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Some links between continuous and discrete Radon transform

Myriam Servières, Nicolas Normand, Peggy Subirats, and JeanPierre Guédon

IRCCyN - UMR CNRS 6597, Image & Video Communication,

École polytechnique de l’Université de Nantes

La Chantrerie, BP 50609, 44306 Nantes Cedex 3

ABSTRACT

The Filtered BackProjection is still questionable since many discrete versions have been derived from the con-
tinuous Radon formalism.

From a continuous point of view, a previous work has made a link between continuous and discrete FBP
versions denoted as Spline 0-FBP model leading to a regularization of the infinite Ramp filter by the Fourier
transform of a trapezoidal shape. However, projections have to be oversampled (compared to the pixel size) to
retrieve the theoretical properties of Sobolev and Spline spaces. Here we obtain a novel version of the Spline 0
FBP algorithm with a complete continuous/discrete correspondence using a specific discrete Radon transform,
the Mojette transform.

From a discrete point of view, the links toward the FBP algorithm are shaped with the morphological de-
scription and the extended use of discrete projection angles. The resulting equivalent FBP scheme uses a selected
set of angles which covers all the possible discrete Katz’s directions issued from the pixels of the (square) shape
under reconstruction: this is implemented using the corresponding Farey’s series. We present a new version of a
discrete FBP method using a finite number of projections derived from discrete geometry considerations. This
paper makes links between these two approaches.

Keywords: Tomographic Reconstruction, Discrete Tomography, FBP, Discrete Geometry, Mojette Transform

1. INTRODUCTION

Many discrete versions implementing the Filtered BackProjection have been derived from the continuous Radon

formalism.? But an infinite number of continuous projections is required to reconstruct a continuous 2D function

belonging to an Euclidean space.? Several ways exist to discretize this problem. The Radon transform can

be computed with direct methods (FBP algorithm? or Fourier slice theorem?) or iterative methods (ART or

OSEM?) with possibly a priori information onto the object or the noise. On another side, discrete tomography
uses a priori information on discrete geometry for the acquisition model and objects under reconstruction. The
goal of this paper is to make some links between these two classical approaches.

In Section ??, from the continuous point of view, we will derive the proper way to sample the projections and

the image domains in order to obtain a discrete FBP scheme. This scheme extends Guédon and Bizais work?

by adapting the whole sampling scheme and therefore using the Mojette discrete Radon transform version.?

Section ?? shows the FBP Mojette result onto tests images and null-space example. Finally in section ??, from
a pure discrete point of view, we present a new version of a discrete FBP method using a finite number of
projections derived from discrete geometry considerations.

2. FROM CONTINUOUS TO DISCRETE FBP

2.1. Continuous FBP

In a classic point of view, FBP reconstruction scheme is processed onto projection given by uniform projection
angle directions. The bin number on each projection is generally given by the image size. For an infinity of
projections, FBP algorithm is summarized as:

f(x, y) = R∗KRf(x, y) (1)
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with the operators R∗, K and R defined as follows.
The Radon operator onto image f(x, y) gives projections pf (t, θ) with t = −x sin θ + y cos θ:

pf (t, θ) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)δ(t+ x sin θ − y cos θ) dxdy (2)

The K operator, representing the filtering part, is applied onto projections by convolution in the spacial
domain or by multiplication in the Fourier domain. Each projection is convolved with the inverse Fourier
transform of the infinite Ramp :

p̃f (t, θ) = pf (t, θ)
∗F−1 (π |ν|) . (3)

The filter is taken as rotationally invariant because no angular sampling is required at this step.
The backprojector operator R∗ is the dual of the Radon operator:

R∗p̃f (t, θ) = R∗Kpf (t, θ) (4)

Using an infinite number of projections and interpolations onto the projections and possibly oversampling,
the f(x, y) image is reconstructed.

2.2. The FBP Mojette, a link between discrete and continuous spaces

The Mojette FBP is based on the Mojette projector M and its dual operator M∗.

2.2.1. Mojette Projector

Initially, the Mojette operator was defined from a discrete point of view? . The Mojette transform of a region
gives projections only for direction tan θ = q

p
where p and q are integers (moreover, a single value of the angle

class is kept by restricting p and q to be prime to each other and q to be positive except for p = 1, q = 0).
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Figure 1. Mojette projections of a 4× 4 image with projections directions (p, q) ∈ {(1, 0), (1, 1), (−2, 1)}

It is defined as (Fig. ??):

proj(b, p, q) =

+∞∑

k=−∞

+∞∑

l=−∞

f(k, l)∆(b+ qk − pl) (5)

where ∆(b) =

{
0 if b 6= 0
1 if b = 0

where b is called a bin. Using such an angle with the projection sampling leads to a regular lattice which projects



all pixels centers onto projection bins. The projection size depends on the (p, q) direction.

One of the main point in the Mojette definition, apart from the sampling, is the pixel model used to link
continuous and discrete images. Choosing a pixel model gives a Mojette operator. For instance, the discrete
Mojette definition (Eq.??) is equivalent to the properly discretized Radon transform with a Dirac pixel model.

Using a Dirac pixel model δ(x, y) = δ(x)δ(y), a continuous image f(x, y) can be expressed as:

f(x, y) =
∑

k

∑

l

f(k, l)δ(x− k)δ(y − l). (6)

Using this image definition in (Eq.??) with Katz angular sampling? tan θ = q
p
and the Mojette projection

sampling t = b/
√

p2 + q2 (inversely proportional to the length of vector (p, q)) gives again the Dirac Mojette
operator defined in (Eq.??). Linearity and shift-invarianceness of the Radon transform are kept because both
angular and projection samplings are adequately implemented.

Because of the Mojette sampling the linear system expressed in (Eq.??) is exactly invertible. From a rectan-
gular image Q× P , this matrix inversion allows to perform an inverse Mojette transform. A sufficient condition

to invertibility is to have a minimum number of I projections in the set S = {(pi, qi), i ∈ N} of all projections.?

For the rectangular shape, the Katz criterion allows reconstruction if P ≤
∑I

i=1 |pi| or Q ≤
∑I

i=1 |qi| where I is
the number of projections.

In other words, the reconstruction does not depend directly on the number of bins but is first related to
the number of projections. These reconstruction conditions have been generalized for any convex shape using a

simple morphological tool: a two pixel structuring element that depicts a discrete direction.?

In this context, the inverse Mojette operator is also defined in a specific way. Instead of a matrix inversion,
the operator only proceeds by finding at each iteration a discrete corner of the shape under reconstruction which
is the only projected pixel onto a bin: the bin value is exactly backprojected and all projections are updated. The
algorithm complexity of both the direct and inverse Mojette transform is O(IN) where N is the number of pixels.
This inverse algorithm could only be used to reconstruct perfect data. If the data are noisy the reconstruction

process become highly unstable? and the ill posed nature of the inverse Radon transform appears.

2.2.2. Mojette Backprojector

The Mojette backprojector is defined? as the dual of the Mojette projector. For a Dirac pixel model, (Eq.??) is
written as:

f̃(k, l) =
∑

p,q

∑

b

proj(b, p, q)∆(b+ qk − pl). (7)

That means for one projection (p, q): fp,q(k, l) = M∗
δ proj(b, p, q) The Mojette dual operator M∗ corresponds to

an exact discrete backprojector operator as show in (Fig. ??). Then, using a Mojette angle sampling allows to
back-project onto pixel centers without any interpolation.

2.3. Continuous-Discrete Equivalence

In this paragraph, we first focus on the Spline 0 implementation of the General Sampling Theorem? of Aldroubi
and Unser. The corresponding Mojette operator denoted M0 is derived. Then the same treatment is applied
onto the filter.
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Figure 2. (a) Interpolation onto the projection in order to backproject the right value at the corresponding center of the
pixel, (b) Exact Mojette backprojector.

2.3.1. Spline 0 Pixel Model

The Splines spaces (since they represent a reproducing kernel of Sobolev spaces) will be the choice to project the
discrete Radon solutions issued from our derived schemes. Because of the recurrent relationships between Spline

orders, only Splines of order 0 are considered here without loss of generality? . In other words, the formulation

for a continuous function f(x, y) from samples f(k, l) is given following Aldroubi-Unser as?:

f0(x, y) =

+∞∑

k=−∞

+∞∑

l=−∞

f(k, l)β0(x− k)β0(y − l), (8)

where function β0 is the step function of unitary length: β0(t) =







1 if |t| < 1
2

1 if |t| = 1
2 .

0 elsewhere
Using (Eq.??) in (Eq.??)

another version of the Mojette operator is obtained and denoted the Spline 0 Mojette (M0):

M0f(k, l) = proj0(b, p, q) =

+∞∑

k=−∞

+∞∑

l=−∞

f(k, l)kernel0(k, l, b, p, q), (9)

with kernel0(k, l, b, p, q) =
∫ +∞

−∞

∫ +∞

−∞
β0(x− k)β0(y − l)δ(b+ qx− py) dxdy.

Here kernel0 corresponds to a discrete trapezoidal filter expressed as the convolution of two series of unitary
values of respective lengths p and q. It allows a link between Dirac Mojette transform and Spline 0 Mojette

transform?:

proj0(b, p, q) = projδ(b, p, q) ∗ kernel0(b, p, q). (10)

kernel0(b, p, q) is in fact the projection of the Spline 0 pixel model in the (p, q) direction and it is a discrete
trapezoid:

kernel0(b, p, q) =







1 if p = 0 or q = 0
1
pq

(1..1)
︸ ︷︷ ︸

p

∗ (1..1)
︸ ︷︷ ︸

q

if p and q are odd

1
2pq ∗ (11) ∗ (1..1)

︸ ︷︷ ︸

p

∗ (1..1)
︸ ︷︷ ︸

q

if p or q is even.
(11)



We also define the Spline n Mojette operator Mn using:

Mnf(k, l) = projn(b, p, q) =

+∞∑

k=−∞

+∞∑

l=−∞

f(k, l)kerneln(k, l, b, p, q), (12)

with

kerneln(k, l, b, p, q) =

∫ +∞

−∞

∫ +∞

−∞

βn(x− k)βn(y − l)δ(b+ qx− py) dxdy.

2.3.2. k0 Filter

To be consistent with the medical reconstruction problem which deals with continuous integration line rather
than discrete ones as the Mojette transform does, the use of a Spline 0 pixel model and a discrete set of angles
obtained from the acquisition model is mandatory. The Spline 0 Mojette operator that corresponds to model
the bin value by the entire continuous line summation (not the discrete line as the Dirac Mojette operator) will

be used. The continuous exact Spline 0 FBP filter was derived in Guédon and Bizais? and its expression in the
Fourier domain is given by:

K0(ν, θ) = π |ν| sinc(ν cos θ)sinc(ν sin θ), (13)

where the apodisation function corresponds to the projection of the filter onto the Spline space of order 0. The
pixel size is unitary.

The inverse fourier transform of (Eq.??) was derived as

k0(t, θ) =
1

π sin(2θ)
ln

∣
∣
∣
∣
∣

t2 − ( 1+sin(2θ)
4 )

t2 − ( 1−sin(2θ)
4 )

∣
∣
∣
∣
∣
, (14)

for t 6= 0 and θ ∈]0, π
4 ] and k0(t, 0) =

−1
π

2
4t2−1 .

Discretizing with Mojette angles (tan θ = q
p
) with the projection sampling t = b

p2+q2
leads to:

k0(b, p, q) =
p2 + q2

2πpq
ln

∣
∣
∣
∣
∣

b2 − (p+q
2 )2

b2 − (p−q
2 )2

∣
∣
∣
∣
∣
, (15)

for b 6= 0 and (p, q) 6= (1, 0) and k0(b, 1, 0) =
−1
π

2
4b2−1 .

Figure 3. Trapezoidal shape projection onto the (1, 3) direction and its corresponding k0 filter.



This filter can not be implemented in a straightforward manner in the spatial domain. It exhibits disconti-
nuities at the points where the projection of the pixel (described by a trapezoidal shape) is continuous but not
differentiable. The Ramp filter acting as a derivative operator, the values at these points have to be computed
using a Dirichlet condition. Implementing the FBP Mojette operator uses the Mojette projector, the k0 filter
and the Mojette backprojector. This FBP Mojette scheme is exact for the filter when an infinite number of
angles is used and exact for the backprojection of these filtered angles.

2.4. Summary

Fig.?? explicits somes links between the previous equations.

Spline 0

✲ ✲

✲ ✲ ✲

❄ ❄

f(k, l) p0(b, p, q) p̃0(b, p, q) f(k, l)

f(x, y) p(t, θ) p̃0(t, θ) f(x, y)

M0 K0 M∗
δ

R K R∗

Spline 0

✲

Figure 4. Equivalence between continuous and discrete scheme

The K0 Fourier expression (Eq.??) is divided in two parts: a perfect Ramp filter and a trapezoidal shape.
This trapeze is the projection of the Spline 0 pixel Model. (Eq.??) represents the use of the corresponding
Riesz basis (constructed by tensorial product of β0) to get the continuous-discrete equivalence of the original
image f(x, y). Applying the FBP Mojette scheme, the f(k, l) is projected using the Spline 0 Mojette projection
(Eq.??). The projections are convolved with the k0 filter, i.e. with the perfect Ramp filter then with a trapezoid.
The last stage is the Dirac Mojette backprojection (Eq.??). With (Eq.??) these stages are equivalent to a Spline
0 Mojette projection, a filtering with the Ramp filter and a Spline 0 Mojette backprojection.

This scheme ensures a continuous/discrete equivalence (in the Aldroubi and Unser sense) at each stage (Fig.
??). (Eq.??) and (Eq.??) define the Mojette operator for the Dirac and Spline 0 pixel intensity distribution
model respectively. These links constitute the natural way of implementing an exact discrete FBP using an
infinite number of projections. The resulting scheme is composed of a discrete projection operator using the
Mojette sampling, a discrete Spline 0 Ramp filter with the same sampling, and a discrete exact backprojection

operator?: M∗
δK0M0 = Id0.

3. FBP MOJETTE RESULTS AND EXTENSIONS

3.1. FBP Reconstruction

The first test image for the FBP Mojette reconstruction is a 128 × 128 Dirac image. We use the same method

as in? computing 128 gracefully discrete angles with Farey’s? series. The Farey series of order N (FN ) is the
set of all fractions in lowest terms between 0 and 1 whose denominators do not exceed N , arranged in order of
magnitude. For example, F4 is composed of { 0

1 ,
1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1}. The FBP Mojette scheme was applied on the

Dirac image with various number of projections (64, 128 and 256). It was also applied with Dirac and Spline 0
pixel model. The reconstructed images (Fig.??) are normalized and the line containing the Dirac is extracted.

A comparison is made between the FBP Mojette scheme with a Dirac and a Spline 0 Mojette projector, a k0
filter and a Dirac Mojette backprojector. We observe the reconstruction differences onto a Dirac image with one
or two trapezoids convolved onto the projections. With the M∗

δK0M0 the projections stay in the Sobolev space
due to the Spline 0 pixel model. With the M∗

δK0Mδ there is only one trapezoid in the filter and the resulting
filtered projections are not in the Sobolev space, i.e. the continuous-discrete equivalence is not ensured.

For all three cases, the Dirac image obtained with the M∗
δK0M0 scheme is better reconstructed and smoother

than the one obtained by a M∗
δK0M0 scheme. In fact, with the Mojette Spline 0 projector, the projections are

smoothed one more time with a trapezoidal shape (Fig.??.b, Fig.??.d and Fig.??.f). With the Dirac Mojette



projector, there are some irregularities in the reconstructed image around the Dirac (Fig.??.a, Fig.??.c and
Fig.??.e). Fortunately, the reconstructed images are better when the number of projections is increasing.
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Figure 5. Slice of the Dirac reconstructed image with FBP Mojette. (a) Reconstructed image with 64 projections and
a M∗

δ K0Mδ FBP Mojette scheme. (b) Reconstructed image with 64 projections and a M∗

δ K0M0 FBP Mojette scheme.
(c) Reconstructed image with 128 projections and a M∗

δ K0Mδ FBP Mojette scheme. (d) Reconstructed image with 128
projections and a M∗

δ K0M0 FBP Mojette scheme. (e) Reconstructed image with 256 projections and a M∗

δ K0Mδ FBP
Mojette scheme. (f) Reconstructed image with 256 projections and a M∗

δ K0M0 FBP Mojette scheme.

3.2. Null Space Analysis

To obtain some vectors of the null space, we compute FBP Mojette algorithm onto two images (digital phantoms):
first the Dirac image and second, a square 128×128 image with 17×17 centered pixels with a Dirichlet condition
with the value 1 in the centered 15 × 15 square, 1

2 in the boundaries and 1
4 in the corners. We will now study



the null space image of the FBP Mojette scheme (M∗
δK0M0) by computing the difference image between the

original and reconstructed images. Fig.?? summarizes the Dirac result whereas Fig.?? corresponds to the square
analysis. Both phantoms were tested with 64, 128 and 256 projections. As shown on the difference images, as
soon as the number of projections equals the size of the image, the degradations are both small and centered
around the signal. The interest of the second phantom is to explicitely show edges degradations which is obvious
there whereas difficult to interpret on the Dirac phantom. Fig.?? shows the reconstructed slice of the square
phantom. The higher the projections number, the better the sharpness of the edges.

(a) (b) (c) (d)

Figure 6. Dirac image reconstruction image with a M∗

δ K0M0 FBP Mojette scheme. (a) Original image. (b) Normalized
difference between original and reconstructed image for 64 projections (normalization factor 1

0.046
). (c) Normalized

difference between original and reconstructed image for 128 projections (normalization factor 1

0.036
). (d) Normalized

difference between original and reconstructed image for 256 projections (normalization factor 1

0.023
)

(a) (b) (c) (d)

Figure 7. Square image reconstruction image with a M∗

δ K0M0 FBP Mojette scheme. (a) Original image. (b) Normalized
difference between original and reconstructed image (normalization factor 1

0.098
). (c) Normalized difference between orig-

inal and reconstructed image (normalization factor 1

0.070
). (d) Normalized difference between original and reconstructed

image (normalization factor 1

0.050
).

3.3. Mojette Reconstruction

A number of projections satisfying the Katz criteria is sufficient with the inverse Mojette operator (section ??)
M−1 to obtain an exact reconstruction. However, this reconstruction only operates onto perfect data. When

noisy data are used, the reconstruction process diverges and the ill-posed nature of the Radon transform appears.?

In our case, we reconstruct the square image using 48 projections and satisfying Katz criteria. For the FBP
like case the noise is filtered out (the background is almost zero, the square grey levels are almost flat) whereas
the inverse Mojette transform produces an image with 0.5 mean value almost everywhere and some black and
white mixed values at the square location. These experiments show that the characteristic vectors of the null
space of the Mojette linear operator can change from an empty space (no noise and enough projections) to very
complicated shapes when noise enters the game. A theoretical solution to this kind of problems can be found by
deriving the exact discrete filter corresponding to our implementation of M∗M .
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Figure 8. Slice in the middle of the square of the normalized reconstructed square image with various number of
projections. (a) 64 projections. (b) 128 projections. (c) 256 projections.

4. PURE DISCRETE FBP APPROACH

When a discrete set of pixels is described from a finite number of projections, a priori geometric features infor-
mation is mandatory. In our case, the links toward the FBP algorithm are constituted by the morphological
description and the extended use of discrete projection angles. The mathematical morphology has been used

through the two-pixel structuring element object that is strongly related to the direction of a projection? and
allows for deriving the geometrical conditions under which a set of connected pixels can be reconstructed from
a given set of Katz’s projections. These sets of projections generalize the usual set of two (0 and 90) or four
projections found in the subsequent literature. The resulting equivalent FBP scheme uses a selected set of an-
gles which covers all the possible discrete Katz’s directions issued from the pixels of the (square) shape under
reconstruction: this is implemented using the corresponding Farey’s series. For instance a 128x128 image will
need I=20088 directions (i.e. Card(Farey(128)) to cover [0, π[.
From the Dirac Mojette projection and backprojection definitions we derive the value of the pixel (k, l) in the
image obtained by backprojecting the projection i :

f̃i(k, l) =
∑

k′

∑

l′

f(k′, l′)∆(qik − pil − qik
′ + pil

′).

This can be expressed as the sum of pixels aligned with (k, l). Considering a set of projections {(pi, qi)}, the
value of pixel (k, l) becomes:

f̃(k, l) = If(k, l) +
∑

k′ 6=k

∑

l′ 6=l

f(k′, l′)∆(qik − pil − qik
′ + pil

′)

Using all the projections corresponding to all the projections needed to go from one pixel to one other in the
image. Every pixel (k′, l′) 6= (k, l) is backprojected once in (k, l). This leads to:

f̃(k, l) = (I − 1)f(k, l) +
∑

i

∑

j

f(i, j) (16)

Since the sum of pixel values is equal to the sum of each projection bin values, the exact reconstruction (see
Fig.??) is obtained by:

f(k, l) =
1

I − 1

[

f̃(k, l)−
1

I

∑

i

∑

b

proj(b, pi, qi)

]

(17)

Practically, a finite set of Farey angles is used. The order of the Farey series is taken equal to the image side.
This a simple relationship acting as a filtering step that relies the original image to this set of projections via
the same implementation of the exact backprojection. In other words, this scheme implements a filtering and a
backprojection operators and gives back the original compact domain when the projector used is the dual of the
backprojector, i.e. M∗KFM = Id, where KF is the discrete filter indexed by the Farey’s series.



Figure 9. Exact reconstructed 128× 128 square image with the pure discrete FBP approach (20088 projections).

5. DISCUSSION

Revisiting the angle sampling for the discrete tomographic problem gives us two novel algorithms based on the
classical FBP reconstruction algorithm.

The first algorithm introduces the Spline 0 representation that can be easily extended to the whole Spline
class. The Mojette operator Mδ and its dual M∗

δ act as the way to properly go onto the projection space and to
come back in the image domain without loosing information. The resulting filter definition can be derived except
at specific locations (points where the trapezoid is not differentiable) that can be approximated. Retrieving

these singularities is good news: there were masqued in Guédon and Bizais? by the conventional projection
and angular sampling. The use of higher Spline degree will allow to obtain an exact scheme. However, the

Aldroubi-Unser? sampling theorem induces a postfilter (reduces to identity for Spline 0) after the reconstruction
stage.

The whole discrete algorithm extends a step further this analysis. It allows for a perfect reconstruction with
a finite (even if high) number of projections computed from the Farey’s series of the image size. In other words,
the filter is now defined from discrete constraints instead of coming from the sampling of the continuous Ramp
filter. We thereby obtain the completely discrete FBP equation M∗KM = Id.

Because of its implementation it is quite difficult to obtain enough projections to use the latter algorithm.
However the links between the two versions are strong (same kind of angles, same sampling onto the projections
and image). This contucts us to compare the two filters and to use the latter algorithm within the context of
a restricted number of projections (null spaces of both operators are constructed from the same eigenvectors
deduced from M∗M).

The final goal is to interpret these relationships between the two operators in the sense that allows for
optimizing the filter where only a small number of projections are available.

6. CONCLUSION

Two novel FBP like algorithms were presented and there links discussed. The differences in their final aspect give
insight for the explicit null space decomposition when the number of projections will be low and for using the
compactness constraint issued from the discrete side into the Spline 0 FBP method for reconstructing a region
of interest. In order to go further in these new operators analysis, the noise generation will be now performed
associated with the device acquisition accordance. This will imply to compute Mojette bin values from actual
noisy data accumulated from a finite number of projections which are not distributed in a beautiful Farey’s
geometry.




