
Some Issues on Rough Sets

Zdzis�law Pawlak1,2

1 Institute for Theoretical and Applied Informatics
Polish Academy of Sciences

ul. Ba�ltycka 5, 44-100 Gliwice, Poland
2 Warsaw School of Information Technology⋆

ul. Newelska 6, 01-447 Warsaw, Poland
zpw@ii.pw.edu.pl

1 Introduction

The aim of this paper is to give rudiments of rough set theory and present some
recent research directions proposed by the author.

Rough set theory is a new mathematical approach to imperfect knowledge.
The problem of imperfect knowledge has been tackled for a long time by

philosophers, logicians and mathematicians. Recently it became also a crucial
issue for computer scientists, particularly in the area of artificial intelligence.
There are many approaches to the problem of how to understand and manipulate
imperfect knowledge. The most successful one is, no doubt, the fuzzy set theory
proposed by Lotfi Zadeh [1].

Rough set theory proposed by the author in [2] presents still another at-
tempt to this problem. This theory has attracted attention of many researchers
and practitioners all over the world, who have contributed essentially to its de-
velopment and applications. Rough set theory overlaps with many other theories.
However we will refrain to discuss these connections here. Despite this, rough
set theory may be considered as an independent discipline in its own right.

Rough set theory has found many interesting applications. The rough set
approach seems to be of fundamental importance to AI and cognitive sciences,
especially in the areas of machine learning, knowledge acquisition, decision anal-
ysis, knowledge discovery from databases, expert systems, inductive reasoning
and pattern recognition.

The main advantage of rough set theory in data analysis is that it does not
need any preliminary or additional information about data – like probability in
statistics, or basic probability assignment in Dempster-Shafer theory, grade of
membership or the value of possibility in fuzzy set theory.

One can observe the following about the rough set approach:

– introduction of efficient algorithms for finding hidden patterns in data,
– determination of minimal sets of data (data reduction),
– evaluation of the significance of data,
– generation of sets of decision rules from data,

⋆ Former University of Information Technology and Management.

J.F. Peters et al. (Eds.): Transactions on Rough Sets I, LNCS 3100, pp. 1–58, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Zdzis�law Pawlak

– easy-to-understand formulation,
– straightforward interpretation of obtained results,
– suitability of many of its algorithms for parallel processing.

Rough set theory has been extended in many ways (see, e.g., [3–17]) but we
will not discuss these issues in this paper.

Basic ideas of rough set theory and its extensions, as well as many inter-
esting applications can be found in books (see, e.g., [18–27, 12, 28–30]), special
issues of journals (see, e.g., [31–34, 34–38]), proceedings of international confer-
ences (see, e.g., [39–49]), tutorials (e.g., [50–53]), and on the internet (see, e.g.,
www.roughsets.org, logic.mimuw.edu.pl,rsds.wsiz.rzeszow.pl).

The paper is organized as follows:
Section 2 (Basic Concepts) contains general formulation of basic ideas of

rough set theory together with brief discussion of its place in classical set theory.
Section 3 (Rough Sets and Reasoning from Data) presents the application of

rough set concept to reason from data (data mining).
Section 4 (Rough Sets and Bayes’ Theorem) gives a new look on Bayes’

theorem and shows that Bayes’ rule can be used differently to that offered by
classical Bayesian reasoning methodology.

Section 5 (Rough Sets and Conflict Analysis) discuses the application of
rough set concept to study conflict.

In Section 6 (Data Analysis and Flow Graphs) we show that many problems
in data analysis can be boiled down to flow analysis in a flow network.

This paper is a modified version of lectures delivered at the Taragona Uni-
versity seminar on Formal Languages and Rough Sets in August 2003.

2 Rough Sets – Basic Concepts

2.1 Introduction

In this section we give some general remarks on a concept of a set and the place
of rough sets in set theory.

The concept of a set is fundamental for the whole mathematics. Modern set
theory was formulated by George Cantor [54].

Bertrand Russell discovered that the intuitive notion of a set proposed by
Cantor leads to antinomies [55]. Two kinds of remedy for this discontent have
been proposed: axiomatization of Cantorian set theory and alternative set the-
ories.

Another issue discussed in connection with the notion of a set or a concept
is vagueness (see, e.g., [56–61]). Mathematics requires that all mathematical
notions (including set) must be exact (Gottlob Frege [62]). However, philosophers
and recently computer scientists have become interested in vague concepts.

In fuzzy set theory vagueness is defined by graduated membership.
Rough set theory expresses vagueness, not by means of membership, but

employing a boundary region of a set. If the boundary region of a set is empty
it means that the set is crisp, otherwise the set is rough (inexact). Nonempty
boundary region of a set means that our knowledge about the set is not sufficient
to define the set precisely.

Some Issues on Rough Sets 3

The detailed analysis of sorities paradoxes for vague concepts using rough
sets and fuzzy sets is presented in [63].

In this section the relationship between sets, fuzzy sets and rough sets will
be outlined and briefly discussed.

2.2 Sets

The notion of a set is not only basic for mathematics but it also plays an impor-
tant role in natural language. We often speak about sets (collections) of various
objects of interest, e.g., collection of books, paintings, people etc. Intuitive mean-
ing of a set according to some dictionaries is the following:

“A number of things of the same kind that belong or are used together.”
Webster’s Dictionary

“Number of things of the same kind, that belong together because they are
similar or complementary to each other.”

The Oxford English Dictionary
Thus a set is a collection of things which are somehow related to each other

but the nature of this relationship is not specified in these definitions.
In fact these definitions are due to Cantor [54], which reads as follows:

“Unter einer Mannigfaltigkeit oder Menge verstehe ich nämlich allgenein jedes
Viele, welches sich als Eines denken lässt, d.h. jeden Inbegriff bestimmter Ele-
mente, welcher durch ein Gesetz zu einem Ganzen verbunden werden kann.”

Thus according to Cantor a set is a collection of any objects, which according
to some law can be considered as a whole.

All mathematical objects, e.g., relations, functions, numbers, etc., are some
kind of sets. In fact set theory is needed in mathematics to provide rigor.

Russell discovered that the Cantorian notion of a set leads to antinomies
(contradictions). One of the best known antinomies called the powerset antinomy
goes as follows: consider (infinite) set X of all sets. Thus X is the greatest set.
Let Y denote the set of all subsets of X . Obviously Y is greater then X , because
the number of subsets of a set is always greater the number of its elements.
Hence X is not the greatest set as assumed and we arrived at contradiction.

Thus the basic concept of mathematics, the concept of a set, is contradic-
tory. This means that a set cannot be a collection of arbitrary elements as was
stipulated by Cantor.

As a remedy for this defect several improvements of set theory have been
proposed. For example,

– Axiomatic set theory (Zermello and Fraenkel, 1904).
– Theory of types (Whitehead and Russell, 1910).
– Theory of classes (v. Neumann, 1920).

All these improvements consist in restrictions, put on objects which can form
a set. The restrictions are expressed by properly chosen axioms, which say how

4 Zdzis�law Pawlak

the set can be build. They are called, in contrast to Cantors’ intuitive set theory,
axiomatic set theories.

Instead of improvements of Cantors’ set theory by its axiomatization, some
mathematicians proposed escape from classical set theory by creating completely
new idea of a set, which would free the theory from antinomies. Some of them
are listed below.

– Mereology (Leśniewski, 1915).
– Alternative set theory (Vopenka, 1970).
– “Penumbral” set theory (Apostoli and Kanada, 1999).

No doubt the most interesting proposal was given by Stanisaw Leśniewski
[64], who proposed instead of membership relation between elements and sets,
employed in classical set theory, the relation of “being a part”. In his set theory,
called mereology, this relation is a fundamental one.

None of the three mentioned above “new” set theories were accepted by
mathematicians, however Leśniewski’s mereology attracted some attention of
philosophers and recently also computer scientists, (e.g., Lech Polkowski and
Andrzej Skowron [6]).

In classical set theory a set is uniquely determined by its elements. In other
words, this means that every element must be uniquely classified as belonging to
the set or not. In contrast, the notion of a beautiful painting is vague, because
we are unable to classify uniquely all paintings into two classes: beautiful and
not beautiful. Thus beauty is not a precise but a vague concept. That is to say
the notion of a set is a crisp (precise) one. For example, the set of odd numbers
is crisp because every number is either odd or even. In mathematics we have
to use crisp notions, otherwise precise reasoning would be impossible. However
philosophers for many years were interested also in vague (imprecise) notions.

Almost all concepts we are using in natural language are vague. Therefore
common sense reasoning based on natural language must be based on vague con-
cepts and not on classical logic. This is why vagueness is important for philoso-
phers and recently also for computer scientists.

Vagueness is usually associated with the boundary region approach (i.e., exis-
tence of objects which cannot be uniquely classified to the set or its complement)
which was first formulated in 1893 by the father of modern logic Gottlob Frege
[62], who wrote:

“Der Begriff muss scharf begrenzt sein. Einem unscharf begrenzten Begriffe
würde ein Bezirk entsprechen, der nicht überall eine scharfe Grenzlinie hätte,
sondern stellenweise ganz verschwimmend in die Umgebung überginge. Das wäre
eigentlich gar kein Bezirk; und so wird ein unscharf definirter Begriff mit Un-
recht Begriff genannt. Solche begriffsartige Bildungen kann die Logik nicht als
Begriffe anerkennen; es ist unmöglich, von ihnen genaue Gesetze aufzustellen.
Das Gesetz des ausgeschlossenen Dritten ist ja eigentlich nur in anderer Form
die Forderung, dass der Begriff scharf begrenzt sei. Ein beliebiger Gegenstand
x fällt entweder unter der Begriff y, oder er fällt nicht unter ihn: tertium non
datur.”

Some Issues on Rough Sets 5

Thus according to Frege

“The concept must have a sharp boundary. To the concept without a sharp
boundary there would correspond an area that had not a sharp boundary-line
all around.”

That is, mathematics must use crisp, not vague concepts, otherwise it would
be impossible to reason precisely.

Summing up, vagueness is

– Not allowed in mathematics.
– Interesting for philosophy.
– Necessary for computer science.

2.3 Fuzzy Sets

Zadeh proposed completely new, elegant approach to vagueness called fuzzy set
theory [1]. In his approach an element can belong to a set to a degree k(0 ≤ k ≤
1), in contrast to classical set theory where an element must definitely belong or
not to a set. For example, in classical set theory language we can state that one
is definitely ill or healthy, whereas in fuzzy set theory we can say that someone
is ill (or healthy) in 60 percent (i.e., in the degree 0.6). Of course, at once the
question arises where we get the value of degree from. This issue raised a lot of
discussion, but we will refrain from considering this problem here.

Thus fuzzy membership function can be presented as

µX(x) ∈< 0, 1 >,

where, X is a set and x is an element.
Let us observe that the definition of fuzzy set involves more advanced math-

ematical concepts, real numbers and functions, whereas in classical set theory
the notion of a set is used as a fundamental notion of whole mathematics and
is used to derive any other mathematical concepts, e.g., numbers and functions.
Consequently fuzzy set theory cannot replace classical set theory, because, in
fact, the theory is needed to define fuzzy sets.

Fuzzy membership function has the following properties:

µU−X(x) = 1 − µX(x) for any x ∈ U, (1)

µX∪Y (x) = max(µX(x), µY (x)) for any x ∈ U,

µX∩Y (x) = min(µX(x), µY (x)) for any x ∈ U.

This means that the membership of an element to the union and intersection of
sets is uniquely determined by its membership to constituent sets. This is a very
nice property and allows very simple operations on fuzzy sets, which is a very
important feature both theoretically and practically.

Fuzzy set theory and its applications developed very extensively over recent
years and attracted attention of practitioners, logicians and philosophers world-
wide.

6 Zdzis�law Pawlak

2.4 Rough Sets

Rough set theory [2, 18] is still another approach to vagueness. Similarly to fuzzy
set theory it is not an alternative to classical set theory but it is embedded in it.
Rough set theory can be viewed as a specific implementation of Frege’s idea of
vagueness, i.e., imprecision in this approach is expressed by a boundary region
of a set, and not by a partial membership, like in fuzzy set theory.

Rough set concept can be defined quite generally by means of topological
operations, interior and closure, called approximations.

Let us describe this problem more precisely. Suppose we are given a set
of objects U called the universe and an indiscernibility relation R ⊆ U × U,
representing our lack of knowledge about elements of U . For the sake of simplicity
we assume that R is an equivalence relation. Let X be a subset of U. We want
to characterize the set X with respect to R. To this end we will need the basic
concepts of rough set theory given below.

– The lower approximation of a set X (with respect to R) is the set of all
objects, which can be for certain classified as X with respect to R (are
certainly X with respect to R).

– The upper approximation of a set X (with respect to R) is the set of all
objects which can be possibly classified as X with respect to R (are possibly
X with respect to R).

– The boundary region of a set X (with respect to R) is the set of all objects,
which can be classified neither as X nor as not-X with respect to R.

Now we are ready to give the definition of rough sets.

– Set X is crisp (exact with respect to R), if the boundary region of X is
empty.

– Set X is rough (inexact with respect to R), if the boundary region of X is
nonempty.

Thus a set is rough (imprecise) if it has nonempty boundary region; otherwise
the set is crisp (precise). This is exactly the idea of vagueness proposed by Frege.

The approximations and the boundary region can be defined more precisely.
To this end we need some additional notation.

The equivalence class of R determined by element x will be denoted by R(x).
The indiscernibility relation in certain sense describes our lack of knowledge
about the universe. Equivalence classes of the indiscernibility relation, called
granules generated by R, represent elementary portion of knowledge we are able
to perceive due to R. Thus in view of the indiscernibility relation, in general, we
are unable to observe individual objects but we are forced to reason only about
the accessible granules of knowledge.

Formal definitions of approximations and the boundary region are as follows:

R-lower approximation of X

R∗(X) =
⋃

x∈U

{R(x) : R(x) ⊆ X}, (2)

Some Issues on Rough Sets 7

R-upper approximation of X

R∗(X) =
⋃

x∈U

{R(x) : R(x) ∩ X �= ∅}, (3)

R-boundary region of X

BNR(X) = R∗(X) − R∗(X). (4)

As we can see from the definition approximations are expressed in terms of
granules of knowledge. The lower approximation of a set is union of all granules
which are entirely included in the set; the upper approximation – is union of all
granules which have non-empty intersection with the set; the boundary region
of set is the difference between the upper and the lower approximation.

In other words, due to the granularity of knowledge, rough sets cannot be
characterized by using available knowledge. Therefore with every rough set we
associate two crisp sets, called its lower and upper approximation. Intuitively,
the lower approximation of a set consists of all elements that surely belong to
the set, whereas the upper approximation of the set constitutes of all elements
that possibly belong to the set, and the boundary region of the set consists of
all elements that cannot be classified uniquely to the set or its complement,
by employing available knowledge. Thus any rough set, in contrast to a crisp
set, has a non-empty boundary region. The approximation definition is clearly
depicted in Figure 1.

Fig. 1. A rough set

8 Zdzis�law Pawlak

Approximations have the following properties:

R∗(X) ⊆ X ⊆ R∗(X), (5)

R∗(∅) = R∗(∅) = ∅; R∗(U) = R∗(U) = U,

R∗(X ∪ Y) = R∗(X) ∪ R∗(Y),

R∗(X ∩ Y) = R∗(X) ∩ R∗(Y),

R∗(X ∪ Y) ⊇ R∗(X) ∪ R∗(Y),

R∗(X ∩ Y) ⊆ R∗(X) ∩ R∗(Y),

X ⊆ Y → R∗(X) ⊆ R∗(Y)&R∗(X) ⊆ R∗(Y),

R∗(−X) = −R∗(X),

R∗(−X) = −R∗(X),

R∗R∗(X) = R∗R∗(X) = R∗(X),

R∗R∗(X) = R∗R
∗(X) = R∗(X).

It is easily seen that approximations are in fact interior and closure operations
in a topology generated by the indiscernibility relation. Thus fuzzy set theory
and rough set theory require completely different mathematical setting.

Rough sets can be also defined employing, instead of approximation, rough
membership function [65]

µR
X : U →< 0, 1 >, (6)

where

µR
X(x) =

card(X ∩ R(x))

card(R(x))
, (7)

and card(X) denotes the cardinality of X.
The rough membership function expresses conditional probability that x be-

longs to X given R and can be interpreted as a degree that x belongs to X in
view of information about x expressed by R.

The meaning of rough membership function can be depicted as shown in
Figure 2.

The rough membership function can be used to define approximations and
the boundary region of a set, as shown below:

R∗(X) = {x ∈ U : µR
X(x) = 1}, (8)

R∗(X) = {x ∈ U : µR
X(x) > 0},

BNR(X) = {x ∈ U : 0 < µR
X(x) < 1}.

It can be shown that the membership function has the following properties [65]:

µR
X(x) = 1 iff x ∈ R∗(X), (9)

µR
X(x) = 0 iff x ∈ U − R∗(X),

0 < µR
X(x) < 1 iff x ∈ BNR(X),

Some Issues on Rough Sets 9

Fig. 2. Rough membership function

µR
U−X(x) = 1 − µR

X(x) for any x ∈ U,

µR
X∪Y (x) ≥ max(µR

X(x), µR
Y (x)) for any x ∈ U,

µR
X∩Y (x) ≤ min(µR

X(x), µR
Y (x)) for any x ∈ U.

From the properties it follows that the rough membership differs essentially
from the fuzzy membership, because the membership for union and intersection
of sets, in general, cannot be computed as in the case of fuzzy sets from their
constituents membership. Thus formally the rough membership is a generaliza-
tion of fuzzy membership. Besides, the rough membership function, in contrast
to fuzzy membership function, has a probabilistic flavour.

Now we can give two definitions of rough sets.
Set X is rough with respect to R if R∗(X) �= R∗(X).
Set X rough with respect to R if for some x, 0 < µR

X(x) < 1.
It is interesting to observe that the above definitions are not equivalent [65],

but we will not discuss this issue here.
One can define the following four basic classes of rough sets, i.e., four cate-

gories of vagueness:

R∗(X) �= ∅ and R∗(X) �= U, iff X is roughly R-definable, (10)

R∗(X) = ∅ and R∗(X) �= U, iff X is internally R-indefinable,

R∗(X) �= ∅ and R∗(X) = U, iff X is externally R-definable,

R∗(X) = ∅ and R∗(X) = U, iff X is totally R-indefinable.

The intuitive meaning of this classification is the following.
If X is roughly R-definable, this means that we are able to decide for some

elements of U whether they belong to X or −X , using R.

10 Zdzis�law Pawlak

If X is internally R-indefinable, this means that we are able to decide whether
some elements of U belong to −X , but we are unable to decide for any element
of U , whether it belongs to X or not, using R.

If X is externally R-indefinable, this means that we are able to decide for
some elements of U whether they belong to X , but we are unable to decide, for
any element of U whether it belongs to −X or not, using R.

If X is totally R-indefinable, we are unable to decide for any element of U
whether it belongs to X or −X , using R.

A rough set can also be characterized numerically by the following coefficient

αR(X) =
card(R∗(X))

card(R∗(X))
, (11)

called accuracy of approximation.
Obviously, 0 ≤ αR(X) ≤ 1. If αR(X) = 1, X is crisp with respect to R (X is

precise with respect to R), and otherwise, if αR(X) < 1, X is rough with respect
to R (X is vague with respect to R).

It is interesting to compare definitions of classical sets, fuzzy sets and rough
sets. Classical set is a primitive notion and is defined intuitively or axiomatically.
Fuzzy sets are defined by employing the fuzzy membership function, which in-
volves advanced mathematical structures, numbers and functions. Rough sets are
defined by approximations. Thus this definition also requires advanced mathe-
matical concepts.

Let us also mention that rough set theory clearly distinguishes two very
important concepts, vagueness and uncertainty, very often confused in the AI
literature. Vagueness is the property of sets and can be described by approxima-
tions, whereas uncertainty is the property of elements of a set and can expressed
by the rough membership function.

3 Rough Sets and Reasoning from Data

3.1 Introduction

In this section we define basic concepts of rough set theory in terms of data, in
contrast to general formulation presented in Section 2. This is necessary if we
want to apply rough sets to reason from data.

In what follows we assume that, in contrast to classical set theory, we have
some additional data (information, knowledge) about elements of a universe of
discourse. Elements that exhibit the same features are indiscernible (similar)
and form blocks that can be understood as elementary granules (concepts) of
knowledge about the universe. For example, patients suffering from a certain
disease, displaying the same symptoms are indiscernible and may be thought of
as representing a granule (disease unit) of medical knowledge. These granules
can be considered as elementary building blocks of knowledge. Elementary con-
cepts can be combined into compound concepts, i.e., concepts that are uniquely
determined in terms of elementary concepts. Any union of elementary sets is
called a crisp set, and any other sets are referred to as rough (vague, imprecise).

Some Issues on Rough Sets 11

3.2 An Example

Before we will formulate the above ideas more precisely let us consider a simple
tutorial example.

Data are often presented as a table, columns of which are labeled by at-
tributes, rows by objects of interest and entries of the table are attribute values.
For example, in a table containing information about patients suffering from a
certain disease objects are patients (strictly speaking their ID’s), attributes can
be, for example, blood pressure, body temperature etc., whereas the entry corre-
sponding to object Smith and the attribute blood preasure can be normal. Such
tables are known as information tables, attribute-value tables or information
system. We will use here the term information system.

Below an example of information system is presented.
Suppose we are given data about 6 patients, as shown in Table 1.

Table 1. Exemplary information system

Patient Headache Muscle-pain Temperature Flu

p1 no yes high yes

p2 yes no high yes

p3 yes yes very high yes

p4 no yes normal no

p5 yes no high no

p6 no yes very high yes

Columns of the table are labeled by attributes (symptoms) and rows – by
objects (patients), whereas entries of the table are attribute values. Thus each
row of the table can be seen as information about specific patient.

For example, patient p2 is characterized in the table by the following attribute-
value set

(Headache, yes), (Muscle-pain, no), (Temperature, high), (Flu, yes),

which form the information about the patient.
In the table patients p2, p3 and p5 are indiscernible with respect to the at-

tribute Headache, patients p3 and p6 are indiscernible with respect to attributes
Muscle-pain and Flu, and patients p2 and p5 are indiscernible with respect to
attributes Headache, Muscle-pain and Temperature. Hence, for example, the at-
tribute Headache generates two elementary sets {p2, p3, p5} and {p1, p4, p6},
whereas the attributes Headache and Muscle-pain form the following elementary
sets: {p1, p4, p6}, {p2, p5} and {p3}. Similarly one can define elementary sets
generated by any subset of attributes.

Patient p2 has flu, whereas patient p5 does not, and they are indiscernible
with respect to the attributes Headache, Muscle-pain and Temperature, hence
flu cannot be characterized in terms of attributes Headache, Muscle-pain and

12 Zdzis�law Pawlak

Temperature. Hence p2 and p5 are the boundary-line cases, which cannot be
properly classified in view of the available knowledge. The remaining patients
p1, p3 and p6 display symptoms which enable us to classify them with certainty
as having flu, patients p2 and p5 cannot be excluded as having flu and patient
p4 for sure does not have flu, in view of the displayed symptoms. Thus the
lower approximation of the set of patients having flu is the set {p1, p3, p6} and
the upper approximation of this set is the set {p1, p2, p3, p5, p6}, whereas the
boundary-line cases are patients p2 and p5. Similarly p4 does not have flu and
p2, p5 cannot be excluded as having flu, thus the lower approximation of this
concept is the set {p4} whereas – the upper approximation – is the set {p2, p4, p5}
and the boundary region of the concept “not flu” is the set {p2, p5}, the same
as in the previous case.

3.3 Information Systems

Now, we are ready to formulate basic concepts of rough set theory using data.
Suppose we are given two finite, non-empty sets U and A, where U is the

universe, and A – a set of attributes. The pair S = (U, A) will be called an
information system. With every attribute a ∈ A we associate a set Va, of its
values, called the domain of a. Any subset B of A determines a binary relation
I(B) on U , which will be called an indiscernibility relation, and is defined as
follows:

xI(B)y if and only if a(x) = a(y) for every a ∈ A, (12)

where a(x) denotes the value of attribute a for element x.
Obviously I(B) is an equivalence relation. The family of all equivalence

classes of I(B), i.e., partition determined by B, will be denoted by U/I(B),
or simple U/B; an equivalence class of I(B), i.e., block of the partition U/B,
containing x will be denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible. Equiv-
alence classes of the relation I(B) (or blocks of the partition U/B) are referred
to as B-elementary sets. In the rough set approach the elementary sets are the
basic building blocks (concepts) of our knowledge about reality.

Now approximations can be defined as follows:

B∗(X) = {x ∈ U : B(x) ⊆ X}, (13)

B∗(X) = {x ∈ U : B(x) ∩ X �= ∅}, (14)

called the B-lower and the B-upper approximation of X , respectively. The set

BNB(X) = B∗(X) − B∗(X), (15)

will be referred to as the B-boundary region of X .
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then the set

X is crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅,
the set X is referred to as rough (inexact) with respect to B.

Some Issues on Rough Sets 13

The properties of approximations can be presented now as:

B∗(X) ⊆ X ⊆ B∗(X), (16)

B∗(∅) = B∗(∅) = ∅, B∗(U) = B∗(U) = U,

B∗(X ∪ Y) = B∗(X) ∪ B∗(Y),

B∗(X ∩ Y) = B∗(X) ∩ B∗(Y),

X ⊆ Y implies B∗(X) ⊆ B∗(Y) and B∗(X) ⊆ B∗(Y),

B∗(X ∪ Y) ⊇ B∗(X) ∪ B∗(Y),

B∗(X ∩ Y) ⊆ B∗(X) ∩ B∗(Y),

B∗(−X) = −B∗(X),

B∗(−X) = −B∗(X),

B∗(B∗(X)) = B∗(B∗(X)) = B∗(X),

B∗(B∗(X)) = B∗(B
∗(X)) = B∗(X).

3.4 Decision Tables

An information system in which we distinguish two classes of attributes, called
condition and decision (action) attributes are called decision tables.

The condition and decision attributes define partitions of the decision ta-
ble universe. We aim at approximation of the partition defined by the decision
attributes by means of the partition defined by the condition attributes.

For example, in Table 1 attributes Headache, Muscle-pain and Temperature
can be considered as condition attributes, whereas the attribute Flu – as a de-
cision attribute. A decision table with condition attributes C and decision at-
tributes D will be denoted by S = (U, C, D).

Each row of a decision table determines a decision rule, which specifies deci-
sions (actions) that should be taken when conditions pointed out by condition
attributes are satisfied. For example, in Table 1 the condition (Headache, no),
(Muscle-pain, yes), (Temperature, high) determines uniquely the decision (Flu,
yes). Objects in a decision table are used as labels of decision rules.

Decision rules 2) and 5) in Table 1 have the same conditions but differ-
ent decisions. Such rules are called inconsistent (nondeterministic, conflicting);
otherwise the rules are referred to as consistent (certain, deterministic, non-
conflicting). Sometimes consistent decision rules are called sure rules, and in-
consistent rules are called possible rules. Decision tables containing inconsistent
decision rules are called inconsistent (nondeterministic, conflicting); otherwise
the table is consistent (deterministic, non-conflicting).

The number of consistent rules to all rules in a decision table can be used as
consistency factor of the decision table, and will be denoted by γ(C, D), where C
and D are condition and decision attributes respectively. Thus if γ(C, D) = 1 the
decision table is consistent and if γ(C, D) �= 1 the decision table is inconsistent.
For example, for Table 1, we have γ(C, D) = 4/6.

14 Zdzis�law Pawlak

Decision rules are often presented in a form called if... then... rules. For ex-
ample, rule 1) in Table 1 can be presented as follows

if (Headache,no) and (Muscle-pain,yes) and (Temperature,high) then (Flu,yes).

A set of decision rules is called a decision algorithm. Thus with each decision ta-
ble we can associate a decision algorithm consisting of all decision rules occurring
in the decision table.

We must however, make distinction between decision tables and decision al-
gorithms. A decision table is a collection of data, whereas a decision algorithm
is a collection of rules, e.g., logical expressions. To deal with data we use various
mathematical methods, e.g., statistics but to analyze rules we must employ log-
ical tools. Thus these two approaches are not equivalent, however for simplicity
we will often present here decision rules in form of implications, without referring
deeper to their logical nature, as it is often practiced in AI.

3.5 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between
attributes. Intuitively, a set of attributes D depends totally on a set of attributes
C, denoted C ⇒ D, if all values of attributes from D are uniquely determined
by values of attributes from C. In other words, D depends totally on C, if there
exists a functional dependency between values of D and C. For example, in
Table 1 there are no total dependencies whatsoever. If in Table 1, the value
of the attribute Temperature for patient p5 were “no” instead of “high”, there
would be a total dependency {Temperature} ⇒ {Flu}, because to each value of
the attribute Temperature there would correspond unique value of the attribute
Flu.

We would need also a more general concept of dependency of attributes,
called a partial dependency of attributes.

Let us depict the idea by example, referring to Table 1. In this table, for
example, the attribute Temperature determines uniquely only some values of
the attribute Flu. That is, (Temperature, very high) implies (Flu, yes), similarly
(Temperature, normal) implies (Flu, no), but (Temperature, high) does not imply
always (Flu, yes). Thus the partial dependency means that only some values of
D are determined by values of C.

Formally dependency can be defined in the following way. Let D and C be
subsets of A.

We will say that D depends on C in a degree k (0 ≤ k ≤ 1), denoted C ⇒k D,
if k = γ(C, D).

If k = 1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (in a degree k) on C.

The coefficient k expresses the ratio of all elements of the universe, which can
be properly classified to blocks of the partition U/D, employing attributes C.

Thus the concept of dependency of attributes is strictly connected with that
of consistency of the decision table.

Some Issues on Rough Sets 15

For example, for dependency {Headache, Muscle-pain, Temperature} ⇒ {Flu}
we get k = 4/6 = 2/3, because four out of six patients can be uniquely classified
as having flu or not, employing attributes Headache, Muscle-pain and Temper-
ature.

If we were interested in how exactly patients can be diagnosed using only the
attribute Temperature, that is – in the degree of the dependence {Temperature} ⇒
{Flu}, we would get k = 3/6 = 1/2, since in this case only three patients p3, p4
and p6 out of six can be uniquely classified as having flu. In contrast to the
previous case patient p4 cannot be classified now as having flu or not. Hence
the single attribute Temperature offers worse classification than the whole set of
attributes Headache, Muscle-pain and Temperature. It is interesting to observe
that neither Headache nor Muscle-pain can be used to recognize flu, because for
both dependencies {Headache} ⇒ {Flu} and {Muscle-pain} ⇒ {Flu} we have
k = 0.

It can be easily seen that if D depends totally on C then I(C) ⊆ I(D). That
means that the partition generated by C is finer than the partition generated
by D. Observe, that the concept of dependency discussed above corresponds to
that considered in relational databases.

If D depends in degree k, 0 ≤ k ≤ 1, on C, then

γ(C, D) =
card(POSC(D))

card(U)
, (17)

where

POSC(D) =
⋃

X∈U/I(D)

C∗(X). (18)

The expression POSC(D), called a positive region of the partition U/D with
respect to C, is the set of all elements of U that can be uniquely classified to
blocks of the partition U/D, by means of C.

Summing up: D is totally (partially) dependent on C, if all (some) elements
of the universe U can be uniquely classified to blocks of the partition U/D,
employing C.

3.6 Reduction of Attributes

We often face a question whether we can remove some data from a data table pre-
serving its basic properties, that is – whether a table contains some superfluous
data.

For example, it is easily seen that if we drop in Table 1 either the attribute
Headache or Muscle-pain we get the data set which is equivalent to the original
one, in regard to approximations and dependencies. That is we get in this case
the same accuracy of approximation and degree of dependencies as in the original
table, however using smaller set of attributes.

In order to express the above idea more precisely we need some auxiliary
notions. Let B be a subset of A and let a belong to B.

16 Zdzis�law Pawlak

– We say that a is dispensable in B if I(B) = I(B − {a}); otherwise a is
indispensable in B.

– Set B is independent if all its attributes are indispensable.
– Subset B′ of B is a reduct of B if B′ is independent and I(B′) = I(B).

Thus a reduct is a set of attributes that preserves partition. This means that a
reduct is the minimal subset of attributes that enables the same classification of
elements of the universe as the whole set of attributes. In other words, attributes
that do not belong to a reduct are superfluous with regard to classification of
elements of the universe.

Reducts have several important properties. In what follows we will present
two of them.

First, we define a notion of a core of attributes.
Let B be a subset of A. The core of B is the set off all indispensable attributes

of B.
The following is an important property, connecting the notion of the core

and reducts
Core(B) =

⋂

Red(B), (19)

where Red(B) is the set off all reducts of B.
Because the core is the intersection of all reducts, it is included in every

reduct, i.e., each element of the core belongs to some reduct. Thus, in a sense,
the core is the most important subset of attributes, for none of its elements can
be removed without affecting the classification power of attributes.

To further simplification of an information table we can eliminate some values
of attribute from the table in such a way that we are still able to discern objects
in the table as the original one. To this end we can apply similar procedure as
to eliminate superfluous attributes, which is defined next.

– We will say that the value of attribute a ∈ B, is dispensable for x, if
B(x) = Ba(x), where Ba = B − {a}; otherwise the value of attribute a is
indispensable for x.

– If for every attribute a ∈ B the value of a is indispensable for x, then B will
be called orthogonal for x.

– Subset B′ ⊆ B is a value reduct of B for x, iff B′ is orthogonal for x and
B(x) = B′(x).

The set of all indispensable values of attributes in B for x will be called the
value core of B for x, and will be denoted COREx(B).

Also in this case we have

COREx(B) =
⋂

Redx(B), (20)

where Redx(B) is the family of all reducts of B for x.
Suppose we are given a dependency C ⇒ D. It may happen that the set D

depends not on the whole set C but on its subset C′ and therefore we might be
interested to find this subset. In order to solve this problem we need the notion
of a relative reduct, which will be defined and discussed next.

Some Issues on Rough Sets 17

Let C, D ⊆ A. Obviously if C′ ⊆ C is a D-reduct of C, then C′ is a minimal
subset of C such that

γ(C, D) = γ(C′, D). (21)

– We will say that attribute a ∈ C is D-dispensable in C, if POSC(D) =
POS(C−{a})(D); otherwise the attribute a is D-indispensable in C.

– If all attributes a ∈ C are C-indispensable in C, then C will be called D-
independent.

– Subset C′ ⊆ C is a D-reduct of C, iff C′ is D-independent and
POSC(D) = POSC′(D).

The set of all D-indispensable attributes in C will be called D − core of C,
and will be denoted by CORED(C). In this case we have also the property

CORED(C) =
⋂

RedD(C), (22)

where RedD(C) is the family of all D-reducts of C.
If D = C we will get the previous definitions.
For example, in Table 1 there are two relative reducts with respect to Flu,

{Headache, Temperature} and {Muscle-pain, Temperature} of the set of condi-
tion attributes Headache, Muscle-pain, Temperature. That means that either the
attribute Headache or Muscle-pain can be eliminated from the table and con-
sequently instead of Table 1 we can use either Table 2 or Table 3. For Table 1
the relative core of with respect to the set {Headache, Muscle-pain, Temper-
ature} is the Temperature. This confirms our previous considerations showing
that Temperature is the only symptom that enables, at least, partial diagnosis
of patients.

Table 2. Data table obtained from Table 1 by drooping the attribute Muscle-pain

Patient Headache Temperature Flu

p1 no high yes

p2 yes high yes

p3 yes very high yes

p4 no normal no

p5 yes high no

p6 no very high yes

Table 3. Data table obtained from Table 1 by drooping the attribute Headache

Patient Muscle-pain Temperature Flu

p1 yes high yes

p2 no high yes

p3 yes very high yes

p4 yes normal no

p5 no high no

p6 yes very high yes

18 Zdzis�law Pawlak

We will need also a concept of a value reduct and value core. Suppose we
are given a dependency C ⇒ D where C is relative D-reduct of C. To further
investigation of the dependency we might be interested to know exactly how
values of attributes from D depend on values of attributes from C. To this end
we need a procedure eliminating values of attributes form C which does not
influence on values of attributes from D.

– We say that value of attribute a ∈ C, is D-dispensable for x ∈ U , if

C(x) ⊆ D(x) implies Ca(x) ⊆ D(x),

otherwise the value of attribute a is D-indispensable for x.

– If for every attribute a ∈ C value of a is D-indispensable for x, then C will
be called D-independent (orthogonal) for x.

– Subset C′ ⊆ C is a D-reduct of C for x (a value reduct), iff C′ is D-
independent for x and

C(x) ⊆ D(x) implies C′(x) ⊆ D(x).

The set of all D-indispensable for x values of attributes in C will be called the
D − core of C for x (the value core), and will be denoted COREx

D(C).
We have also the following property

COREx
D(C) =

⋂

Redx
D(C), (23)

where Redx
D(C) is the family of all D-reducts of C for x.

Using the concept of a value reduct, Table 2 and Table 3 can be simplified
and we obtain Table 4 and Table 5, respectively.

For Table 4 we get its representation by means of rules

if (Headache, no) and (Temperature, high) then (Flu, yes),
if (Headache, yes) and (Temperature, high) then (Flu, yes),
if (Temperature, very high) then (Flu, yes),
if (Temperature, normal) then (Flu, no),
if (Headache, yes) and (Temperature, high) then (Flu, no),
if (Temperature, very high) then (Flu, yes).

For Table 5 we have

if (Muscle-pain, yes) and (Temperature, high) then (Flu, yes),
if (Muscle-pain, no) and (Temperature, high) then (Flu, yes),
if (Temperature, very high) then (Flu, yes),
if (Temperature, normal) then (Flu, no),
if (Muscle-pain, no) and (Temperature, high) then (Flu, no),
if (Temperature, very high) then (Flu, yes).

Some Issues on Rough Sets 19

Table 4. Simplified Table 2

Patient Headache Temperature Flu

p1 no high yes

p2 yes high yes

p3 – very high yes

p4 – normal no

p5 yes high no

p6 – very high yes

Table 5. Simplified Table 3

Patient Muscle-pain Temperature Flu

p1 yes high yes

p2 no high yes

p3 – very high yes

p4 – normal no

p5 no high no

p6 – very high yes

The following important property

a) B′ ⇒ B − B′, where B′ is a reduct of B,

connects reducts and dependency.
Besides, we have:

b) If B ⇒ C, then B ⇒ C′, for every C′ ⊆ C,

in particular

c) If B ⇒ C, then B ⇒ {a}, for every a ∈ C.

Moreover, we have:

d) If B′ is a reduct of B, then neither {a} ⇒ {b} nor {b} ⇒ {a} holds, for every
a, b ∈ B′, i.e., all attributes in a reduct are pairwise independent.

3.7 Indiscernibility Matrices and Functions

To compute easily reducts and the core we will use discernibility matrix [66],
which is defined next.

By an discernibility matrix of B ⊆ A denoted M(B) we will mean n × n
matrix with entries defined by:

cij = {a ∈ B : a(xi) �= a(xj)} for i, j = 1, 2, . . . , n. (24)

Thus entry cij is the set of all attributes which discern objects xi and xj .

20 Zdzis�law Pawlak

The discernibility matrix M(B) assigns to each pair of objects x and y a
subset of attributes δ(x, y) ⊆ B, with the following properties:

δ(x, x) = ∅, (25)

δ(x, y) = δ(y, x),

δ(x, z) ⊆ δ(x, y) ∪ δ(y, z).

These properties resemble properties of semi-distance, and therefore the func-
tion δ may be regarded as qualitative semi-matrix and δ(x, y) – qualitative semi-
distance. Thus the discernibility matrix can be seen as a semi-distance (qualita-
tive) matrix.

Let us also note that for every x, y, z ∈ U we have

card(δ(x, x)) = 0, (26)

card(δ(x, y)) = card(δ(y, x)),

card(δ(x, z)) ≤ card(δ(x, y)) + card(δ(y, z)).

It is easily seen that the core is the set of all single element entries of the
discernibility matrix M(B), i.e.,

CORE(B) = {a ∈ B : cij = {a}, for some i, j}. (27)

Obviously B′ ⊆ B is a reduct of B, if B′ is the minimal (with respect to inclusion)
subset of B such that

B′ ∩ c �= ∅ for any nonempty entry c (c �= ∅) in M(B). (28)

In other words reduct is the minimal subset of attributes that discerns all objects
discernible by the whole set of attributes.

Every discernibility matrix M(B) defines uniquely a discernibility (boolean)
function f(B) defined as follows.

Let us assign to each attribute a ∈ B a binary boolean variable a, and let
Σδ(x, y) denote Boolean sum of all Boolean variables assigned to the set of
attributes δ(x, y). Then the discernibility function can be defined by the formula

f(B) =
∏

(x,y)∈U2

{Σδ(x, y) : (x, y) ∈ U2 and δ(x, y) �= ∅}. (29)

The following property establishes the relationship between disjunctive normal
form of the function f(B) and the set of all reducts of B.

All constituents in the minimal disjunctive normal form of the function f(B)
are all reducts of B.

In order to compute the value core and value reducts for x we can also
use the discernibility matrix as defined before and the discernibility function,
which must be slightly modified:

fx(B) =
∏

y∈U

{Σδ(x, y) : y ∈ U and δ(x, y) �= ∅}. (30)

Some Issues on Rough Sets 21

Relative reducts and core can be computed also using discernibility matrix, which
needs slight modification

cij = {a ∈ C : a(xi) �= a(xj) and w(xi, xj)}, (31)

where w(xi, xj) ≡ xi ∈ POSC(D) and xj �∈ POSC(D) or
xi �∈ POSC(D) and xj ∈ POSC(D) or
xi, xj ∈ POSC(D) and (xj , xj) �∈ I(D),

for i, j = 1, 2, . . . , n.
If the partition defined by D is definable by C then the condition w(xi, xj)

in the above definition can be reduced to (xi, xj) �∈ I(D).
Thus entry cij is the set of all attributes which discern objects xi and xj that

do not belong to the same equivalence class of the relation I(D).
The remaining definitions need little changes.
The D-core is the set of all single element entries of the discernibility matrix

MD(C), i.e.,

CORED(C) = {a ∈ C : cij = (a), for some i, j}. (32)

Set C′ ⊆ C is the D-reduct of C, if C′ is the minimal (with respect to inclusion)
subset of C such that

C′ ∩ c �= ∅ for any nonempty entry c, (c �= ∅) in MD(C). (33)

Thus D-reduct is the minimal subset of attributes that discerns all equivalence
classes of the relation I(D).

Every discernibility matrix MD(C) defines uniquely a discernibility (Boolean)
function fD(C) which is defined as before. We have also the following property:

All constituents in the disjunctive normal form of the function fD(C) are all
D-reducts of C.

For computing value reducts and the value core for relative reducts we use as a
starting point the discernibility matrix MD(C) and discernibility function will
have the form:

fx
D(C) =

∏

y∈U

{Σδ(x, y) : y ∈ U and δ(x, y) �= ∅}. (34)

Let us illustrate the above considerations by computing relative reducts for the
set of attributes {Headache, Muscle-pain, Temperature} with respect to Flu.

The corresponding discernibility matrix is shown in Table 6.
In Table 6 H, M, T denote Headache, Muscle-pain and Temperature, respec-

tively.
The discernibility function for this table is

T (H + M)(H + M + T)(M + T),

22 Zdzis�law Pawlak

Table 6. Discernibility matrix

1 2 3 4 5 6

1

2

3

4 T H,M, T

5 H,M M, T

6 T H, M, T

where + denotes the boolean sum and the boolean multiplication is omitted in
the formula.

After simplication the discernibility function using laws of Boolean algebra
we obtain the following expression

TH + TH,

which says that there are two reducts TH and TM in the data table and T is
the core.

3.8 Significance of Attributes and Approximate Reducts

As it follows from considerations concerning reduction of attributes, they cannot
be equally important, and some of them can be eliminated from an information
table without losing information contained in the table. The idea of attribute re-
duction can be generalized by introducing a concept of significance of attributes,
which enables us evaluation of attributes not only by two-valued scale, dispens-
able – indispensable, but by assigning to an attribute a real number from the
closed interval [0,1], expressing how important is an attribute in an information
table.

Significance of an attribute can be evaluated by measuring effect of removing
the attribute from an information table on classification defined by the table.
Let us first start our consideration with decision tables.

Let C and D be sets of condition and decision attributes respectively and
let a be a condition attribute, i.e., a ∈ A. As shown previously the number
γ(C, D) expresses a degree of consistency of the decision table, or the degree
of dependency between attributes C and D, or accuracy of approximation of
U/D by C. We can ask how the coefficient γ(C, D) changes when removing the
attribute a, i.e., what is the difference between γ(C, D) and γ(C − {a}, D). We
can normalize the difference and define the significance of the attribute a as

σ(C,D)(a) =
(γ(C, D) − γ(C − {a}, D))

γ(C, D)
= 1 −

γ(C − {a}, D)

γ(C, D)
, (35)

and denoted simple by σ(a), when C and D are understood.
Obviously 0 ≤ σ(a) ≤ 1. The more important is the attribute a the greater

is the number σ(a). For example for condition attributes in Table 1 we have the
following results:

Some Issues on Rough Sets 23

σ(Headache) = 0,

σ(Muscle-pain) = 0,

σ(Temperature) = 0.75.

Because the significance of the attribute Temperature or Muscle-pain is zero,
removing either of the attributes from condition attributes does not effect the
set of consistent decision rules, whatsoever. Hence the attribute Temperature is
the most significant one in the table. That means that by removing the attribute
Temperature, 75% (three out of four) of consistent decision rules will disappear
from the table, thus lack of the attribute essentially effects the ”decisive power”
of the decision table.

For a reduct of condition attributes, e.g., {Headache, Temperature}, we get

σ(Headache) = 0.25,

σ(Temperature) = 1.00.

In this case, removing the attribute Headache from the reduct, i.e., using only
the attribute Temperature, 25% (one out of four) of consistent decision rules will
be lost, and dropping the attribute Temperature, i.e., using only the attribute
Headache 100% (all) consistent decision rules will be lost. That means that in
this case making decisions is impossible at all, whereas by employing only the
attribute Temperature some decision can be made.

Thus the coefficient σ(a) can be understood as an error which occurs when
attribute a is dropped. The significance coefficient can be extended to set of
attributes as follows:

ε(C,D)(B) =
(γ(C, D) − γ(C − B, D))

γ(C, D)
= 1 −

γ(C − B, D)

γ(C, D)
, (36)

denoted by ε(B), if C and D are understood, where B is a subset of C.
If B is a reduct of C, then ε(B) = 1, i.e., removing any reduct from a set of

decision rules unables to make sure decisions, whatsoever.
Any subset B of C will be called an approximate reduct of C, and the number

ε(C,D)(B) =
(γ(C, D) − γ(B, D))

γ(C, D)
= 1 −

γ(B, D)

γ(C, D)
, (37)

denoted simple as ε(B), will be called an error of reduct approximation. It ex-
presses how exactly the set of attributes B approximates the set of condition
attributes C. Obviously ε(B) = 1 − σ(B) and ε(B) = 1 − ε(C − B). For any
subset B of C we have ε(B) ≤ ε(C). If B is a reduct of C, then ε(B) = 0.

For example, either of attributes Headache and Temperature can be consid-
ered as approximate reducts of {Headache, Temperature}, and

ε(Headache) = 1,

ε(Temperature) = 0.25.

24 Zdzis�law Pawlak

But for the whole set of condition attributes {Headache, Muscle-pain, Temper-
ature} we have also the following approximate reduct

ε(Headache, Muscle-pain) = 0.75.

The concept of an approximate reduct is a generalization of the concept of a
reduct considered previously. The minimal subset B of condition attributes C,
such that γ(C, D) = γ(B, D), or ε(C,D)(B) = 0 is a reduct in the previous sense.
The idea of an approximate reduct can be useful in cases when a smaller number
of condition attributes is preferred over accuracy of classification.

4 Rough Sets and Bayes’ Theorem

4.1 Introduction

Bayes’ theorem is the essence of statistical inference.
“The result of the Bayesian data analysis process is the posterior distribution

that represents a revision of the prior distribution on the light of the evidence
provided by the data” [67].

“Opinion as to the values of Bayes’ theorem as a basic for statistical inference
has swung between acceptance and rejection since its publication on 1763” [68].

Rough set theory offers new insight into Bayes’ theorem [69–71]. The look
on Bayes’ theorem presented here is completely different to that studied so far
using the rough set approach (see, e.g., [72–85]) and in the Bayesian data analysis
philosophy (see, e.g., [67, 86, 68, 87]). It does not refer either to prior or posterior
probabilities, inherently associated with Bayesian reasoning, but it reveals some
probabilistic structure of the data being analyzed. It states that any data set
(decision table) satisfies total probability theorem and Bayes’ theorem. This
property can be used directly to draw conclusions from data without referring
to prior knowledge and its revision if new evidence is available. Thus in the
presented approach the only source of knowledge is the data and there is no
need to assume that there is any prior knowledge besides the data. We simple
look what the data are telling us. Consequently we do not refer to any prior
knowledge which is updated after receiving some data.

Moreover, the presented approach to Bayes’ theorem shows close relationship
between logic of implications and probability, which was first studied by Jan
�Lukasiewicz [88] (see also [89]). Bayes’ theorem in this context can be used to
“invert” implications, i.e., to give reasons for decisions. This is a very important
feature of utmost importance to data mining and decision analysis, for it extends
the class of problem which can be considered in this domains.

Besides, we propose a new form of Bayes’ theorem where basic role plays
strength of decision rules (implications) derived from the data. The strength of
decision rules is computed from the data or it can be also a subjective assess-
ment. This formulation gives new look on Bayesian method of inference and also
simplifies essentially computations.

Some Issues on Rough Sets 25

4.2 Bayes’ Theorem

“In its simplest form, if H denotes an hypothesis and D denotes data, the theorem
says that

P (H | D) = P (D | H) × P (H)/P (D). (38)

With P (H) regarded as a probabilistic statement of belief about H before ob-
taining data D, the left-hand side P (H | D) becomes an probabilistic statement
of belief about H after obtaining D. Having specified P (D | H) and P (D), the
mechanism of the theorem provides a solution to the problem of how to learn
from data.

In this expression, P (H), which tells us what is known about H without
knowing of the data, is called the prior distribution of H , or the distribution of
H priori. Correspondingly, P (H | D), which tells us what is known about H
given knowledge of the data, is called the posterior distribution of H given D,
or the distribution of H a posteriori [87].

“A prior distribution, which is supposed to represent what is known about
unknown parameters before the data is available, plays an important role in
Bayesian analysis. Such a distribution can be used to represent prior knowledge
or relative ignorance” [68].

4.3 Decision Tables and Bayes’ Theorem

In this section we will show that decision tables satisfy Bayes’ theorem but the
meaning of this theorem differs essentially from the classical Bayesian method-
ology.

Every decision table describes decisions (actions, results etc.) determined,
when some conditions are satisfied. In other words each row of the decision table
specifies a decision rule which determines decisions in terms of conditions.

In what follows we will describe decision rules more exactly.
Let S = (U, C, D) be a decision table. Every x ∈ U determines a sequence

c1(x), . . . , cn(x), d1(x), . . . , dm(x) where {c1, . . . , cn} = C and {d1, . . . , dm} = D
The sequence will be called a decision rule induced by x (in S) and denoted

by c1(x), . . . , cn(x) → d1(x), . . . , dm(x) or in short C →x D.
The number suppx(C, D) = card(C(x)∩D(x)) will be called a support of the

decision rule C →x D and the number

σx(C, D) =
suppx(C, D)

card(U)
, (39)

will be referred to as the strength of the decision rule C →x D. With every
decision rule C →x D we associate a certainty factor of the decision rule, denoted
cerx(C, D) and defined as follows:

cerx(C, D) =
card(C(x) ∩ D(x))

card(C(x))
=

suppx(C, D)

card(C(x))
=

σx(C, D)

π(C(x))
, (40)

where π(C(X)) = card(C(x))
card(U) .

26 Zdzis�law Pawlak

The certainty factor may be interpreted as a conditional probability that y
belongs to D(x) given y belongs to C(x), symbolically πx(D | C).

If cerx(C, D) = 1, then C →x D will be called a certain decision rule in S; if
0 < cerx(C, D) < 1 the decision rule will be referred to as an uncertain decision
rule in S.

Besides, we will also use a coverage factor of the decision rule, denoted
covx(C, D) defined as

covx(C, D) =
card(C(x) ∩ D(x))

card(D(x))
=

suppx(C, D)

card(D(x))
=

σx(C, D)

π(D(x))
, (41)

where π(D(X)) = card(D(x))
card(U) .

Similarly
covx(C, D) = πx(C | D). (42)

The certainty and coverage coefficients have been widely used for years by
data mining and rough set communities. However, �Lukasiewicz [88] (see also
[89]) was first who used this idea to estimate the probability of implications.

If C →x D is a decision rule then C →x D will be called an inverse decision
rule. The inverse decision rules can be used to give explanations (reasons) for a
decision.

Let us observe that

cerx(C, D) = πC
D(x)(x) and covx(C, D). (43)

That means that the certainty factor expresses the degree of membership of x
to the decision class D(x), given C, whereas the coverage factor expresses the
degree of membership of x to condition class C(x), given D.

Decision tables have important probabilistic properties which are discussed
next.

Let C →x D be a decision rule in S and let Γ = C(x) and ∆ = D(x). Then
the following properties are valid:

∑

y∈Γ

cery(C, D) = 1, (44)

∑

y∈Γ

covy(C, D) = 1, (45)

π(D(x)) =
∑

y∈Γ

cery(C, D) · π(C(y)) =
∑

y∈Γ

σy(C, D), (46)

π(C(x)) =
∑

y∈∆

covy(C, D) · π(D(y)) =
∑

y∈∆

σy(C, D), (47)

cerx(C, D) =
covx(C, D) · π(D(x))

∑

y∈Γ

covy(C, D) · π(D(y))
=

σx(C, D)
∑

y∈∆

σy(C, D)
=

σx(C, D)

π(C(x))
, (48)

Some Issues on Rough Sets 27

covx(C, D) =
cerx(C, D) · π(C(x))

∑

y∈Γ

cery(C, D) · π(C(y))
=

σx(C, D)
∑

y∈Γ

σx(C, D)
=

σx(C, D)

π(D(x))
. (49)

That is, any decision table, satisfies (44)-(49). Observe that (46) and (47) refer
to the well known total probability theorem, whereas (48) and (49) refer to Bayes’
theorem.

Thus in order to compute the certainty and coverage factors of decision rules
according to formula (48) and (49) it is enough to know the strength (support)
of all decision rules only. The strength of decision rules can be computed from
data or can be a subjective assessment.

4.4 Decision Language and Decision Algorithms

It is often useful to describe decision tables in logical terms. To this end we
define a formal language called a decision language.

Let S = (U, A) be an information system. With every B ⊆ A we associate
a formal language, i.e., a set of formulas For(B). Formulas of For(B) are built
up from attribute-value pairs (a, v) where a ∈ B and v ∈ Va by means of logical
connectives ∧(and), ∨(or), ∼ (not) in the standard way.

For any Φ ∈ For(B) by ‖ Φ ‖S we denote the set of all objects x ∈ U
satisfying Φ in S and refer to as the meaning of Φ in S.

The meaning ‖ Φ ‖S of Φ in S is defined inductively as follows:
‖ (a, v) ‖S= {x ∈ U : a(v) = x} for all a ∈ B and v ∈ Va, ‖ Φ ∧ Ψ ‖S=‖ Φ ‖S

∪ ‖ Ψ ‖S , ‖ Φ ∧ Ψ ‖S=‖ Φ ‖S ∩ ‖ Ψ ‖S , ‖∼ Φ ‖S= U− ‖ Φ ‖S .
If S = (U, C, D) is a decision table then with every row of the decision table

we associate a decision rule, which is defined next.
A decision rule in S is an expression Φ →S Ψ or simply Φ → Ψ if S is under-

stood, read if Φ then Ψ , where Φ ∈ For(C), Ψ ∈ For(D) and C, D are condition
and decision attributes, respectively; Φ and Ψ are referred to as conditions part
and decisions part of the rule, respectively.

The number suppS(Φ, Ψ) = card((‖ Φ ∧ Ψ ‖S)) will be called the support of
the rule Φ → Ψ in S. We consider a probability distribution pU (x) = 1/card(U)
for x ∈ U where U is the (non-empty) universe of objects of S; we have pU (X) =
card(X)/card(U) for X ⊆ U . For any formula Φ we associate its probability in
S defined by

πS(Φ) = pU (‖ Φ ‖S). (50)

With every decision rule Φ → Ψ we associate a conditional probability

πS(Ψ | Φ) = pU (‖ Ψ ‖S | ‖ Φ ‖S) (51)

called the certainty factor of the decision rule, denoted cerS(Φ, Ψ). We have

cerS(Φ, Ψ) = πS(Ψ | Φ) =
card(‖ Φ ∧ Ψ ‖S)

card(‖ Φ ‖S)
, (52)

where ‖ Φ ‖S �= ∅.

28 Zdzis�law Pawlak

If πS(Ψ | Φ) = 1, then Φ → Ψ will be called a certain decision rule; if
0 < πS(Ψ | Φ) < 1 the decision rule will be referred to as a uncertain decision
rule.

There is an interesting relationship between decision rules and their approx-
imations: certain decision rules correspond to the lower approximation, whereas
the uncertain decision rules correspond to the boundary region.

Besides, we will also use a coverage factor of the decision rule, denoted
covS(Φ, Ψ) defined by

πS(Φ | Ψ) = pU (‖ Φ ‖S | ‖ Ψ ‖S). (53)

Obviously we have

covS(Φ, Ψ) = πS(Φ | Ψ) =
card(‖ Φ ∧ Ψ ‖S)

card(‖ Ψ ‖S)
. (54)

There are three possibilities to interpret the certainty and the coverage fac-
tors: statistical (frequency), logical (degree of truth) and mereological (degree of
inclusion).

We will use here mainly the statistical interpretation, i.e., the certainty fac-
tors will be interpreted as the frequency of objects having the property Ψ in the
set of objects having the property Φ and the coverage factor – as the frequency
of objects having the property Φ in the set of objects having the property Ψ .

Let us observe that the factors are not assumed arbitrarily but are computed
from the data.

The number

σS(Φ, Ψ) =
suppS(Φ, Ψ)

card(U)
= πS(Ψ | Φ) · πS(Φ), (55)

will be called the strength of the decision rule Φ → Ψ in S.
We will need also the notion of an equivalence of formulas.
Let Φ, Ψ be formulas in For(A) where A is the set of attributes in S = (U, A).
We say that Φ and Ψ are equivalent in S, or simply, equivalent if S is un-

derstood, in symbols Φ ≡ Ψ , if and only if Φ → Ψ and Ψ → Φ. This means that
Φ ≡ if and only if ‖ Φ ‖S=‖ Ψ ‖S .

We need also approximate equivalence of formulas which is defined as follows:

Φ ≡S Ψ if and only if cer(Φ, Ψ) = cov(Φ, Ψ) = k. (56)

Besides, we define also approximate equivalence of formulas with the accuracy ε
(0 ≤ ε ≤ 1, which is defined as follows:

Φ ≡k,ε Ψ if and only if k = min{(cer(Φ, Ψ), cov(Φ, Ψ)} (57)

and |cer(Φ, Ψ) − cov(Φ, Ψ)| ≤ ε.

Now, we define the notion of a decision algorithm, which is a logical coun-
terpart of a decision table.

Let Dec(S) = {Φi → Ψ}m
i=1, m ≥ 2, be a set of decision rules in a decision

table S = (U, C, D).

Some Issues on Rough Sets 29

1) If for every Φ → Ψ , Φ′ → Ψ ′ ∈ Dec(S) we have Φ = Φ′ or ‖ Φ ∧ Φ′ ‖S= ∅,
and Ψ = Ψ ′ or ‖ Ψ ∧ Ψ ′ ‖S= ∅, then we will say that Dec(S) is the set of
pairwise mutually exclusive (independent) decision rules in S.

2) If ‖
m
∧

i=1

Φi ‖S= U and ‖
m
∧

i=1

Ψi ‖S= U we will say that the set of decision

rules Dec(S) covers U.

3) If Φ → Ψ ∈ Dec(S) and suppS(Φ, Ψ) �= 0 we will say that the decision rule
Φ → Ψ is admissible in S.

4) If
⋃

X∈U/D

C∗(X) =
∧

Φ→Ψ∈Dec+(S)

‖ Φ ‖S , where Dec+(S) is the set of all

certain decision rules from Dec(S), we will say that the set of decision rules
Dec(S) preserves the consistency part of the decision table S = (U, C, D).

The set of decision rules Dec(S) that satisfies 1), 2) 3) and 4), i.e., is
independent, covers U , preserves the consistency of S and all decision rules
Φ → Ψ ∈ Dec(S) are admissible in S – will be called a decision algorithm in
S. Hence, if Dec(S) is a decision algorithm in S then the conditions of rules
from Dec(S) define in S a partition of U. Moreover, the positive region of D with
respect to C, i.e., the set

⋃

X∈U/D

C∗(X), (58)

is partitioned by the conditions of some of these rules, which are certain in S.
If Φ → Ψ is a decision rule then the decision rule Ψ → Ψ will be called an

inverse decision rule of Φ → Ψ .
Let Dec∗(S) denote the set of all inverse decision rules of Dec(S).
It can be shown that Dec∗(S) satisfies 1), 2), 3) and 4), i.e., it is a decision

algorithm in S.
If Dec(S) is a decision algorithm then Dec∗(S) will be called an inverse

decision algorithm of Dec(S).
The inverse decision algorithm gives reasons (explanations) for decisions

pointed out by the decision algorithms.
A decision algorithm is a description of a decision table in the decision lan-

guage.
Generation of decision algorithms from decision tables is a complex task and

we will not discuss this issue here, for it does not lie in the scope of this paper.
The interested reader is advised to consult the references (see, e.g., [18, 66, 90–97,
50, 98–104] and the bibliography in these articles).

4.5 An Example

Let us now consider an example of decision table, shown in Table 7.
Attributes Disease, Age and Sex are condition attributes, whereas test is the

decision attribute.
We want to explain the test result in terms of patients state, i.e., to describe

attribute Test in terms of attributes Disease, Age and Sex.

30 Zdzis�law Pawlak

Table 7. Exemplary decision table

Fact Disease Age Sex Test Support

1 yes old man + 400
2 yes middle woman + 80
3 no old man − 100
4 yes old man − 40
5 no young woman − 220
6 yes middle woman − 60

Table 8. Certainty and coverage factors for decision table shown in Table 7

Fact Strength Certaint Coverage

1 0.44 0.92 0.83
2 0.09 0.56 0.17
3 0.11 1.00 0.24
4 0.04 0.08 0.10
5 0.24 1.00 0.52
6 0.07 0.44 0.14

The strength, certainty and coverage factors for decision table are shown in
Table 8.

Below a decision algorithm associated with Table 7 is presented.

1) if (Disease, yes) and (Age, old) then (Test, +);
2) if (Disease, yes) and (Age, middle) then (Test, +);
3) if (Disease, no) then (Test, −);
4) if (Disease, yes) and (Age, old) then (Test, −);
5) if (Disease, yes) and (Age, middle) then (Test, −).

The certainty and coverage factors for the above algorithm are given in Table 9.

Table 9. Certainty and coverage factors for the decision algorithm

Rule Strength Certaint Coverage

1 0.44 0.92 0.83
2 0.09 0.56 0.17
3 0.36 1.00 0.76
4 0.04 0.08 0.10
5 0.24 0.44 0.14

The certainty factors of the decision rules lead the following conclusions:

– 92% ill and old patients have positive test result,
– 56% ill and middle age patients more positive test result,
– all healthy patients have negative test result,
– 8% ill and old patients have negative test result,
– 44% ill and old patients have negative test result.

Some Issues on Rough Sets 31

In other words:

– ill and old patients most probably have positive test result (probability =
0.92),

– ill and middle age patients most probably have positive test result (proba-
bility = 0.56),

– healthy patients have certainly negative test result (probability = 1.00).

Now let us examine the inverse decision algorithm, which is given below:

1’) if (Test, +) then (Disease, yes) and (Age, old);
2’) if (Test, +) then (Disease, yes) and (Age, middle);
3’) if (Test, −) then (Disease, no);
4’) if (Test, −) then (Disease, yes) and (Age, old);
5’) if (Test, −) then (Disease, yes) and (Age, middle).

Employing the inverse decision algorithm and the coverage factor we get the
following explanation of test results:

– reason for positive test results are most probably patients disease and old
age (probability = 0.83),

– reason for negative test result is most probably lack of the disease (proba-
bility = 0.76).

It follows from Table 7 that there are two interesting approximate equivalences
of test results and the disease.

According to rule 1) the disease and old age are approximately equivalent to
positive test result (k = 0.83, ε = 0.11), and lack of the disease according to
rule 3) is approximately equivalent to negative test result (k = 0.76, ε = 0.24).

5 Rough Sets and Conflict Analysis

5.1 Introduction

Knowledge discovery in databases considered in the previous sections boiled
down to searching for functional dependencies in the data set.

In this section we will discuss another kind of relationship in the data – not
dependencies, but conflicts.

Formally, the conflict relation can be seen as a negation (not necessarily,
classical) of indiscernibility relation which was used as a basis of rough set theory.
Thus dependencies and conflict are closely related from logical point of view.

It turns out that the conflict relation can be used to the conflict analysis
study.

Conflict analysis and resolution play an important role in business, govern-
mental, political and lawsuits disputes, labor-management negotiations, military
operations and others. To this end many mathematical formal models of conflict
situations have been proposed and studied, e.g., [105–110].

32 Zdzis�law Pawlak

Various mathematical tools, e.g., graph theory, topology, differential equa-
tions and others, have been used to that purpose.

Needless to say that game theory can be also considered as a mathematical
model of conflict situations.

In fact there is no, as yet, “universal” theory of conflicts and mathematical
models of conflict situations are strongly domain dependent.

We are going to present in this paper still another approach to conflict anal-
ysis, based on some ideas of rough set theory – along the lines proposed in [110].
We will illustrate the proposed approach by means of a simple tutorial example
of voting analysis in conflict situations.

The considered model is simple enough for easy computer implementation
and seems adequate for many real life applications but to this end more research
is needed.

5.2 Basic Concepts of Conflict Theory

In this section we give after [110] definitions of basic concepts of the proposed
approach.

Let us assume that we are given a finite, non-empty set U called the universe.
Elements of U will be referred to as agents. Let a function v : U → {−1, 0, 1},
or in short {−, 0, +}, be given assigning to every agent the number −1, 0 or 1,
representing his opinion, view, voting result, etc. about some discussed issue,
and meaning against, neutral and favorable, respectively.

The pair S = (U, v) will be called a conflict situation. In order to express
relations between agents we define three basic binary relations on the universe:
conflict, neutrality and alliance. To this end we first define the following auxiliary
function:

φv(x, y) =

1, if v(x)v(y) = 1 or x = y
0, if v(x)v(y) = 0 and x �= y
−1, if v(x)v(y) = −1.

(59)

This means that, if φv(x, y) = 1, agents x and y have the same opinion about
issue v (are allied) on v); if φv(x, y) = 0 means that at least one agent x or y
has neutral approach to issue a (is neutral on a), and if φv(x, y) = −1, means
that both agents have different opinions about issue v (are in conflict on v).

In what follows we will define three basic relations R+
v ,R0

v and R−
v on U2

called alliance, neutrality and conflict relations respectively, and defined as fol-
lows:

R+
v (x, y) iff φv(x, y) = 1, (60)

R0
v(x, y) iff φv(x, y) = 0,

R−
v (x, y) iff φv(x, y) = −1.

It is easily seen that the alliance relation has the following properties:

R+
v (x, x), (61)

R+
v (x, y) implies R+

v (y, x),

R+
v (x, y) and R+

v (y, z) implies R+
v (x, z),

Some Issues on Rough Sets 33

i.e., R+
v is an equivalence relation. Each equivalence class of alliance relation will

be called coalition with respect to v. Let us note that the last condition in (61)
can be expressed as “a friend of my friend is my friend”.

For the conflict relation we have the following properties:

not R−
v (x, x), (62)

R−
v (x, y) implies R−

v (y, x),

R−
v (x, y) and R−

v (y, z) implies R+
v (x, z),

R−
v (x, y) and R+

v (y, z) implies R−
v (x, z).

The last two conditions in (62) refer to well known sayings “an enemy of my
enemy is my friend” and “a friend of my enemy is my enemy”.

For the neutrality relation we have:

not R0
v(x, x), (63)

R0
v(x, y) = R0

v(y, x).

Let us observe that in the conflict and neutrality relations there are no coalitions.
The following property holds: R+

v ∪ R0
v ∪ R−

v = U2 because if (x, y) ∈ U2

then Φv(x, y) = 1 or Φv(x, y) = 0 or Φv(x, y) = −1 so (x, y) ∈ R+
v or (x, y) ∈ R−

v

or (x, y) ∈ R−
v . All the three relations R+

v , R0
v , R−

v are pairwise disjoint, i.e.,
every pair of objects (x, y) belongs to exactly one of the above defined relations
(is in conflict, is allied or is neutral).

With every conflict situation we will associate a conflict graph

GS = (R+
v , R0

v, R
−
v). (64)

An example of a conflict graph is shown in Figure 3. Solid lines are denoting con-
flicts, doted line – alliance, and neutrality, for simplicity, is not shown explicitly
in the graph. Of course, B, C, and D form a coalition.

Fig. 3. Exemplary conflict graph

34 Zdzis�law Pawlak

5.3 An Example

In this section we will illustrate the above presented ideas by means of a very
simple tutorial example using concepts presented in the previous.

Table 10 presents a decision table in which the only condition attribute is
Party, whereas the decision attribute is Voting. The table describes voting results
in a parliament containing 500 members grouped in four political parties denoted
A, B, C and D. Suppose the parliament discussed certain issue (e.g., membership
of the country in European Union) and the voting result is presented in column
Voting, where +, 0 and − denoted yes, abstention and no respectively. The
column support contains the number of voters for each option.

Table 10. Decision table with one condition attribute Party and the decision Voting

Fact Party Voting Support

1 A + 200
2 A 0 30
3 A − 10
4 B + 15
5 B − 25
6 C 0 20
7 C − 40
8 D + 25
9 D 0 35
10 D − 100

Table 11. Certainty and the coverage factors for Table 10

Fact Strength Certainty Coverage

1 0.40 0.83 0.83
2 0.06 0.13 0.35
3 0.02 0.04 0.06
4 0.03 0.36 0.06
5 0.05 0.63 0.14
6 0.04 0.33 0.23
7 0.08 0.67 0.23
8 0.05 0.16 0.10
9 0.07 0.22 0.41
10 0.20 0.63 0.57

The strength, certainty and the coverage factors for Table 10 are given in
Table 11.

From the certainty factors we can conclude, for example, that:

– 83.3% of party A voted yes,
– 12.5% of party A abstained,
– 4.2% of party A voted no.

Some Issues on Rough Sets 35

From the coverage factors we can get, for example, the following explanation
of voting results:

– 83.3% yes votes came from party A,
– 6.3% yes votes came from party B,
– 10.4% yes votes came from party C.

6 Data Analysis and Flow Graphs

6.1 Introduction

Pursuit for data patterns considered so far referred to data tables. In this section
we will consider data represented not in a form of data table but by means of
graphs. We will show that this method od data representation leads to a new
look on knowledge discovery, new efficient algorithms, and vide spectrum of novel
applications.

The idea presented here are based on some concepts given by �Lukasiewicz
[88].

In [88] �Lukasiewicz proposed to use logic as mathematical foundation of prob-
ability. He claims that probability is “purely logical concept” and that his ap-
proach frees probability from its obscure philosophical connotation. He recom-
mends to replace the concept of probability by truth values of indefinite proposi-
tions, which are in fact propositional functions.

Let us explain this idea more closely. Let U be a non empty finite set, and let
Φ(x) be a propositional function. The meaning of Φ(x) in U , denoted by ‖Φ(x)‖,
is the set of all elements of U , that satisfies Φ(x) in U. The truth value of Φ(x) is
defined by card(‖Φ(x)‖)/card(U). For example, if U = {1, 2, 3, 4, 5, 6} and Φ(x)
is the propositional function x > 4, then the truth value of Φ(x) = 2/6 = 1/3. If
the truth value of Φ(x) is 1, then the propositional function is true, and if it is
0, then the function is false. Thus the truth value of any propositional function
is a number between 0 and 1. Further, it is shown that the truth values can be
treated as probability and that all laws of probability can be obtained by means
of logical calculus.

In this paper we show that the idea of �Lukasiewicz can be also expressed
differently. Instead of using truth values in place of probability, stipulated by
�Lukasiewicz, we propose, in this paper, using of deterministic flow analysis in
flow networks (graphs). In the proposed setting, flow is governed by some proba-
bilistic rules (e.g., Bayes’ rule), or by the corresponding logical calculus proposed
by �Lukasiewicz, though, the formulas have entirely deterministic meaning, and
need neither probabilistic nor logical interpretation. They simply describe flow
distribution in flow graphs. However, flow graphs introduced here are different
from those proposed by Ford and Fulkerson [111] for optimal flow analysis, be-
cause they model rather, e.g., flow distribution in a plumbing network, than the
optimal flow.

The flow graphs considered in this paper are basically meant not to physical
media (e.g., water) flow analysis, but to information flow examination in deci-
sion algorithms. To this end branches of a flow graph are interpreted as decision

36 Zdzis�law Pawlak

rules. With every decision rule (i.e. branch) three coefficients are associated,
the strength, certainty and coverage factors. In classical decision algorithms lan-
guage they have probabilistic interpretation. Using �Lukasiewicz’s approach we
can understand them as truth values. However, in the proposed setting they can
be interpreted simply as flow distribution ratios between branches of the flow
graph, without referring to their probabilistic or logical nature.

This interpretation, in particular, leads to a new look on Bayes’ theorem,
which in this setting, has entirely deterministic explanation (see also [86]).

The presented idea can be used, among others, as a new tool for data analysis,
and knowledge representation.

We start our considerations giving fundamental definitions of a flow graph
and related notions. Next, basic properties of flow graphs are defined and inves-
tigated. Further, the relationship between flow graphs and decision algorithms
is discussed. Finally, a simple tutorial example is used to illustrate the consid-
eration.

6.2 Flow Graphs

A flow graph is a directed, acyclic, finite graph G = (N,B, φ), where N is a set
of nodes, B ⊆ N ×N is a set of directed branches, φ : B → R+ is a flow function
and R+ is the set of non-negative reals.

If (x, y) ∈ B then x is an input of y and y is an output of x.
If x ∈ N then I(x) is the set of all inputs of x and O(x) is the set of all

outputs of x.
Input and output of a graph G are defined I(G) = {x ∈ N : I(x) = ∅},

O(G) = {x ∈ N : O(x) = ∅}.
Inputs and outputs of G are external nodes of G; other nodes are internal

nodes of G.
If (x, y) ∈ B then φ(x, y) is a troughflow from x to y. We will assume in what

follows that φ(x, y) �= 0 for every (x, y) ∈ B.
With every node x of a flow graph G we associate its inflow

φ+(x) =
∑

y∈I(x)

φ(y, x), (65)

and outflow

φ−(x) =
∑

y∈O(x)

φ(x, y). (66)

Similarly, we define an inflow and an outflow for the whole flow graph G, which
are defined as

φ+(G) =
∑

x∈I(G)

φ−(x), (67)

φ−(G) =
∑

x∈O(G)

φ+(x). (68)

Some Issues on Rough Sets 37

We assume that for any internal node x, φ+(x) = φ−(x) = φ(x), where is a
troughflow of node x.

Obviously,φ+(G) = φ−(G) = φ(G) , where φ(G) is a troughflow of graph G.
The above formulas can be considered as flow conservation equations [111].
We will define now a normalized flow graph.
A normalized flow graph is a directed, acyclic, finite graph G = (N,B, σ),

where N is a set of nodes, B ⊆ N ×N is a set of directed branches and σ : B →<
0, 1 > is a normalized flow of (x, y) and

σ(x, y) =
σ(x, y)

σ(G)
, (69)

is strength of (x, y). Obviously, 0 ≤ σ(x, y) ≤ 1. The strength of the branch
expresses simply the percentage of a total flow through the branch.

In what follows we will use normalized flow graphs only, therefore by a flow
graphs we will understand normalized flow graphs, unless stated otherwise.

With every node x of a flow graph G we associate its normalized inflow and
outflow defined as

σ+(x) =
φ+(x)

φ(G)
=

∑

y∈I(x)

σ(y, x), (70)

σ−(x) =
φ−(x)

φ(G)
=

∑

y∈O(x)

σ(y, x). (71)

Obviously for any internal node x, we have σ+(X) = σ− = σ(x), where σ(x) is
a normalized troughflow of x.

Moreover, let

σ+(G) =
φ+(G)

φ(G)
=

∑

x∈I(G)

σ−(x), (72)

σ−(G) =
φ−(G)

φ(G)
=

∑

x∈O(G)

σ+(x). (73)

Obviously, σ+(G) = σ−(G) = σ(G) = 1.

6.3 Certainty and Coverage Factors

With every branch (x, y) of a flow graph G we associate the certainty and the
coverage factors.

The certainty and the coverage of are defined as

cer(x, y) =
σ(x, y)

σ(x)
, (74)

38 Zdzis�law Pawlak

and

cov(x, y) =
σ(x, y)

σ(y)
. (75)

respectively, where σ(x) �= 0 and σ(y) �= 0. Below some properties, which are
immediate consequences of definitions given above are presented:

∑

y∈O(x)

cer(x, y) = 1, (76)

∑

y∈I(y)

cov(x, y) = 1, (77)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y), (78)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y), (79)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
, (80)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
. (81)

Obviously the above properties have a probabilistic flavor, e.g., equations (78)
and (79) have a form of total probability theorem, whereas formulas (80) and
(81) are Bayes’ rules. However, these properties in our approach are interpreted
in a deterministic way and they describe flow distribution among branches in
the network.

A (directed) path from x to y, x �= y in G is a sequence of nodes x1, . . . , xn

such that x1 = x, xn = y and (xi, xi+1) ∈ B for every i, 1 ≤ i ≤ n − 1. A path
from x to y is denoted by [x . . . y].

The certainty, the coverage and the strength of the path [x1 . . . xn] are defined
as

cer[x1 . . . xn] =

n−1
∏

i=1

cer(xi, xi+1), (82)

cov[x1 . . . xn] =

n−1
∏

i=1

cov(xi, xi+1), (83)

σ[x . . . y] = σ(x)cer[x . . . y] = σ(y)cov[x . . . y], (84)

Some Issues on Rough Sets 39

respectively. The set of all paths from x to y(x �= y) in G denoted < x, y >, will
be called a connection from x to y in G. In other words, connection < x, y > is
a sub-graph of G determined by nodes x and y.

For every connection < x, y > we define its certainty, coverage and strength
as shown below:

cer < x, y >=
∑

[x...y]∈<x,y>

cer[x . . . y], (85)

the coverage of the connection < x, y > is

cov < x, y >=
∑

[x...y]∈<x,y>

cov[x . . . y], (86)

and the strength of the connection < x, y > is

σ < x, y >=
∑

[x...y]∈<x,y>

σ[x . . . y] = σ(x)cer < x, y >= σ(y)cov < x, y > .(87)

Let [x . . . y] be a path such that x and y are input and output of the graph G,
respectively. Such a path will be referred to as complete.

The set of all complete paths from x to y will be called a complete connection
from x to y in G. In what follows we will consider complete paths and connections
only, unless stated otherwise.

Let x and y be an input and output of a graph G respectively. If we substitute
for every complete connection < x, y > in G a single branch (x, y) such σ(x, y) =
σ < x, y >, cer(x, y) = cer < x, y >, cov(x, y) = cov < x, y > then we obtain a
new flow graph G′ such that σ(G) = σ(G′). The new flow graph will be called a
combined flow graph. The combined flow graph for a given flow graph represents
a relationship between its inputs and outputs.

6.4 Dependencies in Flow Graphs

Let (x, y) ∈ B. Nodes x and y are independent on each other if

σ(x, y) = σ(x)σ(y). (88)

Consequently

σ(x, y)

σ(x)
= cer(x, y) = σ(y), (89)

and

σ(x, y)

σ(y)
= cov(x, y) = σ(x). (90)

This idea refers to some concepts proposed by �Lukasiewicz [88] in connection
with statistical independence of logical formulas.

40 Zdzis�law Pawlak

If

cer(x, y) > σ(y), (91)

or

cov(x, y) > σ(x), (92)

then x and y depend positively on each other. Similarly, if

cer(x, y) < σ(y), (93)

or

cov(x, y) < σ(x), (94)

then x and y depend negatively on each other.
Let us observe that relations of independency and dependencies are symmet-

ric ones, and are analogous to that used in statistics.
For every (x, y) ∈ B we define a dependency factor η(x, y) defined as

η(x, y) =
cer(x, y) − σ(y)

cer(x, y) + σ(y)
=

cov(x, y) − σ(x)

cov(x, y) + σ(x)
. (95)

It is easy to check that if η(x, y) = 0, then x and y are independent on each other,
if −1 < η(x, y) < 0, then x and y are negatively dependent and if 0 < η(x, y) < 1
then x and y are positively dependent on each other.

Thus the dependency factor expresses a degree of dependency, and can be
seen as a counterpart of correlation coefficient used in statistics (see also [112]).

6.5 An Example

Now we will illustrate ideas introduced in the previous sections by means of a
simple example concerning votes distribution of various age groups and social
classes of voters between political parties.

Consider three disjoint age groups of voters y1 (old), y2 (middle aged) and
y3 (young) – belonging to three social classes x1 (high), x2 (middle) and x3

(low). The voters voted for four political parties z1 (Conservatives), z2 (Labor),
z3 (Liberal Democrats) and z4 (others).

Social class and age group votes distribution is shown in Figure 4.
First we want to find votes distribution with respect to age group. The result

is shown in Figure 5. From the flow graph presented in Figure 5 we can see that,
e.g., party z1 obtained 19% of total votes, all of them from age group y1; party
z2 – 44% votes, which 82% are from age group y2 and 18% – from age group y3,
etc.

If we want to know how votes are distributed between parties with respects
to social classes we have to eliminate age groups from the flow graph. Employing
the algorithm presented in Section 6.3 we get results shown in Figure 6.

Some Issues on Rough Sets 41

Fig. 4. Social class and age group votes distribution

From the flow graph presented in Figure 6 we can see that party z1 obtained
22% votes from social class x1 and 78% – from social class x2, etc.

We can also present the obtained results employing decision rules. For sim-
plicity we present only some decision rules of the decision algorithm. For example,
from Figure 5 we obtain decision rules:

If Party (z1) then Age group (y1)(0.19);
If Party (z2) then Age group (y2(0.36);
If Party (z2) then Age group (y3)(0.08), etc.

The number at the end of each decision rule denotes strength of the rule.
Similarly, from Figure 6 we get:

If Party (z1) then Soc. class (x1)(0.04);
If Party (z1) then Soc. class (x2)(0.14), etc.

Fig. 5. Votes distribution with respect to the age group

42 Zdzis�law Pawlak

Fig. 6. Votes distribution between parties with respects to the social classes

From Figure 6 we have:

If Soc. class (x1) then Party (z1)(0.04);
If Soc. class (x1) then Party (z2)(0.02);
If Soc. class (x1) then Party (z3)(0.04), etc.

Dependencies between Social class and Parties are shown in Figure 6.

6.6 An Example

In this section we continue the example from Section 5.3. The flow graph asso-
ciated with Table 11 is shown in Figure 7.

Branches of the flow graph represent decision rules together with their cer-
tainty and coverage factors. For example, the decision rule A → 0 has the cer-
tainty and coverage factors 0.13 and 0.35, respectively. The flow graph gives a
clear insight into the voting structure of all parties. For many applications exact
values of certainty of coverage factors of decision rules are not necessary. To this
end we introduce “approximate” decision rules, denoted C � D and read C
mostly implies D. C � D if and only if cer(C, D) > 0.5. Thus, we can replace
flow graph shown in Figure 7 by approximate flow graph presented in Figure 8.
From this graph we can see that parties B, C and D form a coalition, which is
in conflict with party A, i.e., every member of the coalition is in conflict with
party A. The corresponding conflict graph is shown in Figure 9.

Moreover, from the flow graph shown in Figure 7 we can obtain an “inverse”
approximate flow graph which is shown in Figure 10. This flow graph contains
all inverse decision rules with certainty factor greater than 0.5. From this graph
we can see that yes votes were obtained mostly from party A and no votes –
mostly from party D.

Some Issues on Rough Sets 43

Fig. 7. Flow graph for Table 11

Fig. 8. “Approximate” flow graph

Fig. 9. Conflict graph

We can also compute dependencies between parties and voting results the
results are shown in Figure 11.

6.7 Decision Networks

Ideas given in the previous sections can be also presented in logical terms, as
shown in what follows.

44 Zdzis�law Pawlak

Fig. 10. An “inverse” approximate flow graph

Fig. 11. Dependencies between parties and voting results

The main problem in data mining consists in discovering patterns in data.
The patterns are usually expressed in form of decision rules, which are logical
expressions in the form if Φ then Ψ , where Φ and Ψ are logical formulas (propo-
sitional functions) used to express properties of objects of interest. Any set of
decision rules is called a decision algorithm. Thus knowledge discovery from data
consists in representing hidden relationships between data in a form of decision
algorithms. However, for some applications, it is not enough to give only set of
decision rules describing relationships in the database. Sometimes also knowl-
edge of relationship between decision rules is necessary in order to understand
better data structures. To this end we propose to employ a decision algorithm in
which also relationship between decision rules is pointed out, called a decision
network.

The decision network is a finite, directed acyclic graph, nodes of which repre-
sent logical formulas, whereas branches – are interpreted as decision rules. Thus

Some Issues on Rough Sets 45

every path in the graph represents a chain of decisions rules, which will be used
to describe compound decisions.

Some properties of decision networks will be given and a simple example will
be used to illustrate the presented ideas and show possible applications.

Let U be a non empty finite set, called the universe and let Φ , Ψ be logical
formulas. The meaning of Φ in U , denoted by ‖Φ‖, is the set of all elements
of U , that satisfies Φ in U. The truth value of Φ denoted val(Φ) is defined as
card(‖Φ‖)/card(U), where card(X) denotes cardinality of X and F is a set of
formulas.

By decision network over S = (U,F) we mean a pair N = (F ,R), where
R ⊆ F × F is a binary relation, called a consequence relation and F is a set of
logical formulas.

Any pair (Φ, Ψ) ∈ R, Φ �= Ψ is referred to as a decision rule (in N).
We assume that S is known and we will not refer to it in what follows.
A decision rule (Φ, Ψ) will be also presented as an expression Φ → Ψ , read if

Φ then Ψ , where Φ and Ψ are referred to as predecessor (conditions) and successor
(decisions) of the rule, respectively.

The number supp(Φ, Ψ) = card(‖Φ ∧ Ψ‖) will be called a support of the
rule Φ → Ψ . We will consider nonvoid decision rules only, i.e., rules such that
supp(Φ, Ψ) �= 0.

With every decision rule Φ → Ψ we associate its strength defined as

str(Φ, Ψ) =
supp(Φ, Ψ)

card(U)
. (96)

Moreover, with every decision rule Φ → Ψ we associate the certainty factor
defined as

cer(Φ, Ψ) =
str(Φ, Ψ)

val(Φ)
, (97)

and the coverage factor of Φ → Ψ

cov(Φ, Ψ) =
str(Φ, Ψ)

val(Ψ)
, (98)

where val(Φ) �= 0 and val(Ψ) �= 0.
The coefficients can be computed from data or can be a subjective assessment.
We assume that

val(Φ) =
∑

Ψ∈Suc(Φ)

str(Φ, Ψ) (99)

and
val(Ψ) =

∑

Φ∈Pre(Ψ)

str(Φ, Ψ), (100)

where Suc(Φ) and Pre(Ψ) are sets of all successors and predecessors of the
corresponding formulas, respectively.

Consequently we have
∑

Suc(Φ)

cer(φ, Ψ) =
∑

Pre(Ψ)

cov(Φ, Ψ) = 1. (101)

46 Zdzis�law Pawlak

If a decision rule Φ → Ψ uniquely determines decisions in terms of conditions,
i.e., if cer(Φ, Ψ) = 1, then the rule is certain, otherwise the rule is uncertain.

If a decision rule Φ → Ψ covers all decisions, i.e., if cov(Φ, Ψ) = 1 then the
decision rule is total, otherwise the decision rule is partial.

Immediate consequences of (97) and (98) are:

cer(Φ, Ψ) =
cov(Φ, Ψ)val(Ψ)

val(Φ)
, (102)

cov(Φ, Ψ) =
cer(Φ, Ψ)val(Φ)

val(Ψ)
. (103)

Note, that (102) and (103) are Bayes’ formulas. This relationship, as mentioned
previously, first was observed by �Lukasiewicz [88].

Any sequence of formulas Φ1, . . . , Φn, Φi ∈ F and for every i, 1 ≤ i ≤ n − 1,
(Φi, Φi+1) ∈ R will be called a path from Φ1 to Φn and will be denoted by
[Φ1 . . . Φn].

We define

cer[Φ1 . . . Φn] =

n−1
∏

i=1

cer[Φi, Φi+1], (104)

cov[Φ1 . . . Φn] =

n−1
∏

i=1

cov[Φi, Φi+1], (105)

str[Φ1 . . . Φn] = val(Φ1)cer[Φ1 . . . Φn] = val(Φn)cov[Φ1 . . . Φn]. (106)

The set of all paths form Φ to Ψ , denoted < Φ, Ψ >, will be called a connection
from Φ to Ψ.

For connection we have

cer < Φ, Ψ >=
∑

[Φ...Ψ]∈<Φ,Ψ>

cer[Φ . . . Ψ], (107)

cov < Φ, Ψ >=
∑

[Φ...Ψ]∈<Φ,Ψ>

cov[Φ . . . Ψ], (108)

str < Φ, Ψ > =
∑

[Φ...Ψ]∈<Φ,Ψ>

str[Φ . . . Ψ] =

= val(Φ)cer < Φ, Ψ >= val(Ψ)cov < Φ, Ψ > . (109)

With every decision network we can associate a flow graph [70, 71]. Formu-
las of the network are interpreted as nodes of the graph, and decision rules –
as directed branches of the flow graph, whereas strength of a decision rule is
interpreted as flow of the corresponding branch.

Some Issues on Rough Sets 47

Let Φ → Ψ be a decision rule. Formulas Φ and Ψ are independent on each
other if

str(Φ, Ψ) = val(Φ)val(Ψ). (110)

Consequently

str(Φ, Ψ)

val(Φ)
= cer(Φ, Ψ) = val(Ψ), (111)

and

str(Φ, Ψ)

val(Ψ)
= cov(Φ, Ψ) = val(Φ). (112)

If

cer(Φ, Ψ) > val(Ψ), (113)

or

cov(Φ, Ψ) > val(Φ), (114)

then Φ and Ψ depend positively on each other. Similarly, if

cer(Φ, Ψ) < val(Ψ), (115)

or

cov(Φ, Ψ) < val(Φ), (116)

then Φ and Ψ depend negatively on each other.
For every decision rule Φ → Ψ we define a dependency factor η(Φ, Ψ) defined

as

η(Φ, Ψ) =
cer(Φ, Ψ) − val(Ψ)

cer(Φ, Ψ) + val(Ψ)
=

cov(Φ, Ψ) − val(Φ)

cov(Φ, Ψ) + val(Φ)
. (117)

It is easy to check that if η(Φ, Ψ) = 0, then Φ and Ψ are independent on
each other, if −1 < η(Φ, Ψ) < 0, then Φ and Ψ are negatively dependent and if
0 < η(Φ, Ψ) < 1 then Φ and Ψ are positively dependent on each other.

6.8 An Example

Flow graphs given in Figures 4–6 can be now presented as shown in Figures 12–
14, respectively. These flow graphs show clearly the relational structure between
formulas involved in the voting process.

48 Zdzis�law Pawlak

Fig. 12. Decision network for flow graph from Figure 4

Fig. 13. Decision network for flow graph from Figure 5

6.9 Inference Rules and Decision Rules

In this section we are going to show relationship between previously discussed
concepts and reasoning schemes used in logical inference.

Basic rules of inference used in classical logic are Modus Ponens (MP) and
Modus Tollens (MT). These two reasoning patterns start from some general
knowledge about reality, expressed by true implication, ”if Φ then Ψ”. Then
basing on true premise Φ we arrive at true conclusion Ψ (MP), or if negation of
conclusion Ψ is true we infer that negation of premise Φ is true (MT).

In reasoning from data (data mining) we also use rules if Φ then Ψ , called
decision rules, to express our knowledge about reality, but the meaning of deci-
sion rules is different. It does not express general knowledge but refers to partial
facts. Therefore decision rules are not true or false but probable (possible) only.

Some Issues on Rough Sets 49

Fig. 14. Decision network for flow graph from Figure 6

In this paper we compare inference rules and decision rules in the context
of decision networks, proposed by the author as a new approach to analyze
reasoning patterns in data.

Decision network is a set of logical formulas F together with a binary relation
over the set R ⊆ F × F of formulas, called a consequence relation. Elements of
the relation are called decision rules. The decision network can be perceived as
a directed graph, nodes of which are formulas and branches – are decision rules.
Thus the decision network can be seen as a knowledge representation system,
revealing data structure of a data base.

Discovering patterns in the database represented by a decision network boils
down to discovering some patterns in the network. Analogy to the modus ponens
and modus tollens inference rules will be shown and discussed.

Classical rules of inference used in logic are Modus Ponens and Modus Tol-
lens, which have the form

if Φ → Ψ is true
and Φ is true
then Ψ is true

and

if Φ → Ψ is true
and ∼ Ψ is true
then ∼ Φ is true

respectively.

50 Zdzis�law Pawlak

Modus Ponens allows us to obtain true consequences from true premises,
whereas Modus Tollens yields true negation of premise from true negation of
conclusion.

In reasoning about data (data analysis) the situation is different. Instead
of true propositions we consider propositional functions, which are true to a
“degree”, i.e., they assume truth values which lie between 0 and 1, in other
words, they are probable, not true.

Besides, instead of true inference rules we have now decision rules, which
are neither true nor false. They are characterized by three coefficients, strength,
certainty and coverage factors. Strength of a decision rule can be understood as
a counterpart of truth value of the inference rule, and it represents frequency of
the decision rule in a database.

Thus employing decision rules to discovering patterns in data boils down
to computation probability of conclusion in terms of probability of the premise
and strength of the decision rule, or – the probability of the premise from the
probability of the conclusion and strength of the decision rule.

Hence, the role of decision rules in data analysis is somehow similar to clas-
sical inference patterns, as shown by the schemes below.

Two basic rules of inference for data analysis are as follows:

if Φ → Ψ has cer(Φ, Ψ) and cov(Φ, Ψ)
and Φ is true with the probability val(Φ)
then Ψ is true with the probability val(Ψ) = αval(Φ).

Similarly

if Φ → Ψ has cer(Φ, Ψ) and cov(Φ, Ψ)
and Ψ is true with the probability val(Ψ)
then Φ is true with the probability val(Φ) = α−1val(Φ).

The above inference rules can be considered as counterparts of Modus Ponens
and Modus Tollens for data analysis and will be called Rough Modus Ponens
(RMP) and Rough Modus Tollens (RMT), respectively.

There are however essential differences between MP (MT) and RMP (RMT).
First, instead of truth values associated with inference rules we consider

certainly and coverage factors (conditional probabilities) assigned to decision
rules.

Second, in the case of decision rules, in contrast to inference rules, truth value
of a conclusion (RMP) depends not only on a single premise but in fact depends
on truth values of premises of all decision rules having the same conclusions.
Similarly, for RMT.

Let us also notice that inference rules are transitive, i.e., if Φ → Ψ and Ψ → Θ
then Φ → Θ and decision rules are not. If Φ → Ψ and Ψ → Θ, then we have
to compute the certainty, coverage and strength of the rule Φ → Θ, employing
formulas (104),(105),(107),(108).

This shows clearly the difference between reasoning patterns using classical
inference rules in logical reasoning and using decision rules in reasoning about
data.

Some Issues on Rough Sets 51

6.10 An Example

Suppose that three models of cars Φ1, Φ2 and Φ3 are sold to three disjoint groups
of customers Θ1, Θ2 and Θ3 through four dealers Ψ1, Ψ2, Ψ3 and Ψ4.

Moreover, let us assume that car models and dealers are distributed as shown
in Figure 15. Applying RMP to data shown in Figure 15 we get results shown
in Figure 16. In order to find how car models are distributed among customer

Fig. 15. Distributions of car models and dealers

Fig. 16. The result of application of RMP to data from Figure 15

52 Zdzis�law Pawlak

Fig. 17. Distribution of car models among customer groups

groups we have to compute all connections among cars models and consumers
groups, i.e., to apply RMP to data given in Figure 16. The results are shown in
Figure 17.

For example, we can see from the decision network that consumer group Θ2

bought 21% of car model Φ1, 35% of car model Φ2 and 44% of car model Φ3.
Conversely, for example, car model Φ1 is distributed among customer groups as
follows: 31% cars bought group Θ1, 57% group Θ2 and 12% group Θ3.

7 Summary

Basic concept of mathematics, the set, leads to antinomies, i.e., it is contradic-
tory. This deficiency of sets, has rather philosophical than practical meaning, for
sets used in mathematics are free from the above discussed faults. Antinomies
are associated with very “artificial” sets constructed in logic but not found in
sets used in mathematics. That is why we can use mathematics safely.

Philosophically, fuzzy set theory and rough set theory are two different ap-
proaches to vagueness and are not remedy for classical set theory difficulties.
Both theories represent two different approaches to vagueness. Fuzzy set the-
ory addresses gradualness of knowledge, expressed by the fuzzy membership
whereas rough set theory addresses granularity of knowledge, expressed by the
indiscernibility relation.

Practically, rough set theory can be viewed as a new method of intelligent
data analysis. Rough set theory has found many applications in medical data
analysis, finance, voice recognition, image processing, and others. However the
approach presented in this paper is too simple to many real-life applications and
was extended in many ways by various authors. The detailed discussion of the
above issues can be found in be found in books (see, e.g., [18–27,12, 28–30]),
special issues of journals (see, e.g., [31–34,34–38]), proceedings of international
conferences (see, e.g., [39–49]), tutorials (e.g., [50–53]), and on the internet (see,
e.g., www.roughsets.org, logic.mimuw.edu.pl,rsds.wsiz.rzeszow.pl).

Some Issues on Rough Sets 53

Besides, rough set theory inspired new look on Bayes’ theorem. Bayesian
inference consists in update prior probabilities by means of data to posterior
probabilities. In the rough set approach Bayes’ theorem reveals data patterns,
which are used next to draw conclusions from data, in form of decision rules.

Moreover, we have shown a new mathematical model of flow networks, which
can be used to decision algorithm analysis. In particular it has been revealed
that the flow in the flow network is governed by Bayes’ rule, which has entirely
deterministic meaning, and can be used to decision algorithm study.

Also, a new look of dependencies in databases, based on �Lukasiewiczs ideas
of independencies of logical formulas, is presented.

Acknowledment

I would like to thank to Prof. Andrzej Skowron for useful discussion and help in
preparation of this paper.

References

1. Zadeh, L.A.: Fuzzy sets. Information and Control 8 (1965) 338–353
2. Pawlak, Z.: Rough sets. International Journal of Computer and Information

Sciences 11 (1982) 341–356
3. Ziarko, W.: Variable precision rough set model. Journal of Computer and System

Sciences 46 (1993) 39–59
4. Polkowski, L., Skowron, A., Żytkow, J.: Rough foundations for rough sets. In [40]

55–58
5. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Infor-

maticae 27 (1996) 245–253
6. Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate

reasoning. International Journal of Approximate Reasoning 15 (1996) 333–365
7. S�lowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approx-

imations. In Wang, P.P., ed.: Machine Intelligence & Soft-Computing, Vol. IV.
Bookwrights, Raleigh, NC (1997) 17–33

8. S�lowiński, R., Vanderpooten, D.: A generalized definition of rough approximations
based on similarity. IEEE Transactions on Data and Knowledge Engineering
12(2) (2000) 331–336

9. Stepaniuk, J.: Knowledge discovery by application of rough set models. In [26]
137–233

10. Skowron, A.: Toward intelligent systems: Calculi of information granules. Bulletin
of the International Rough Set Society 5 (2001) 9–30

11. Greco, A., Matarazzo, B., S�lowiński, R.: Rough approximation by dominance
relations. International Journal of Intelligent Systems 17 (2002) 153–171

12. Polkowski, L., ed.: Rough Sets: Mathematical Foundations. Advances in Soft
Computing. Physica-Verlag, Heidelberg (2002)

13. Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing.
In [30] 43–84

14. Skowron, A.: Approximation spaces in rough neurocomputing. In [29] 13–22
15. Wróblewski, J.: Adaptive aspects of combining approximation spaces. In [30]

139–156

54 Zdzis�law Pawlak

16. Yao, Y.Y.: Informaton granulation and approximation in a decision-theoretical
model of rough sets. In [30] 491–520

17. Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information
granulation (submitted). In: Fourth International Conference on Rough Sets and
Current Trends in Computing (RSCTC’04), Uppsala, Sweden, June 1-5, 2004.
Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, Germany (2004)

18. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Volume 9
of System Theory, Knowledge Engineering and Problem Solving. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands (1991)

19. S�lowiński, R., ed.: Intelligent Decision Support - Handbook of Applications and
Advances of the Rough Sets Theory. Volume 11 of System Theory, Knowledge
Engineering and Problem Solving. Kluwer Academic Publishers, Dordrecht, The
Netherlands (1992)

20. Lin, T.Y., Cercone, N., eds.: Rough Sets and Data Mining - Analysis of Imperfect
Data. Kluwer Academic Publishers, Boston, USA (1997)

21. Or�lowska, E., ed.: Incomplete Information: Rough Set Analysis. Volume 13 of
Studies in Fuzziness and Soft Computing. Springer-Verlag/Physica-Verlag, Hei-
delberg, Germany (1997)

22. Polkowski, L., Skowron, A., eds.: Rough Sets in Knowledge Discovery 1: Method-
ology and Applications. Volume 18 of Studies in Fuzziness and Soft Computing.
Physica-Verlag, Heidelberg, Germany (1998)

23. Polkowski, L., Skowron, A., eds.: Rough Sets in Knowledge Discovery 2: Appli-
cations, Case Studies and Software Systems. Volume 19 of Studies in Fuzziness
and Soft Computing. Physica-Verlag, Heidelberg, Germany (1998)

24. Pal, S.K., Skowron, A., eds.: Rough Fuzzy Hybridization: A New Trend in
Decision-Making. Springer-Verlag, Singapore (1999)

25. Duentsch, I., Gediga, G.: Rough set data analysis: A road to non-invasive knowl-
edge discovery. Methodos Publishers, Bangor, UK (2000)

26. Polkowski, L., Lin, T.Y., Tsumoto, S., eds.: Rough Set Methods and Applications:
New Developments in Knowledge Discovery in Information Systems. Volume 56
of Studies in Fuzziness and Soft Computing. Springer-Verlag/Physica-Verlag,
Heidelberg, Germany (2000)

27. Lin, T.Y., Yao, Y.Y., Zadeh, L.A., eds.: Rough Sets, Granular Computing and
Data Mining. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidel-
berg (2001)

28. Demri, S., Or�lowska, E., eds.: Incomplete Information: Structure, Inference, Com-
plexity. Monographs in Theoretical Cpmputer Sience. Springer-Verlag, Heidel-
berg, Germany (2002)

29. Inuiguchi, M., Hirano, S., Tsumoto, S., eds.: Rough Set Theory and Granular
Computing. Volume 125 of Studies in Fuzziness and Soft Computing. Springer-
Verlag, Heidelberg (2003)

30. Pal, S.K., Polkowski, L., Skowron, A., eds.: Rough-Neural Computing: Techniques
for Computing with Words. Cognitive Technologies. Springer-Verlag, Heidelberg,
Germany (2003)

31. S�lowiński, R., Stefanowski, J., eds.: Special issue: Proceedings of the First In-
ternational Workshop on Rough Sets: State of the Art and Perspectives, Kiekrz,
Poznań, Poland, September 2–4 (1992). Volume 18(3-4) of Foundations of Com-
puting and Decision Sciences. (1993)

32. Ziarko, W., ed.: Special issue. Volume 11(2) of Computational Intelligence: An
International Journal. (1995)

Some Issues on Rough Sets 55

33. Ziarko, W., ed.: Special issue. Volume 27(2-3) of Fundamenta Informaticae. (1996)

34. Lin, T.Y., ed.: Special issue. Volume 2(2) of Journal of the Intelligent Automation
and Soft Computing. (1996)

35. Peters, J., Skowron, A., eds.: Special issue on a rough set approach to reasoning
about data. Volume 16(1) of International Journal of Intelligent Systems. (2001)

36. Cercone, N., Skowron, A., Zhong, N., eds.: (Special issue). Volume 17(3) of Com-
putational Intelligence. (2001)

37. Pal, S.K., Pedrycz, W., Skowron, A., Swiniarski, R., eds.: Special volume: Rough-
neuro computing. Volume 36 of Neurocomputing. (2001)

38. Skowron, A., Pal, S.K., eds.: Special volume: Rough sets, pattern recognition and
data mining. Volume 24(6) of Pattern Recognition Letters. (2003)

39. Ziarko, W., ed.: Rough Sets, Fuzzy Sets and Knowledge Discovery: Proceedings
of the Second International Workshop on Rough Sets and Knowledge Discov-
ery (RSKD’93), Banff, Alberta, Canada, October 12–15 (1993). Workshops in
Computing. Springer–Verlag & British Computer Society, London, Berlin (1994)

40. Lin, T.Y., Wildberger, A.M., eds.: Soft Computing: Rough Sets, Fuzzy Logic,
Neural Networks, Uncertainty Management, Knowledge Discovery. Simulation
Councils, Inc., San Diego, CA, USA (1995)

41. Tsumoto, S., Kobayashi, S., Yokomori, T., Tanaka, H., Nakamura, A., eds.: Pro-
ceedings of the The Fourth Internal Workshop on Rough Sets, Fuzzy Sets and
Machine Discovery, November 6-8, University of Tokyo , Japan. The University
of Tokyo, Tokyo (1996)

42. Polkowski, L., Skowron, A., eds.: First International Conference on Rough Sets
and Soft Computing (RSCTC’98), Warsaw, Poland, June 22-26, 1998. Volume
1424 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidelberg (1998)

43. Zhong, N., Skowron, A., Ohsuga, S., eds.: Proceedings of the 7-th International
Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing
(RSFDGrC’99), Yamaguchi, November 9-11, 1999. Volume 1711 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, Heidelberg (1999)

44. Ziarko, W., Yao, Y., eds.: Proceedings of the 2-nd International Conference on
Rough Sets and Current Trends in Computing (RSCTC’2000), Banff, Canada,
October 16-19, 2000. Volume 2005 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, Heidelberg (2001)

45. Hirano, S., Inuiguchi, M., Tsumoto, S., eds.: Proceedings of International Work-
shop on Rough Set Theory and Granular Computing (RSTGC-2001), Matsue,
Shimane, Japan, May 20-22, 2001. Volume 5(1-2) of Bulletin of the International
Rough Set Society. International Rough Set Society, Matsue, Shimane (2001)

46. Terano, T., Nishida, T., Namatame, A., Tsumoto, S., Ohsawa, Y., Washio, T.,
eds.: New Frontiers in Artificial Intelligence, Joint JSAI’01 Workshop Post-
Proceedings. Volume 2253 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, Heidelberg (2001)

47. Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N., eds.: Third International Con-
ference on Rough Sets and Current Trends in Computing (RSCTC’02), Malvern,
PA, October 14-16, 2002. Volume 2475 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, Heidelberg (2002)

48. Skowron, A., Szczuka, M., eds.: Proceedings of the Workshop on Rough Sets
in Knowledge Discovery and Soft Computing at ETAPS 2003 (RSKD’03), April
12-13, 2003. Volume 82(4) of Electronic Notes in Computer Science. Elsevier,
Amsterdam, Netherlands (2003)

56 Zdzis�law Pawlak

49. Wang, G., Liu, Q., Yao, Y., Skowron, A., eds.: Proceedings of the 9-th Inter-
national Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing (RSFDGrC’03), Chongqing, China, May 26-29, 2003. Volume 2639
of Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidelberg (2003)

50. Komorowski, J., , Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial.
In [24] 3–98

51. Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets and rough logic: A KDD
perspective. In [26] 583–646

52. Skowron, A., Pawlak, Z., Komorowski, J., Polkowski, L.: A rough set perspective
on data and knowledge. In Kloesgen, W., Żytkow, J., eds.: Handbook of KDD.
Oxford University Press, Oxford (2002) 134–149

53. Pawlak, Z., Polkowski, L., Skowron, A.: Rough set theory. In Wah, B., ed.: Ency-
Clopedia Of Computer Science and Engineering. Wiley, New York, USA (2004)

54. Cantor, G.: Grundlagen einer allgemeinen Mannigfaltigkeitslehre, Leipzig, Ger-
many (1883)

55. Russell, B.: The Principles of Mathematics. George Allen & Unwin Ltd., London,
Great Britain (1903)

56. Russell, B.: Vagueness. The Australasian Journal of Psychology and Philosophy
1 (1923) 84–92

57. Black, M.: Vagueness: An exercise in logical analysis. Philosophy of Science 4(4)
(1937) 427–455

58. Hempel, C.G.: Vagueness and logic. Philosophy of Science 6 (1939) 163–180
59. Fine, K.: Vagueness, truth and logic. Synthese 30 (1975) 265–300
60. Keefe, R., Smith, P.: Vagueness: A Reader. MIT Press, Cambridge, MA (1999)
61. Keefe, R.: Theories of Vagueness. Cambridge University Press, Cambridge, U.K.

(2000)
62. Frege, G.: Grundgesetzen der Arithmetik, 2. Verlag von Herman Pohle, Jena,

Germany (1903)
63. Read, S.: Thinking about Logic - An Introduction to Philosophy of Logic. Oxford

University Press, Oxford (1995)
64. Leśniewski, S.: Grungzüge eines neuen systems der grundlagen der mathematik.

Fundamenta Matematicae 14 (1929) 1–81
65. Pawlak, Z., Skowron, A.: Rough membership functions. In Yager, R., Fedrizzi,

M., Kacprzyk, J., eds.: Advances in the Dempster-Shafer Theory of Evidence,
New York, NY, John Wiley & Sons (1994) 251–271

66. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information
systems. In [19] 331–362

67. Berthold, M., Hand, D.J.: Intelligent Data Analysis. An Introduction. Springer-
Verlag, Berlin, Heidelberg, New York (1999)

68. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. John Wiley
and Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore (1992)

69. Pawlak, Z.: Rough sets and decision algorithms. In [44] 30–45
70. Pawlak, Z.: In pursuit of patterns in data reasoning from data – the rough set

way. In [47] 1–9
71. Pawlak, Z.: Probability, truth and flow graphs. In [48] 1–9
72. Wong, S., Ziarko, W.: Algebraic versus probabilistic independence in decision the-

ory. In Ras, Z.W., Zemankova, M., eds.: Proceedings of the ACM SIGART First
International Symposium on Methodologies for Intelligent Systems Knoxville (IS-
MIS’86), Tennessee, USA, October 22-24, 1986. ACM SIGART, USA (1986)
207–212

Some Issues on Rough Sets 57

73. Wong, S., Ziarko, W.: On learning and evaluation of decision rules in the context
of rough sets. In Ras, Z.W., Zemankova, M., eds.: Proceedings of the ACM
SIGART First International Symposium on Methodologies for Intelligent Systems
Knoxville (ISMIS’86), Tennessee, USA, October 22-24, 1986. ACM SIGART, USA
(1986) 308–324

74. Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: Probabilistic versus deter-
ministic approach. International Journal of Man-Machine Studies 29(1) (1988)
81–95

75. Yamauchi, Y., Mukaidono, M.: Probabilistic inference and bayeasian theorem
based on logical implication. In [43] 334–342

76. Intan, R., an Y. Y. Yao, M.M.: Generalization of rough sets with alpha-coverings
of the universe induced by conditional probability relations. In [46] 311–315

77. Ślȩzak, D.: Approximate decision reducts (in Polish). PhD thesis, Warsaw Uni-
versity, Warsaw, Poland (2002)

78. Ślȩzak, D.: Approximate bayesian networks. In Bouchon-Meunier, B., Gutierrez-
Rios, J., Magdalena, L., Yager, R., eds.: Technologies for Constructing Intelli-
gent Systems 2: Tools. Volume 90 of Studies in Fuzziness and Soft Computing.
Springer-Verlag, Heidelberg, Germany (2002) 313–326

79. Ślȩzak, D., Wróblewski, J.: Approximate bayesian network classifiers. In [47]
365–372

80. Yao, Y.Y.: Information granulation and approximation. In [30] 491–516
81. Ślȩzak, D.: Approximate markov boundaries and bayesian networks: Rough set

approach. In [29] 109–121
82. Ślȩzak, D., Ziarko, W.: Attribute reduction in the bayesian version of variable

precision rough set model. In [48]
83. Ślȩzak, D., Ziarko, W.: Variable precision bayesian rough set model. In [49]

312–315
84. Wong, S.K.M., Wu, D.: A common framework for rough sets, databases, and

bayesian networks. In [49] 99–103
85. Ślȩzak, D.: The rough bayesian model for distributed decision systems (submit-

ted). In: Fourth International Conference on Rough Sets and Current Trends
in Computing (RSCTC’04), Uppsala, Sweden, June 1-5, 2004. Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg, Germany (2004)

86. Swinburne, R.: Bayes Theorem. Volume 113 of Proceedings of the British
Academy. Oxford University Press, Oxford, UK (2003)

87. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley Series in Probability and
Mathematical Statistics. John Wiley & Sons, Chichester, New York, Brisbane,
Toronto, Singapore (1994)

88. �Lukasiewicz, J.: Die logischen grundlagen der wahrscheinilchkeitsrechnung,
Kraków 1913. In Borkowski, L., ed.: Jan �Lukasiewicz - Selected Works. North
Holland Publishing Company, Amstardam, London, Polish Scientific Publishers,
Warsaw (1970)

89. Adams, E.W.: The Logic of Conditionals. An Application of Probability to De-
ductive Logic. D. Reidel Publishing Company, Dordrecht, Boston (1975)

90. Grzyma�la-Busse, J.W.: LERS - a system for learning from examples based on
rough sets. In [19] 3–18

91. Skowron, A.: Boolean reasoning for decision rules generation. In Komorowski, J.,
Raś, Z.W., eds.: Seventh International Symposium for Methodologies for Intelli-
gent Systems (ISMIS’93), Trondheim, Norway, June 15-18. Volume 689 of Lecture
Notes in Artificial Intelligence., Heidelberg, Springer-Verlag (1993) 295–305

58 Zdzis�law Pawlak

92. Pawlak, Z., Skowron, A.: A rough set approach for decision rules generation. In:
Thirteenth International Joint Conference on Artificial Intelligence (IJCAI’93),
Chambéry, France, Morgan Kaufmann (1993) 114–119

93. Shan, N., Ziarko, W.: An incremental learning algorithm for constructing decision
rules. In Ziarko, W., ed.: Rough Sets, Fuzzy Sets and Knowledge Discovery, Berlin,
Germany, Springer Verlag (1994) 326–334

94. Nguyen, H.S.: Discretization of Real Value Attributes, Boolean Reasoning Ap-
proach. PhD thesis, Warsaw University, Warsaw, Poland (1997)

95. S�lowiński, R., Stefanowski, J.: Rough family – software implementation of the
rough set theory. In [23] 581–586

96. Nguyen, H.S., Nguyen, S.H.: Pattern extraction from data. Fundamenta Infor-
maticae 34 (1998) 129–144

97. Nguyen, H.S., Nguyen, S.H.: Discretization methods for data mining. In [22]
451–482

98. Skowron, A.: Rough sets in KDD - plenary talk. In Shi, Z., Faltings, B., Musen,
M., eds.: 16-th World Computer Congress (IFIP’00): Proceedings of Conference
on Intelligent Information Processing (IIP’00). Publishing House of Electronic
Industry, Beijing (2002) 1–14

99. Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set
algorithms in classification problems. In [26] 49–88

100. Grzymala-Busse, J.W., Shah, P.: A comparison of rule matching methods used
in aq15 and lers. In: Proceedings of the Twelfth International Symposium on
Methodologies for Intelligent Systems (ISMIS’00), Charlotte, NC, October 11-14,
2000. Volume 1932 of Lecture Nites in Artificial Intelligence., Berlin, Germany,
Springer-Verlag (2000) 148–156

101. Grzyma�la-Busse, J., Hu, M.: A comparison of several approaches to missing
attribute values in data mining. In [44] 340 – 347

102. Greco, S., Matarazzo, B., S�lowiński, R., Stefanowski, J.: An algorithm for induc-
tion of decision rules consistent with dominance principle. In [44] 304–313

103. Skowron, A.: Rough sets and boolean reasoning. In Pedrycz, W., ed.: Granular
Computing: an Emerging Paradigm. Volume 70 of Studies in Fuzziness and Soft
Computing. Springer-Verlag/Physica-Verlag, Heidelberg, Germany (2001) 95–124

104. Greco, S., Matarazzo, B., S�lowiński, R.: Rough sets theory for multicriteria deci-
sion analysis. European J. of Operational Research 129(1) (2001) 1–47

105. Casti, J.L.: Alternate Realities: Mathematical Models of Nature and Man. John
Wiley and Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore (1989)

106. Coombs, C.H., Avruin, G.S.: The Structure of Conflicts. Lawrence Erlbaum,
London (1988)

107. Deja, R.: Conflict analysis, rough set methods and applications. In [26] 491–520
108. Maeda, Y., Senoo, K., Tanaka, H.: Interval density function in conflict analysis.

In [43] 382–389
109. Nakamura, A.: Conflict logic with degrees. In [24] 136–150
110. Pawlak, Z.: An inquiry into anatomy of conflicts. Journal of Information Sciences

109 (1998) 65–68
111. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,

Princeton, New Jersey (1973)
112. S�lowiński, R., Greco, S.: A note on dependency factor. (2004) (manuscript).

	1 Introduction
	2 Rough Sets – Basic Concepts
	2.1 Introduction
	2.2 Sets
	2.3 Fuzzy Sets
	2.4 Rough Sets

	3 Rough Sets and Reasoning from Data
	3.1 Introduction
	3.2 An Example
	3.3 Information Systems
	3.4 Decision Tables
	3.5 Dependency of Attributes
	3.6 Reduction of Attributes
	3.7 Indiscernibility Matrices and Functions
	3.8 Significance of Attributes and Approximate Reducts

	4 Rough Sets and Bayes’ Theorem
	4.1 Introduction
	4.2 Bayes’ Theorem
	4.3 Decision Tables and Bayes’ Theorem
	4.4 Decision Language and Decision Algorithms
	4.5 An Example

	5 Rough Sets and Conflict Analysis
	5.1 Introduction
	5.2 Basic Concepts of Conflict Theory
	5.3 An Example

	6 Data Analysis and Flow Graphs
	6.1 Introduction
	6.2 Flow Graphs
	6.3 Certainty and Coverage Factors
	6.4 Dependencies in Flow Graphs
	6.5 An Example
	6.6 An Example
	6.7 Decision Networks
	6.8 An Example
	6.9 Inference Rules and Decision Rules
	6.10 An Example

	7 Summary
	Acknowledment
	References

