBL scheme and

the Noah Land Surface Model (LSM) (Chen and Dudhia,

2001) were used in all simulations in this study.

We selected 1 May to 30 June 2007 for our simulations

to focus on a wet month (June) with mostly convective-type

precipitation. To isolate the influence of the convective pa-

rameterization, all model simulations, including those iden-

tifying the best configuration, were initialized every three

days to minimize errors in the large-scale circulation that can

also affect precipitation. Each simulation was initialized two

days after the previous simulation. Discarding the first day as

model spin-up, the results of the last two days of each simu-

lation were concatenated to form a continuous time series for

analysis. Unlike the atmospheric state, which was initialized

every three days using the NARR data, the land surface state

(soil moisture and temperature) was initialized based on sim-

ulation of the previous three days to produce better spun-up

land surface conditions for realistic land-atmosphere inter-

actions. As described in Sects. 3.4 and 3.5, the same experi-

mental design was used to conduct simulations with different

horizontal resolutions and over different regions.

3 Results

3.1 Model response to five parameters

The top panel of Fig. 4 shows the response of model per-

formance (quantified as E as introduced in Sect. 2.2) to five

input parameters based on the 148 simulations through the

MVFSA procedure. E is equal to 137 in the simulation with

default parameters in the KF CPS. Figure 4 shows that E

varies from 74 to 225, with lower E than 137 in the ma-

jority of experiments. We found that model response is

more sensitive to the changes of Pd (downdraft flux rate re-

lated coefficient), Pe (entrainment rate related coefficient),

and Pc (CAPE consumption time) than to the other two pa-

rameters. For example, the model bias E significantly de-

creases with the increase of Pd or decrease of Pe. The op-

timal values for Pd, Pe, and Pc that minimize E are around

0.9, −0.9, and 4600 s, respectively. The optimal value for

Ph and Pt are around 280 hPa and 9 m2 s−2, both larger than

the default values in the standard KF scheme for the starting

height of downdraft above USL and the maximum TKE in

the sub-cloud layer in this study. The responses of E to vari-

ations in Ph and Pt are not as evident as those of the other

three parameters.

Among the 148 valid simulations derived from the

MVFSA procedure, there were 114 simulations with lower

E (better performance) than the standard KF scheme with

default parameters. These 114 simulations are defined as

“good” experiments. The middle panel of Fig. 4 shows

the frequency distributions of the “good” experiments as a
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Fig. 3. Spatial distributions of observed and simulated (25 km) monthly mean precipitation over SGP for June 2007, with different radiation

(RRTMG vs. CAM) and microphysics schemes (WSM6 vs. Morrison). Solid box highlighted in top panel shows the sub-region for later

analysis.

function of each parameter value. We found that around 51 %

of the “good” experiments were produced by Pd from 0.6 to

1.0, indicating that the ratio of downdraft to updraft mass

fluxes shown in Eq. (1) is too small in the standard KF CPS.

Approximately 60.5 % of the “good” experiments were pro-

duced by Pe from −1.0 to −0.4, indicating that the ratio of

maximum possible entrainment rate to updraft mass fluxes

shown in Eq. (2) is too large in the standard KF CPS. As Ph,

Pt, and Pc are within the range from 230 to 320 hPa, 9 to

11 m2 s−2, and 3000 to 6000 s, respectively, there are better

chances to obtain relatively lower E (better performance).

The marginal posterior probability distributions (PPD) for

the five parameters derived from kernel density estimation

are also shown in the bottom panel of Fig. 4. In statistics, ker-

nel density estimation, a non-parametric way of estimating

the PDF of a random variable, is a fundamental data smooth-

ing problem where inferences about the population are made,

based on a finite data. Different from the upper two panels

of Fig. 4, the PPD was calculated using the proposed sample

instead of the admitted samples to avoid the heavily biased

admitted samples towards the mode. Similar to the middle

panel of Fig. 4, large probabilities are located at around 0.8,

−0.7, 320, 9.5 and 3200, respectively for the five parameters

of Pd, Pe, Ph, Pt and Pc.

Figure 5 shows the observed and simulated monthly mean

precipitation for June 2007 with default and optimal param-

eters (see Table 2) in the simulations. Overall, the model

with default parameters captures the spatial pattern but over-

predicts the amount of precipitation, especially over the

northeastern part of the domain. The simulation with E-

based optimal parameters has significantly reduced the wet

bias of the model, as E decreases from 137 to 74.

Skill scores C describing the spatial pattern of precipita-

tion (see Eq. 11) were calculated for all of the 148 experi-

ments. The variations of E and C with perturbed parameters

are closely correlated, with a correlation coefficient of 0.79,

implying that the spatial pattern of the precipitation would

likely be improved if the magnitude of the model’s bias was
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Fig. 4. (Top) The response of model performance (quantified as E as introduced in Sect. 2.2) to five input parameters based on the 148

simulations (25 km) over SGP through the MVFSA procedure. Red curves represent an average of results at each bin. Default number

of each parameter is marked as red crosses. (Middle) The frequency distributions of “good” experiments as a function of each parameter.

“Good” experiments are defined as those with lower E (better performance) than that using the standard KF scheme with default parameters.

(Bottom) The marginal probability density functions (PDF) for the five input parameters derived by kernel density estimation.

reduced through the MVFSA process. Among the five input

parameters, entrainment related parameter Pe has the most

significant impact on C (not shown).

EC is calculated to represent the model performance in

both magnitude and spatial pattern of precipitation. The bot-

tom panel of Fig. 5 shows the simulations with optimal pa-

rameters based on E and EC, respectively. The E values for

simulations with optimal E and EC are 74 and 79, respec-

tively. The C values are 0.34 and 0.36, respectively, indicat-

ing that the spatial pattern in the simulation with optimal EC

is more similar to the observation than that of the default or

with optimal E.

Figure 6 shows the observed and simulated frequencies of

daily precipitation as a function of rain rate. Compared to the

observation, the WRF with the standard KF CPS evidently

overestimates the frequency of precipitation across all rain

rates and the model wet bias becomes larger for heavy rain.

By applying the optimal parameters based on E (not shown)

or EC, the model markedly reduced the overestimated oc-

currence frequency for rainy events larger than 3 mm day−1.

The improvement is more evident for the heavy precipitation

with rain rate larger than 20 mm day−1.

Table 2. The values of five identified parameters in the KF scheme,

skill scores E and C, used or obtained in the simulations with de-

fault or optimized (based on E or EC, respectively) parameters.

Pd Pe Ph Pt Pc E C

Default 0 0 150 5 2700 137 0.3

Optimal E 0.89 −0.91 292 8.54 4615 74 0.34

Optimal EC 0.57 −0.72 321 8.9 3597 79 0.36

3.2 Sensitivity of precipitation and correlation with

other variables

Figure 7 shows the responses of convective, explicit and total

precipitation to each of the five parameters. As mentioned

previously, total precipitation is contributed largely by the

convective precipitation in this case study. The amount of

explicit precipitation is around 0.2 to 1.5 mm day−1, while

convective precipitation varies between 3.8 and 9 mm day−1.

Because of the competition for moisture and physical inter-

action between the grid and sub-grid scale processes, the ex-

plicit precipitation is also affected by the CPS in the model
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Fig. 5. Spatial distributions of observed and simulated (25 km) monthly mean precipitations over SGP for June 2007, with default and

optimized (based on E or EC) parameters in the KF scheme.

Fig. 6. The observed and simulated (25 km) frequency distributions

of daily precipitation over SGP as a function of rain rates, with de-

fault and optimized (based on EC) parameters in the KF scheme.

The result is derived from daily precipitation at all grids within the

model domain as shown in Fig. 2 for June 2007.

(Kain, 2004), although the convective precipitation is more

sensitive to the parameters.

From the middle panel of Fig. 7 we found that downdraft

related parameter Pd and CAPE consumption time Pc have

larger impact on the convective precipitation. With a larger

ratio of downdraft to updraft flux (larger Pd), more con-

densed water would be evaporated associated with a stronger

downdraft process, resulting in less precipitation. The larger

CAPE consumption time (larger Pc) slows down the develop-

ment and decreases the intensity of convection, thus reducing

the convective precipitation. Stronger entrainment rate usu-

ally produces less convective precipitation because it dilutes

the moist convective core, which tends to suppress the up-

draft (Kain and Fritsch, 1990; Zhang and McFarlane, 1995).

The impact of TKE on convective precipitation is relatively

small.

The change of explicit precipitation is often anti-correlated

with the convective precipitation. When the convective pre-

cipitation is suppressed with the perturbed parameters, more

moisture will be available in the atmosphere, favoring the

formation of explicit precipitation calculated based on the

microphysics scheme in the model. The top panel of Fig. 7

shows that the explicit precipitation is more sensitive to the

parameters related to entrainment and CAPE consumption

time than the other three parameters. Since total precipita-

tion is mainly contributed by the convective precipitation, the

responses of total precipitation to the five parameters are con-

sistent with that of convective precipitation.

Figures 8 and 9 demonstrate how the changes of two pa-

rameters, Pd and Pe, physically affect the convective pro-

cess and other subsequent meteorological variables such as

air temperature and humidity, cloud, and surface heat flux.

In Fig. 8 we see clear response of the low-level cloud, water

vapor, temperature and surface energy flux to the downdraft-

related parameter Pd. While the downdraft flux became

stronger with the increase of Pd, it enhanced the evaporation

of condensate, increasing the humidity and decreasing the

temperature in the lower troposphere (900–800 hPa), which

favors the formation of a low cloud. Consequently, increased
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Fig. 7. The response of simulated explicit (top), convective (middle) and total (bottom) precipitation averaged over the sub-domain shown in

Fig. 3 to the five parameters in the KF scheme. The meaning of red curves is same as in Fig. 4.

clouds reflect larger amounts of solar radiation back into

space and reduce the solar radiation flux at the surface. De-

creased surface shortwave radiation, together with decreased

precipitation, suppressed the evaporation and reduced the la-

tent heat flux (LH) at the surface. Meanwhile, the soil mois-

ture also showed a decreasing trend with Pd partly due to the

decreased precipitation. Different from the low troposphere,

the PBL (1000–900 hPa) air moisture is less affected by the

increasing downdraft flux because the PBL moisture is more

influenced by the surface evapotranspiration. Increasing of

SH is contributed by both cooling of PBL and decreasing of

surface LH release.

The ratio of entrainment to updraft flux (Pe) also showed

a remarkable impact on the convection process and weather

system (see Fig. 9). With a larger entrainment rate, efficient

mixing can suppress the development of updraft and increase

the environmental air humidity at the middle (800–600 hPa)

atmosphere, so that deep convection is weakened and the

cloud top height decreases (i.e. outgoing longwave radiation

increases). In the lower atmosphere, the weaker condensate

or evaporation that results from weaker updraft can increase

temperature and produce fewer clouds. Consequently, the

downward surface solar radiation and skin temperature sig-

nificantly increase. Since the skin temperature and low-level

air temperature increase consistently, a clear trend of sensible

heat flux (SH) was not seen with the change of entrainment

rate. LH increases primarily due to the increased downward

solar radiation at the surface.

The impact of the downdraft starting height Ph on the con-

vection process is similar to that of the downdraft rate (not

shown). Downdraft flux initiating at a higher level can pro-

duce a tall and narrow downdraft, which has effects similar

to a larger downdraft rate.

The relative sensitivities of the response of the meteoro-

logical variables to the five CPS parameters are shown in

Fig. 10. The sensitivity ranking is calculated based on the

correlation coefficients between output variables (y-axis) and

input CPS parameters (x-axis) from 148 simulations, repre-

senting the variability of output variables against the per-

turbed input parameters (e.g. the slope of the fitted curve

shown in Figs. 7–9). Figure 10 shows that Pd and Pe have

more impact on the output variables than the other three in-

put parameters, while most of the output variables are least

sensitive to Pt, the maximum TKE in the sub-cloud layer.

The impact of CAPE consumption time (Pc) on precipitation

is significant as discussed in Sects. 3.1 and 3.2, because Pc

efficiently controls the development of the convection. As

shown in Fig. 10, cloud water content, PBL specific humid-

ity, outgoing longwave radiation (OLR) and downward long-

wave radiation are very sensitive to Pc.

A total of 148 simulations with perturbed parameter sets

were completed in this study, providing an opportunity to
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Fig. 8. The response of 14 model output variables (see Table 3) to the downdraft mass flux related parameter Pd based on the 148 simulations

(25 km) over SGP.

investigate not only the response of various model variables

to the CPS parameters but also the correlation and interac-

tion among different model variables. As summarized in

Table 3, strong positive correlations can be found between

monthly mean convective precipitation and soil moisture,

skin temperature and downward solar radiation flux, LH and

air temperature, as well as LH and downward solar radi-

ation flux. We found significant negative correlations be-

tween lower/mid-level air humidity and soil moisture, lower-

level air humidity and convective precipitation, OLR and soil

moisture, SH and air temperature, as well as LH and low-

layer cloud water content.

3.3 Impact of optimization on temperature and wind

speed

Because only observed precipitation is used to constrain the

MVFSA algorithm, the question arises as to how other sim-

ulated variables vary with the five CPS parameters when the

model converges to the optimal results for precipitation. Ta-

ble 4 shows the correlation coefficients of model skill scores

between precipitation and 2-m temperature and 10-m wind

speed. The correlation coefficient is 0.31 between E(Tmean)

and E(Prec) and 0.76 between E(Tmean) and C(Prec), indicat-

ing that the bias of model temperature is more correlated with

spatial pattern than the bias of magnitude of simulated pre-

cipitation. The correlation coefficient between E(Wind) and
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Fig. 9. Same as Fig. 8 except for the entrainment rate related parameter Pe.

E(Prec) is 0.86 and between E(Wind) and C(Prec) is 0.87, im-

plying a consistent performance in simulating wind speed

and precipitation (i.e. simulations with better precipitation

are also more likely to have better wind speed).

Figure 11 shows the differences of model biases for tem-

peratures and wind speed between the simulations with de-

fault and optimized parameters. Here, the value on each

grid point is calculated as (|Optimal-Observation|−|Default-

Observation|), so negative value represents a positive impact

by using the optimized parameters. It can be seen that, except

for the maximum temperature, all variables have reduced ab-

solute biases with the optimized parameters than with the de-

fault parameters, especially over regions with strong precipi-

tation, even though the optimal parameters are obtained only

based on precipitation. The improvements for temperatures

are more significant when using optimal parameters based

on EC than based on E (not shown), which suggests that in-

cluding precipitation pattern in the skill score metrics may be

important in the optimization process.

3.4 Dependence of optimized parameters on model grid

spacing

It is well known that the performance of CPS may vary

with model resolution as current convective parameteriza-

tions generally exhibit scale dependence (Arakawa et al.,

2011). Retuning of model parameters for high-resolution

applications can be very time consuming and computation-

ally intensive. In this study, the MVFSA procedure was per-

formed based on WRF simulations at 25-km grid spacing. To

Atmos. Chem. Phys., 12, 2409–2427, 2012 www.atmos-chem-phys.net/12/2409/2012/



B. Yang et al.: Some issues in uncertainty quantification and parameter tuning 2421

Table 3. Correlations among different model output variables in 148 WRF simulations (25-km, SGP) with perturbed parameters in the

KF scheme. The correlation coefficients are calculated based on the domain average as shown in Fig. 3. TS: skin temperature; SM:

soil moisture; QC: cloud liquid water content at layers from 900 to 800 hPa; Q(P ): air specific humidity for 1000–900 hPa; T (P ): air

temperature for 1000–900 hPa; Q(L): air specific humidity for 900–800 hPa; T (L): air temperature for 900–800 hPa; Q(M): air humidity

for 800–600 hPa; T (M): air temperature for 800–600 hPa; SWD: short-wave radiation at surface; LWD: downward long-wave radiation at

surface; OLR: outward long-wave radiation at top of the atmosphere; SH: sensible heat flux at surface; LH: latent heat flux at surface; EP:

explicit precipitation; CP: convective precipitation.

TS –

SM −0.42 –

QC −0.31 −0.58 –

Q(P ) 0.23 0.44 −0.26 –

T (P ) 0.96 −0.16 −0.49 0.36 –

Q(L) 0.02 −0.86 0.75 −0.48 −0.23 –

T (L) 0.75 0.28 −0.74 0.56 0.89 −0.63 –

Q(M) 0.38 −0.83 0.19 −0.64 0.16 0.67 −0.2 –

T (M) 0.43 0.59 −0.81 0.6 0.63 −0.79 0.89 −0.46 –

SWD 0.8 −0.14 −0.7 −0.04 0.81 −0.19 0.72 0.44 0.54 –

LWD 0.29 −0.52 0.65 0.39 0.16 0.49 −0.07 0.02 −0.26 −0.32 –

OLR 0.76 −0.86 0.2 −0.21 0.56 0.58 0.18 0.75 −0.11 0.52 0.46 –

SH −0.18 −0.75 0.6 −0.69 −0.44 0.85 −0.73 0.77 −0.82 −0.18 0.15 0.44 –

LH 0.66 0.35 −0.86 0.37 0.82 −0.62 0.93 −0.13 0.86 0.82 −0.32 0.11 −0.71 –

EP 0.69 −0.77 0.35 −0.05 0.54 0.56 0.17 0.45 −0.16 0.3 0.64 0.84 0.25 0.05 –

CP −0.29 0.97 −0.71 0.37 −0.04 −0.91 0.39 −0.71 0.65 0.04 −0.64 −0.79 −0.76 0.48 −0.76 –

TS SM QC Q(P ) T (P ) Q(L) T (L) Q(M) T (M) SWD LWD OLR SH LH EP CP

Table 4. Correlations of model performance between the precipita-

tion and the mean/maximum/minimum 2-m temperature and 10-m

wind speed. The correlation coefficients are calculated on the basis

of skill scores for the precipitation (based on E and C, respectively)

and for the temperature and wind speed (based on E) of the 148

simulations (25-km) over SGP.

E(Tmean) E(Tmax) E(Tmin) E(Wind)

E(Prec) 0.31 -0.18 0.51 0.86

C(Prec) 0.76 0.17 0.78 0.87

assess the transferability of model calibration across spatial

scales, we completed two simulations with a higher resolu-

tion (12-km) with default and optimal parameters obtained

from the 25-km simulations. Identical model configurations

and domain size were used between the 25 km and 12 km

resolution simulations.

Figure 12 shows the spatial distributions of observed and

simulated precipitation with default and optimal parameters,

respectively. We found that with default CPS parameters in

the standard KF, the model can reasonably capture the spa-

tial pattern of precipitation but significantly overestimates

the maximum precipitation, especially over Oklahoma, the

Kansas-Missouri border, and the Texas-Louisiana border. By

using the optimal parameters obtained from the 25-km sim-

ulations, both the magnitude and spatial pattern of precip-

itation are improved at 12-km spatial resolution, with E

decreasing from 148 to 89 and C increasing from 0.3 to

Fig. 10. Relative sensitivities of the response of the 16 meteoro-

logical variables (see Table 3) to the five CPS parameters (see Ta-

ble 1) based on the 148 simulations (25 km) over SGP. The sensi-

tivity ranking is calculated based on the correlation coefficients be-

tween output variables (y-axis) and input CPS parameters (x-axis)

from 148 simulations.

0.37. These results suggest that quantitative optimization

may yield more robust model parameters that can improve

precipitation simulation across a range of spatial scales.
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Fig. 11. The spatial distributions of the differences of model biases for temperatures and wind speed between the simulations (25-km) with

the default and optimized parameters. Here, the value on each grid point is calculated as (|Optimal-Observation|− |Default-Observation|),

so negative value represents a positive impact by using optimized parameters.

3.5 Dependence of optimized parameters on climate

regime

In the previous sections, optimization was performed for a re-

gional model applied to a specific region (i.e. the SGP). How-

ever, the physical process and mechanism of convection and

precipitation may differ in different climatic regimes (Knupp

and Cotton, 1985; Grant, 2001; Kain et al., 2001). For exam-

ple, Liang et al. (2004) showed that simulations of summer

rainfall in the U.S. could be very sensitive to the CPS used

because relative influence of large-scale tropospheric forc-

ing and boundary layer forcing in triggering convection may

vary in different CPSs. A critical question is how parameters

optimized based on application in one regimes transfer to a

different climate regime.

We completed two additional simulations over the North

America Monsoon (NAM) region (23–40◦ N, 121–100◦ W)

using 25-km grid spacing on both simulations with default

and optimal parameters, respectively. The NAM represents

a distinctly different climate regime compared to the SGP

in the central US (Berbery, 2001; Englehart and Douglas,

2006). For example, convection in the semi-arid NAM region

is associated with strong surface heating, with a dominant

late afternoon precipitation maxima related to the buildup of

CAPE during the day. In the central US, on the other hand,

precipitation maxima shows a distinct nocturnal maxima as-

sociated with increased nighttime moisture brought in by the

Great Plain Low-Level Jet. Figure 13 shows the spatial distri-

butions of observed and simulated precipitation with default

and optimal parameters over the NAM region for July 1991.

The model with default CPS parameters overestimates the

maximum precipitation over coastal areas in northern Mex-

ico. Precipitation over eastern New Mexico and the southern

Colorado-Kansas border is also largely overestimated. As

optimal parameters are applied, the precipitation over those

regions is obviously improved, with E decreasing from 110

to 65 and C increasing from 0.26 to 0.31.

Similar to Fig. 6, Fig. 14 shows the observed and simu-

lated frequencies of daily precipitation as a function of rain

rate over the NAM region for July 1991. Compared with

the observation, the WRF with default CPS parameters in

the standard KF evidently overestimates the frequency of

precipitation across all rain rates. By applying the optimal

parameters based on EC over SGP, the model markedly re-

duces the overestimated occurrence frequency for all rainy

events except for light rain smaller than 3 mm day−1 over the

NAM region. The improvement is particularly evident for

the moderate and heavy precipitation rain rates of more than

12 mm day−1. These results suggest the optimal parameters

determined based on one regime are transferable and lead to

obvious improvements in model performance in a different

regime.
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Fig. 12. The spatial distributions of observed and WRF simulated

(with 12-km spatial resolution) monthly mean precipitations over

SGP for June 2007, with default and optimal parameters based on

25-km simulation.

4 Summary and discussion

Currently, Uncertainty Quantification (UQ) and parameter

tuning in climate study are mostly applied in Global Cli-

mate Models (GCM). This may compromise the tuning by

equal weighting of the state fidelity globally, even though

the processes being tuned may only be relevant for particu-

lar regimes. The tuning process of parameters is often per-

formed subjectively, although some studies have also applied

an optimization procedure to minimize the difference be-

tween model fields and observations. While the latter ap-

proach may provide more plausible values for a set of tun-

able parameters to approximate the observed global climate

Fig. 13. The spatial distributions of observed and simulated (25-km)

monthly mean precipitation with default and optimal parameters ob-

tained at the SGP, respectively, over the North America Monsoon

(NAM) region for July of 1991.

or large-scale features, it is possible that the latter may be

achieved by forcing the system to an unrealistic physical state

or improper balance of budgets through compensating errors

over different regions in the globe. In this study, regional cli-

mate model, the Weather Research and Forecasting (WRF)

model, was used to provide a more flexible framework to in-

vestigate a number of issues related UQ and parameter tun-

ing. The WRF model was constrained by reanalysis data over

the Southern Great Plains (SGP), where abundant observa-

tional data from various sources were available for calibra-

tion of input parameters and validation of model results. Fo-

cusing on five key input parameters in the new Kain-Fritsch

(KF) convective parameterization scheme (CPS) used in the
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Fig. 14. The observed and simulated (25-km) frequency distribu-

tions of daily precipitation over NAM for July 1991 as a function of

rain rates, with default and optimized (based on EC in SGP) param-

eters in the KF scheme.

WRF model as an example, our goal was to explore the utility

of high-resolution observations for improving simulations of

regional patterns and evaluate the transferability of UQ and

parameter tuning across physical processes, spatial scales,

and climatic regimes, which have important implications to

UQ and parameter tuning in global models. The five parame-

ters identified in the KF scheme are related to downdraft flux

rate and starting height, environment flux rate, turbulent ki-

netic energy (TKE) in the sub-cloud layer, and the consump-

tion time of Convective Available Potential Energy (CAPE),

respectively. A stochastic sampling algorithm, Multiple Very

Fast Simulated Annealing (MVFSA), was employed to effi-

ciently sample the input parameters in the KF scheme based

on a skill score so that the algorithm progressively moves

toward regions of the parameter space that minimize model

errors.

The WRF simulation period was from 1 May to 30 June

2007, and was reinitialized every three days, with 25-km

grid spacing over the SGP. The results show the model

bias for precipitation can be significantly reduced by us-

ing five optimal parameters identified by the MVFSA al-

gorithm, especially for heavy precipitation with rain rates

over 20 mm day−1. The model response to precipitation and

other model variables was more sensitive to the changes

of downdraft- and entrainment-related parameters and con-

sumption time of CAPE than to the other two parameters.

Utilizing high-resolution observations, the simulated spatial

pattern of precipitation was improved when the magnitude

of model biases was reduced through the MVFSA process.

The simulated convective precipitation decreases as the ratio

of downdraft to updraft flux increases. Larger CAPE con-

sumption time results in less convective but more stratiform

precipitation.

The simulation using optimal parameters obtained by con-

straining precipitation alone generated positive impacts on

other output variables, such as temperature and wind. By

using the optimal parameters obtained at 25-km simulation,

both the magnitude and spatial pattern of precipitation are

also improved at 12-km spatial resolution. When moving the

model domain to the North American Monsoon region, the

optimal parameters identified from the SGP region also im-

proved the simulation of precipitation, especially those with

moderate and heavy precipitation with rain rates of more than

12 mm day−1. These results suggest that benefits of optimal

parameters determined through vigorous mathematical pro-

cedures such as the MVFSA process are transferable across

processes, spatial scales, and climatic regimes to some ex-

tent. While our findings are preliminary, they motivate future

studies to further assess the strategies for UQ and parameter

optimization at both global and regional scales.

A number of limitations should be taken into account in

evaluating the results of this study and in planning future

studies. The primary limitation is that we assessed the model

performance and tunable parameters based on differences in

observed and modeled daily precipitation. Although most of

the total rainfall was contributed by convective precipitation

generated from the CPS in our case, the tuning process may

still produce parameter settings that approximate the total

observed rainfall, although the balance of different physical

processes to achieve the total precipitation amount is not di-

rectly constrained. It is possible that the optimal parameters

may only work well with the particular cloud microphysical

scheme selected for this study. Furthermore, it may be more

appropriate and beneficial to calibrate model parameters by

constraining the behavior of physical processes (i.e. the tur-

bulence, shallow and deep convection process in this study)

rather than precipitation, which is a product of many inter-

acting processes with large numbers of sources and sinks.

Second, the two regions (SGP and NAM) selected in this

study are both convection-dominated climate regimes and

precipitation are overestimated using the default model pa-

rameters in both regions. It is not clear whether optimization

performed for one region is also transferable to another re-

gion if model biases with the default parameters are of op-

posite sign in the two regions. The issue of transferabil-

ity of the benefits of optimization across different climate

regimes and different spatial resolutions is being investigated

further along with optimization of other physical parameter-

ization schemes, which will be reported in a follow on paper.

Third, how to define the skill metrics for evaluating model

performance can be improved. In future studies, we would

construct an auto-tuning procedure to minimize the bias in

not only precipitation but also process-level variables, such

as eddy diffusivities, PBL height, shallow convective mass

fluxes, radiative heating rates, and so forth. In addition, fu-

ture studies should also explore the use of spatial correlation

coefficient, in addition to mean bias, in the skill score metrics

for the optimization process, as this study already showed

that spatial correlation provides useful information for model

evaluation. In addition, uncertainties in the observations are
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not considered in this study, which may impact the shape of

the posterior PDF of the input parameters and the model out-

puts including extreme events (Jackson et al., 2003). Fourth,

different optimization approaches may affect the results and

conclusions, but this issue has not been investigated in this

study. We are currently comparing the MVFSA method

and another sampling algorithm, the Annealing Evolutionary

Stochastic Approximation Monte Carlo (AESAMC) (Liang,

2010), to investigate the convergence efficiency and the im-

pact on the results.

Finally, the simulations conducted in this study were ini-

tialized every three days by reanalysis data. This weather

forecast mode of simulation minimizes potential discrepancy

between observed and simulated large scale circulation so

model biases can be more directly related to the convective

parameterization and its parameters. In future studies, we

will compare model response and performance based on op-

timization process in free running simulations (i.e. climate

simulation mode) strictly constrained (driven) by large-scale

observations/reanalysis. Establishing the transferability of

optimized parameters between weather and climate simu-

lations would provide indirect evidence further supporting

the seamless prediction strategy (Hurrell et al., 2009) and

the transpose method of evaluating and diagnosing climate

model biases through hindcast weather forecast simulations

(e.g. Boyle et al., 2005).
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