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BP 87, 91003 Evry Cedex, France

(revised)

A link is established between a phenomenological Cosserat model of crystal plasticity due to [1] and recent results obtained in the statistical
theory of dislocations by [2]. The existence of a back–stress related to the divergence of the couple stress tensor is derived. According
to several dislocation–based models of single slip, the kinematic hardening modulus is found to be inversely proportional to dislocation
density. Phenomenological extensions to multislip situations can be proposed based on these generalized continuum approaches.

1 Introduction

First links between the continuum theory of dislocations and the mechanics of generalized continua were
established in the pioneering works of Kröner and Mura [3, 4]. The connection between the dislocation
density tensor and the rotational part of the plastic deformation was an incentive for the development of
strain gradient crystal plasticity theories, based on the second gradient medium as proposed in [5]. On the
other hand, the relation between the dislocation density tensor and lattice curvature derived by Nye [6]
prompted several authors as recorded in [1] to formulate a Cosserat model for crystal plasticity. Since
then a plethora of strain gradient plasticity models have been proposed without clear classification nor
guidelines for assessing the fundamental differences between them. One of the objectives of this work is to
show that the Cosserat theory and strain gradient plasticity models based on the introduction of the curl
of plastic strain share major common features and belong to the same class of generalized crystal plasticity
models.

Recent formulations of generalized continuum models incorporating the effect of the curl of plastic
deformation within the framework of continuum thermomechanics show that this additional contribution
to hardening compared to classical crystal plasticity, arises as a gradient–dependent internal stress or
back–stress in the constitutive equations [7, 8, 9].

In the mean time, the statistical theory of dislocations has made significant progress since the early
attempts like [10]. In particular, higher order gradient terms in the continuum description have been
derived in [11, 2] from spatial correlations of short–range dislocation–dislocation interactions, at least in
the case of populations of straight parallel edge dislocations. This contribution was shown to be adequately
represented by a back–stress component which is inversely proportional to the dislocation density. Closely
related scaling laws were established for specific distributions of dislocations in relation to the Cosserat
continuum theory [3, 12,13].

Comparisons with numerical simulations based on two–dimensional dislocation dynamics support the
pertinence of this formulation for gradient–dependent internal stresses [14]. This contribution is essentially
proportional to the second derivative of slip in the slip direction. The objective of the present work is to
show that the mentioned Cosserat and strain gradient plasticity models lead to the same formulation of
internal stresses, from purely phenomenological arguments, thus bridging a gap between statistical and
constitutive theories, at least in the case of single slip.
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2 Taylor & Francis

Extensions of the continuum model to multiple slip currently remain on a heuristic basis. Such extensions
were recently proposed in [15,16]. The phenomenological constitutive approach making use of generalized
continua also systematically provides such 3D formulations. It will be shown in the present work that
the phenomenological and statistical approaches share several common features in the case of single slip.
Accordingly, it is worth comparing the 3D formulations of both classes of models. Such gradient depen-
dent internal stresses can be embedded in more comprehensive and realistic constitutive models for the
deformation of metals and alloys, as shown recently in [17].

We start to recall the Cosserat crystal plasticity framework focusing on the relation between the Cosserat
microrotation and crystal lattice rotation. In particular, one additional elastic parameter of the Cosserat
model will be interpreted as a Lagrange multiplier to make both rotations coincide. A Schmid law is then
formulated in section 4 based on the generally non–symmetric Cosserat force stress tensor. It is shown to
lead to the existence of a back–stress expressed in terms of couple stresses. The found internal stresses
are explicited in the case of single slip in section 5 and compared to results from statistical description of
dislocation behaviour in section 8.

The derivations of the generalized continuum models are presented within the small deformation frame-
work for the sake of simplicity. Extensions to finite deformation formulations are straightforward following
the lines of [1, 18,19,20].

In this work, zeroth, first, second, third and fourth order tensors are denoted by a,a ,a
∼

,a
∼

,a
∼

∼

respectively.

The simple and double contractions are written ., :. In index form with respect to an orthonormal Cartesian
basis, these notations correspond to a .b = aibi, a

∼

: b
∼

= aijbij , where repeated indices are summed up.
The tensor product is denoted by ⊗. The nabla operator is denoted by ∇. For example, the component
ijk of ∇A

∼

is Aij,k. For full clarity, both intrinsic and index notations are given at several places in the
text.

2 Cosserat crystal plasticity at small deformation

The degrees of freedom of the theory are the displacement vector u and the rotation pseudo–vector Φ

which is associated with the skew–symmetric part of the micro–rotation tensor R
∼

in the case of small
rotations:

R
∼

≃ 1
∼

− ǫ
∼

.Φ , Rij ≃ δij − ǫijkΦk (1)

where ǫijk denotes the permutation tensor. The deformation measures of the Cosserat theory are the
relative deformation tensor e

∼

and the torsion–curvature tensor κ
∼

:

e
∼

= ∇u + ǫ
∼

.Φ , κ
∼

= ∇Φ (2)

eij = ui,j + ǫijkΦk, κij = Φi,j (3)

The stress measures associated with the deformation rates in the power of internal forces are the force
stress tensor σ

∼

and the couple stress tensor m
∼

. They are generally not symmetric. They must satisfy the
balance equations for momentum and balance of momentum, written in the static case:

div σ
∼

= 0, σij,j = 0 (4)

div m
∼

+ 2
×
σ = 0, mij,j − ǫiklσkl = 0 (5)
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3

where volume forces and couples are excluded for brevity. The axial vector associated with the skew–
symmetric part of the stress tensor is denoted by:

×
σ = −

1

2
ǫ
∼

: σ
∼

,
×
σi = −

1

2
ǫiklσkl (6)

It couples the balance of momentum and moment of momentum equations. Exponents s and a are intro-
duced to respectively denote the symmetric and skew–symmetric parts of the corresponding tensor:

σ
∼

= σ
∼

s + σ
∼

a, σ
∼

a = −ǫ
∼

.
×
σ =

1

2
ǫ
∼

.ǫ
∼

: σ
∼

(7)

σa
ij = −

1

2
ǫijk

×
σk =

1

2
ǫijkǫkmnσmn (8)

The traction vector t and couple stress vector m acting on a surface element must fulfill the following
boundary conditions:

t = σ
∼

.n , ti = σijnj (9)

m = m
∼

.n , mi = mijnj (10)

where n is the outward oriented normal vector at any point of the boundary of the body. The relative
deformation can be split into elastic and plastic parts,

e
∼

= e
∼

e + e
∼

p, eij = ee
ij + e

p
ij (11)

Such a decomposition is not introduced in this work for the total curvature κ
∼

for the sake of simplicity. A
partition of curvature was considered in [1,21] and it is not recalled here. The elastic deformation and the
total curvature tensors are assumed to be linked with the force and couple stress tensors, respectively, by
a generalized Hooke law:

σ
∼

= E
∼

∼

: e
∼

e, σij = Eijkle
e
kl (12)

m
∼

= C
∼

∼

: κ
∼

, mij = Cijklκkl (13)

where E
∼

∼

is the fourth order tensor of elastic moduli (unit MPa) and C
∼

∼

are secant moduli of torsion and

bending stiffness (unit MPa.mm2). In the isotropic case, these tensors are built from 6 independent elastic
moduli:

σ
∼

= λ(trace e
∼

e)1
∼

+ 2µe
∼

es + 2µce
∼

ea (14)

m
∼

= α(trace κ
∼

)1
∼

+ 2βκ
∼

s + 2γκ
∼

a (15)

The Lamé constants are λ and µ. The coupling modulus µc relates the skew–symmetric part of the relative
deformation tensor to the skew–symmetric part of the stress tensor. The additional Cosserat parameters
α, β, γ are intrinsic torsion and bending stiffnesses. We adopt the simplification β = γ as in [22].
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4 Taylor & Francis

The kinematics of plastic flow is dictated by the orientation tensors P
∼

s associated with the crystallog-
raphy of the N slip systems:

ė
∼

p =
N

∑

α=1

γ̇α
P
∼

α, with P
∼

α = l
α ⊗ n

α (16)

where l
α and n α respectively are the slip direction and the normal to the slip plane vectors for slip system

number α. For each slip system, the increment of plastic slip is γ̇α.

3 Cosserat microrotation and lattice rotation

The lattice rotation rate w
∼

e is defined as the difference between the material rotation rate w
∼

and the
plastic rotation rate represented by the skew–symmetric part of plastic deformation [23]:

w
∼

e = (∇u̇ )a − ė
∼

pa (17)

= ė
∼

a − ǫ
∼

.Φ̇ − ė
∼

pa (18)

= ė
∼

ea − ǫ
∼

.Φ̇ (19)

which provides a relation between the lattice rotation rate w
∼

e and the Cosserat microrotation rate −ǫ
∼

.Φ̇ .
Accordingly, the Cosserat microrotation can be identified with lattice rotation if and only if the following
internal constraint is enforced:

ė
∼

ea ≡ 0 (20)

that is when the skew–symmetric part of the elastic relative deformation vanishes. In the works [21, 13],
this constraint was enforced by a penalty method which consists in setting a high enough value of the
constitutive parameter µc. This parameter could also be treated as a Lagrange multiplier to ensure the
identification between Cosserat rotation and lattice rotation. In that case, the skew–symmetric part of the
force stress tensor must be regarded as a reaction force associated with the internal constraint. A similar
(but different) situation is met in the so–called Koiter or couple stress theory for which the Cosserat
microrotation coincides with the material rotation itself [24].

When the constraint (20) is enforced, the Cosserat directors are lattice vectors. In that case, the following
relationship is obtained between Cosserat, material and lattice rotations:

− ǫ
∼

.Φ̇ = w
∼

e = w
∼

− w
∼

p (21)

where w
∼

= (∇u̇ )a, w
∼

p = ė
∼

pa are the skew–symmetric parts of the total and plastic deformation rates
respectively. The associated rotation vectors therefore satisfy the relation:

Φ̇ =
×
w −

×
w

p (22)

4 Schmid law with a non–symmetric stress tensor

Plastic slip is activated when the resolved shear stress on a given slip system reaches a critical value. The
resolved shear stress τ s is the component of the traction vector acting on the slip plane in the slip direction:

τα = (σ
∼

.n α).l α = σ
∼

: P
∼

α = σ
∼

s : P
∼

αs + σ
∼

a : P
∼

αa (23)

= τ symα − xα (24)
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A decomposition of the total resolved shear stress is found into a component τ sym which is nothing but
the resolved shear stress computed with the symmetrized stress tensor, and an internal stress variable xs

defined as:

xα = −σ
∼

a : P
∼

αa =
×
σ .(l α ∧ n

α) (25)

where ∧ denotes the vector product. The additional contribution associated with the skew–symmetric
part of the stress will therefore act as a back–stress in the yield criterion. An alternative expression of
the internal stress can be worked out by taking the balance of moment of momentum equation (5) into
account:

xα = −
1

2
(div m

∼

).(l α ∧ n
α) (26)

which relates the internal stress xα to a projection of the divergence of the couple stress tensor.
The slip activation criterion for slip system α is

fα(σ
∼

, τα
c ) = |τα| − τα

c = |τ symα − xs| − τα
c = 0 (27)

This criterion involves the critical resolved shear stress τα
c for which usual hardening laws of crystal

plasticity can be used. At this stage, the evolution of τα
c can be limited to the effect of so–called statistically

stored dislocations (density ρS). The effect of the dislocation density tensor, or equivalently so–called
geometrically necessary dislocation densities (GND), enters the model via the back–stress xs related to
couple stresses and therefore to lattice curvature, as a result of the celebrated Nye relation connecting the
dislocation density tensor and lattice curvature [6]. This is at variance with the quite common modification

of Taylor’s rule, namely τc proportional to
√

ρS + ρG, where different dislocation density measures are
combined in the friction stress [25].

A viscoplastic flow rule is adopted to compute the amount of plastic glide:

γ̇ =

〈

f

K

〉n

sign(τα) (28)

in the form of a power law involving the viscosity parameter K and the power n. The brackets denote the
positive part of the quantity.

5 Application to single slip

We derive here the special form of the previous constitutive and balance equations when plastic deformation
proceeds through single slip in a plane of normal n in the direction l :

ė
∼

p = γ̇ l ⊗ n (29)

We adopt a Cartesian coordinate system such that the third vector of the basis is

e 3 = l ∧ n (30)

We assume that no gradient will develop along the out of plane direction. In this two–dimensional situation,
the lattice rotation will take place with respect to the third axis:

Φ = Φ3e 3 (31)
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6 Taylor & Francis

We assume that the loading is such that this holds also for the material rotation rate:

×
w = w3e 3 (32)

In this context, the second elasticity law (15) reduces to

m
∼

= 2βκ
∼

, m3i = 2βΦ3,i (33)

The internal stress x is then related to the third component of the divergence of the couple stress tensor:

x = −
1

2
(div m

∼

)3 = −
1

2
(m31,1 + m32,2) = −β∆Φ3 (34)

where ∆ is the Laplace operator.
The lattice rotation can be expressed in terms of the material and plastic rotation following (21) which
becomes:

Φ̇ =
×
w −

×
w

p, with
×
w

p = −
1

2
ǫ
∼

: (l ⊗ n ) (35)

In the single slip case, the only non–vanishing component is

Φ̇3 =
×
w3 +

γ̇

2
(36)

Accordingly, the Schmid law (27) can be written as

τ = ±τc = τ sym − x = τ sym + β∆Φ3 (37)

so that

τ sym = ±τc − β∆Φ3 = ±τc − β(∆
×
ω3 +

1

2
∆γ) (38)

where
×
ω3 is obtained by time integration of

×
w3. The internal stress is found to depend on the Laplacian

of material rotation and amount of slip.
It is important to check that there is no effect of a pure gradient of slip normal to the slip plane in the

model. This is due to the fact that such a gradient of slip does not induce any lattice rotation. To see
that, we consider the following kinematics of single glide γ̄(x2) which depends on the coordinate normal
to the glide plane u = γ̄(x2)x2e 1, where γ̄ is the prescribed non–homogeneous shear. The gradient of
displacement and the plastic deformation take the form

∇u = (γ̄,2x2 + γ̄) e 1 ⊗ e 2, e
∼

p = γ e 1 ⊗ e 2 (39)

As a result of equation (36), the lattice rotation is

Φ3 = −
1

2
(γ̄,2x2 + γ̄) +

γ

2
(40)

and the total Cosserat deformation

e
∼

=
1

2
(γ̄,2x2 + γ̄ + γ) e 1 ⊗ e 2 −

1

2
(γ̄,2x2 + γ̄) e 2 ⊗ e 1 (41)

= (ee
12 + γ) e 1 ⊗ e 2 + ee

21 e 2 ⊗ e 1 (42)
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Figure 1. Rectangular array of parallel edge dislocation considered by Kröner [3].

The balance of force stresses requires that the stress component σ12 does not depend on x2, which in turn
implies that

ee
12 =

1

2
(γ̄,2x2 + γ̄ − γ) = −Φ3 (43)

is constant. The curvature κ32 = Φ3,2 therefore vanishes.
In other words, this feature of the model shows that the proposed Cosserat theory includes only effect of
geometrically necessary dislocations, contrary to the full second gradient model in [5].

6 Relation to strain gradient plasticity models

There is a link between lattice curvature and the rotational part of plastic deformation, related to the
dislocation density tensor. This relation can be obtained by applying the curl operator to the following
expression of total Cosserat deformation rate, within the context of small deformations and rotations:

ė
∼

= ∇u̇ − w
∼

e = ė
∼

e + ė
∼

p (44)

The elastic deformation e
∼

e is symmetric when the constraint (20) that the Cosserat microrotation coincides
with lattice rotation is enforced. We get:

− curlw
∼

e = curl ė
∼

e + curl ė
∼

p (45)

The curl of the lattice rotation rate is equal to the transpose of the curvature rate tensor by:

curlw
∼

e = (∇
×
w

e)T = (∇Φ̇ )T = κ̇
∼

T (46)
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Figure 2. Dislocation bowing in the soft phase. A part of the loop gliding in the plane 1-3 is shown, with the curved (originally screw)
section and edge segments at the soft / hard phase interface. The resolved shear stress τ and Burgers vector b are indicated. Labels s

and h are used to designate the soft and hard phase, respectively.

In the strain gradient crystal plasticity theories proposed in [7,9], the curl of plastic deformation is intro-
duced into the free energy function. These theories turn out to be identical to the present Cosserat model
if the curl of the elastic strain is neglected in (45), as initially done by Nye [6] to derive a direct relation
between the dislocation density tensor and lattice curvature.

In the case of single slip, the curl of plastic deformation is computed as:

[curl ė
∼

p] =





0 0 γ̇,2n1n2 − γ̇,1n
2
2

0 0 −γ̇,2n
2
1 + γ̇,1n1n2

0 0 0



 (47)

where n1 and n2, n3 = 0 are the components of the normal vector to the slip plane. The couple stress
tensor can be approximated by

m
∼

= 2βκ
∼

≃ −2β(curle
∼

p)T (48)

so that

(div m
∼

)3 ≃ −2β(2γ,12n1n2 − γ,11n
2
2 − γ,22n

2
1) (49)

and

x = −
1

2
(div m

∼

)3 ≃ β(2γ,12n1n2 − γ,11n
2
2 − γ,22n

2
1) (50)

This expression, when inserted into (27), gives a yield condition involving the second derivative of the
amount of slip in the spirit of the model proposed by [26].

7 Generalized kinematic hardening modulus

The material parameter β appearing in (34) can be regarded as a generalized kinematic hardening modulus,
with the physical dimension MPa.mm2. It has been evaluated by Kröner as the bending stiffness of a crystal
element containing a rectangular array of edge dislocations. The existence of couple stresses in a dislocated
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crystal was put forward by Kröner [3] by considering the residual stress field after bending and torsion
of single crystals. Kröner derived the expression of a material constant linking a couple–stress component
to the corresponding lattice curvature tensor component, in the special case depicted in figure 1. This
derivation can be interpreted as follows: to maintain a zero plane curvature in a box inside the dislocated
crystal of figure 1, a torque must be applied. Conversely, in the absence of couple stresses acting on
the volume element, lattice planes are curved due to the excess of dislocations of a definite sign. The
characteristic length which goes into this constant is the glide plane distance d between dislocations. Using
the present notations, Kröner’s relation reads:

m31 =
π2

6

µ

1 − ν
d2κ31 (51)

corresponding to the following value of the parameter β from (33):

β =
π2

12

µ

1 − ν
d2 =

π2

12

µ

1 − ν

1

ρ
(52)

where µ and ν respectively are the shear modulus and Poisson ratio of the crystal, and d the distance
between dislocations estimated as the inverse of the square root of the dislocation density ρ of geometrically
necessary dislocations.

The presence of non–homogeneous couple–stresses induces the building up of skew–symmetric force
stresses as noticed in [27] following the balance equation (5).

Another interpretation of parameter β has been given in the references [12,13] considering a continuous
distribution of screw dislocations bowing in a channel undergoing single slip between hard elastic layers,
see figure 2. The slip plane is assumed to be perpendicular to the interfaces. During shear in a direction
perpendicular to the interfaces, the dislocations continuously bow out in the channel and induce a pile–up
of edge parts at the interfaces. It has been shown in [12,13] that the Cosserat model (together with other
strain gradient plasticity models) can capture the non–homogeneous distribution of plastic slip in the
channel. The Cosserat model has been identified from the dislocation model, with the estimation

β =
2µ

ρ
(53)

Let’s take for instance: µ = 40000 MPa and ρ = 1012 m−2, we get β = 0.08 Pa.m2 = 0.08 MPa.mm2.
Both dislocation–based models indicate that the characteristic length associated with the overall Cosserat

or strain gradient plasticity models:

lc =

√

β

µ
(54)

should not be a constant one but should evolve with deformation. Both models provide an inverse depen-
dence of the generalized kinematic hardening modulus on the dislocation density, that can be used in the
phenomenological Cosserat or gradient theories.

8 Relation to a statistical mechanics based dislocation model

A statistical theory of dislocations has been developed for single slip in [28,2]. It starts from the equation
of motion of individual dislocations and shows that the influence of the short range dislocation–dislocation
interactions can be well described by a local back–stress that includes a so–called “non–local diffusion–
like term”, in the spirit of [26]. The model has been compared successfully with two–dimensional discrete
dislocation dynamics (DDD) simulations in [14]. A closed set of constitutive equations was formulated and
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1

2

0 0.003 0.006 0.009 0.012 0.015

Figure 3. Periodic shearing of a two–phase laminate microstructure. From top to bottom: initial finite element mesh (hard phase in
white), prescribed glide E12 = 0.01 according to classical crystal plasticity, prescribed glide E12 = 0.01 according to Cosserat crystal
plasticity, prescribed glide E12 = −0.01 according to Cosserat crystal plasticity. The plotted field is |γ|. The material parameters are

µ = 26920 MPa, τc = 10 MPa, β = 10 MPa.mm2.

incorporated into the continuum crystal plasticity framework by these authors in the form:

ε̇
∼

p = γ̇
1

2
(l ⊗ n + n ⊗ l ), γ̇ = ρb .v (55)

v =
b

B
(τ − x) (56)

x =
Dµb

2π(1 − ν)ρ
.
∂κ

∂r
(57)

where B,D are material parameters. The Burgers vector is b . The total and excess dislocation densities
ρ = ρ+ + ρ−, κ = ρ+ − ρ−, fulfill the following evolution partial differential equations:

ρ̇ + div (κv ) = f (58)
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κ̇ + div (ρv ) = 0 (59)

where the function f accounts for dislocation creation and annihilation.
In the case of single slip with v = ve 1 and b = be 1 = bl , the equation (59) reduces to

κ̇ +
1

b
γ̇,1 = 0 (60)

so that the back–stress takes the form:

x = −
αµ

ρ
γ,11 (61)

with α a material parameter. This relation is to be compared to (34) and (50) derived in the Cosserat
model. In particular, setting n1 = 0 in (50), i.e. for a slip plane normal to direction 2, the same dependence
on γ,11 is retrieved. The inverse dependence of the generalized kinematic hardening modulus with ρ is in
accordance with the estimations of the bending stiffness β in section 7, but obtained here in a more general
context.

9 Cyclic plasticity in a two–phase laminate

The problem of the mechanical behaviour of the two–phase laminate of figure 2 initially studied in the
references [12, 13], is reexamined here in the context of cyclic deformation and derivation of the resulting
global kinematic hardening. Screw dislocations are gliding in a channel along a glide plane perpendicular
to the plane parallel interfaces, under the action of a shear stress τ = σ12. They deposit edge parts along
the interface inducing non–homogeneous plastic deformation in the direction 1 in the channel, and internal
stresses associated with the pile–ups. The test is controlled by the prescribed mean total amount of glide
γ̄. The displacement field in the channel is of the form:

u = γ̄x2 e 1 + u2(x1) e 2, Φ = Φ3(x1) e 3 (62)

with periodicity conditions for the fluctuation u2(x1) and the micro–rotation Φ3 (see figure 2 for the
geometry and coordinate system of the studied microstructure). The hard phase is regarded as an elastic
Cosserat medium with a characteristic length much smaller than the one associated with the soft phase.
This allows the transmission of the force and couple traction vectors and the continuity of displacement
and micro–rotation, at the interface between hard and soft phases. In the elastic hard phase, the micro–
rotation coincides with the material rotation. The active component of the curvature tensor inside the
plastic zone is

κ31 = 2βΦ3,1 (63)

According to the balance of momentum equation σ21,1 = 0, the stress component σ21 is constant. The
Schmid law (27) indicates that the stress component σ12 = τc is constant. When applied to the equation
of balance of moment of momentum (5), and assuming a constant parameter β, this gives:

m31,1 − σ12 + σ21 = 0 =⇒ m31,11 = 0 =⇒ Φ3,111 = 0 (64)

which leads to a parabolic profile of lattice rotation in the channel. This is the same qualitative result as
in [13] where however only the symmetric part of the stress was considered for the evaluation of Schmid
law. This periodic boundary value problem has also been solved based on the finite element method, as
shown in figure 3 for cyclic loading γ̄ = ±0.01. In particular the field γ(x1) is given in figure 3. The
curvature effects in the channel are clearly visible.
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Figure 4. Mean stress–strain curve for the cycling shearing of a two–phase laminate microstructure (µ = 26920 MPa, τc = 10 MPa,
β = 10 MPa.mm2).

The effective properties of such a laminate material can be derived from the periodic unit cell by proper
averaging procedures. Such homogenization techniques have been developed for heterogeneous Cosserat
media in [29]. The nature of the effective medium depends on the ratio of the Cosserat characteristic
lengths and on the size of constituents. We use the averaging relations obtained for an effective Cosserat
medium:

Σ12 =< σ12 >=
1

V

∫

V

σ12 dV, E12 =< u1,2 >=
1

V

∫

V

u1,2 dV = γ̄ (65)

The stress–strain loop obtained for γ̄ = ±0.01 is shown in figure 4, revealing effective linear kinematic
hardening, induced by the internal stresses in the channel. The observed effective kinematic hardening
modulus is found to be directly proportional to the parameter β.

The generated linear kinematic hardening is similar to the one derived by Tanaka and Mura in the case
of a regular distribution of pile–ups in a grain [30], as analyzed in [13]. The kinematic hardening modulus
scales with the inverse of the channel width s.

10 Conclusions

Two main links between available phenomenological generalized continuum crystal plasticity models and
the statistical approach to dislocation dynamics have been found:

• In the Cosserat model, the skew–symmetric part of the force stress tensor induces a local back–stress
in the generalized Schmid law. This back–stress is a projection of the divergence of couple stresses. A
similar contribution exists in strain gradient plasticity models involving the effect of the curl of plastic
deformation. In the case of single slip, the latter form of the internal stress is identical to the contribution
found in the statistical theory of dislocations of [28,2].

• Dislocation models based either on square arrays of edge dislocations or on the glide of screw dislocations
in a channel systematically lead to the existence of a generalized linear kinematic hardening modulus
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which is proportional to the inverse of dislocation density. This dependence can be directly implemented
in the phenomenological generalized continuum model. It is also in accordance with the prediction of
the statistical approach.

The analysis of the simple case of heterogeneous plastic slip in a channel shows that the internal stresses
result in an effective linear classical kinematic hardening on the overall stress–strain curve. Non–linearity
can be introduced when the dependence of parameter β on dislocation density is implemented. In the
given examples, the total dislocation density coincides with the GND content. In more general cases, it is
conjectured that the generalized kinematic hardening modulus should depend on the GND part only.

The question arises of the limit case when ρ is going to zero. The kinematic hardening modulus β

increases for decreasing ρ. On the other hand, the curvature is going to zero when density of dislocations
in excess decreases. This may result in an indeterminate value of the couple stress according to (33). In
the statistical theory of dislocations, it is not excluded that the dislocation density ρ appearing in the
expression of back–stress may include parts of both statistical and geometric contents. One may consider
the case of a fixed dislocation density ρS and a vanishing curvature, or equivalently, density ρG → 0, which
leads to vanishing couple stresses and associated back–stress.

For single slip, most strain gradient plasticity models coincide in predicting a back–stress related to
the second derivative of slip in the slip direction. Extensions to the multislip case are currently mainly
heuristic and the phenomenological approach based on generalized continua can help formulating them in
a consistent manner. Formulations that explicitly introduce the gradient of individual slip or dislocation
densities [15, 16, 31] share the drawback that (dis–)continuity conditions at grain boundaries cannot be
formulated unambiguously because the variables γα, ρα are defined in each grain only up to a crystal
symmetry [32]. In contrast, plausible extensions can be proposed based on the rotational part of the full
plastic deformation, i.e. the full dislocation density tensor in [9,17], or on the full lattice torsion–curvature
tensor [1, 21]. These extensions have also the advantage that the number of degrees of freedom does not
increase when the number of slip systems increases. In the Cosserat model for instance, the number of
degrees of freedom remains equal to 3, the three components of the lattice rotation vector, irrespective of
the crystallography of the studied system. The specific crystallographic structure of the studied materials
enters the model via the number of internal variables, for instance the number of slip variables γs which
depends on the number of slip systems.
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[12] R. Sedláček and S. Forest. Non-local plasticity at microscale : A dislocation-based model and a Cosserat model. physica status solidi

(b), 221:583–596, 2000.
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Some links between Cosserat, strain gradient crystal plasticity and the statistical

theory of dislocations

Samuel FOREST∗

Mines Paris, ParisTech, CNRS UMR 7633

BP 87, 91003 Evry Cedex, France

(revised)

A link is established between a phenomenological Cosserat model of crystal plasticity due to [1] and recent results obtained in the statistical
theory of dislocations by [2]. The existence of a back–stress related to the divergence of the couple stress tensor is derived. According
to several dislocation–based models of single slip, the kinematic hardening modulus is found to be inversely proportional to dislocation
density. Phenomenological extensions to multislip situations can be proposed based on these generalized continuum approaches.

1 Introduction

First links between the continuum theory of dislocations and the mechanics of generalized continua were
established in the pioneering works of Kröner and Mura [3, 4]. The connection between the dislocation
density tensor and the rotational part of the plastic deformation was an incentive for the development of
strain gradient crystal plasticity theories, based on the second gradient medium as proposed in [5]. On the
other hand, the relation between the dislocation density tensor and lattice curvature derived by Nye [6]
prompted several authors as recorded in [1] to formulate a Cosserat model for crystal plasticity. Since
then a plethora of strain gradient plasticity models have been proposed without clear classification nor
guidelines for assessing the fundamental differences between them. One of the objectives of this work is to
show that the Cosserat theory and strain gradient plasticity models based on the introduction of the curl
of plastic strain share major common features and belong to the same class of generalized crystal plasticity
models.

Recent formulations of generalized continuum models incorporating the effect of the curl of plastic
deformation within the framework of continuum thermomechanics show that this additional contribution
to hardening compared to classical crystal plasticity, arises as a gradient–dependent internal stress or
back–stress in the constitutive equations [7, 8, 9].

In the mean time, the statistical theory of dislocations has made significant progress since the early
attempts like [10]. In particular, higher order gradient terms in the continuum description have been
derived in [11, 2] from spatial correlations of short–range dislocation–dislocation interactions, at least in
the case of populations of straight parallel edge dislocations. This contribution was shown to be adequately
represented by a back–stress component which is inversely proportional to the dislocation density. Closely
related scaling laws were established for specific distributions of dislocations in relation to the Cosserat
continuum theory [3, 12,13].

Comparisons with numerical simulations based on two–dimensional dislocation dynamics support the
pertinence of this formulation for gradient–dependent internal stresses [14]. This contribution is essentially
proportional to the second derivative of slip in the slip direction. The objective of the present work is to
show that the mentioned Cosserat and strain gradient plasticity models lead to the same formulation of
internal stresses, from purely phenomenological arguments, thus bridging a gap between statistical and
constitutive theories, at least in the case of single slip.
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2 Taylor & Francis

Extensions of the continuum model to multiple slip currently remain on a heuristic basis. Such extensions
were recently proposed in [15,16]. The phenomenological constitutive approach making use of generalized
continua also systematically provides such 3D formulations. It will be shown in the present work that
the phenomenological and statistical approaches share several common features in the case of single slip.
Accordingly, it is worth comparing the 3D formulations of both classes of models. Such gradient depen-
dent internal stresses can be embedded in more comprehensive and realistic constitutive models for the
deformation of metals and alloys, as shown recently in [17].

We start to recall the Cosserat crystal plasticity framework focusing on the relation between the Cosserat
microrotation and crystal lattice rotation. In particular, one additional elastic parameter of the Cosserat
model will be interpreted as a Lagrange multiplier to make both rotations coincide. A Schmid law is then
formulated in section 4 based on the generally non–symmetric Cosserat force stress tensor. It is shown to
lead to the existence of a back–stress expressed in terms of couple stresses. The found internal stresses
are explicited in the case of single slip in section 5 and compared to results from statistical description of
dislocation behaviour in section 8.

The derivations of the generalized continuum models are presented within the small deformation frame-
work for the sake of simplicity. Extensions to finite deformation formulations are straightforward following
the lines of [1, 18,19,20].

In this work, zeroth, first, second, third and fourth order tensors are denoted by a,a ,a
∼

,a
∼

,a
∼

∼

respectively.

The simple and double contractions are written ., :. In index form with respect to an orthonormal Cartesian
basis, these notations correspond to a .b = aibi, a

∼

: b
∼

= aijbij , where repeated indices are summed up.
The tensor product is denoted by ⊗. The nabla operator is denoted by ∇. For example, the component
ijk of ∇A

∼

is Aij,k. For full clarity, both intrinsic and index notations are given at several places in the
text.

2 Cosserat crystal plasticity at small deformation

The degrees of freedom of the theory are the displacement vector u and the rotation pseudo–vector Φ

which is associated with the skew–symmetric part of the micro–rotation tensor R
∼

in the case of small
rotations:

R
∼

≃ 1
∼

− ǫ
∼

.Φ , Rij ≃ δij − ǫijkΦk (1)

where ǫijk denotes the permutation tensor. The deformation measures of the Cosserat theory are the
relative deformation tensor e

∼

and the torsion–curvature tensor κ
∼

:

e
∼

= ∇u + ǫ
∼

.Φ , κ
∼

= ∇Φ (2)

eij = ui,j + ǫijkΦk, κij = Φi,j (3)

The stress measures associated with the deformation rates in the power of internal forces are the force
stress tensor σ

∼

and the couple stress tensor m
∼

. They are generally not symmetric. They must satisfy the
balance equations for momentum and balance of momentum, written in the static case:

div σ
∼

= 0, σij,j = 0 (4)

div m
∼

+ 2
×
σ = 0, mij,j − ǫiklσkl = 0 (5)
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where volume forces and couples are excluded for brevity. The axial vector associated with the skew–
symmetric part of the stress tensor is denoted by:

×
σ = −

1

2
ǫ
∼

: σ
∼

,
×
σi = −

1

2
ǫiklσkl (6)

It couples the balance of momentum and moment of momentum equations. Exponents s and a are intro-
duced to respectively denote the symmetric and skew–symmetric parts of the corresponding tensor:

σ
∼

= σ
∼

s + σ
∼

a, σ
∼

a = −ǫ
∼

.
×
σ =

1

2
ǫ
∼

.ǫ
∼

: σ
∼

(7)

σa
ij = −

1

2
ǫijk

×
σk =

1

2
ǫijkǫkmnσmn (8)

The traction vector t and couple stress vector m acting on a surface element must fulfill the following
boundary conditions:

t = σ
∼

.n , ti = σijnj (9)

m = m
∼

.n , mi = mijnj (10)

where n is the outward oriented normal vector at any point of the boundary of the body. The relative
deformation can be split into elastic and plastic parts,

e
∼

= e
∼

e + e
∼

p, eij = ee
ij + e

p
ij (11)

Such a decomposition is not introduced in this work for the total curvature κ
∼

for the sake of simplicity. A
partition of curvature was considered in [1,21] and it is not recalled here. The elastic deformation and the
total curvature tensors are assumed to be linked with the force and couple stress tensors, respectively, by
a generalized Hooke law:

σ
∼

= E
∼

∼

: e
∼

e, σij = Eijkle
e
kl (12)

m
∼

= C
∼

∼

: κ
∼

, mij = Cijklκkl (13)

where E
∼

∼

is the fourth order tensor of elastic moduli (unit MPa) and C
∼

∼

are secant moduli of torsion and

bending stiffness (unit MPa.mm2). In the isotropic case, these tensors are built from 6 independent elastic
moduli:

σ
∼

= λ(trace e
∼

e)1
∼

+ 2µe
∼

es + 2µce
∼

ea (14)

m
∼

= α(trace κ
∼

)1
∼

+ 2βκ
∼

s + 2γκ
∼

a (15)

The Lamé constants are λ and µ. The coupling modulus µc relates the skew–symmetric part of the relative
deformation tensor to the skew–symmetric part of the stress tensor. The additional Cosserat parameters
α, β, γ are intrinsic torsion and bending stiffnesses. We adopt the simplification β = γ as in [22].
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The kinematics of plastic flow is dictated by the orientation tensors P
∼

s associated with the crystallog-
raphy of the N slip systems:

ė
∼

p =
N

∑

α=1

γ̇α
P
∼

α, with P
∼

α = l
α ⊗ n

α (16)

where l
α and n α respectively are the slip direction and the normal to the slip plane vectors for slip system

number α. For each slip system, the increment of plastic slip is γ̇α.

3 Cosserat microrotation and lattice rotation

The lattice rotation rate w
∼

e is defined as the difference between the material rotation rate w
∼

and the
plastic rotation rate represented by the skew–symmetric part of plastic deformation [23]:

w
∼

e = (∇u̇ )a − ė
∼

pa (17)

= ė
∼

a − ǫ
∼

.Φ̇ − ė
∼

pa (18)

= ė
∼

ea − ǫ
∼

.Φ̇ (19)

which provides a relation between the lattice rotation rate w
∼

e and the Cosserat microrotation rate −ǫ
∼

.Φ̇ .
Accordingly, the Cosserat microrotation can be identified with lattice rotation if and only if the following
internal constraint is enforced:

ė
∼

ea ≡ 0 (20)

that is when the skew–symmetric part of the elastic relative deformation vanishes. In the works [21, 13],
this constraint was enforced by a penalty method which consists in setting a high enough value of the
constitutive parameter µc. This parameter could also be treated as a Lagrange multiplier to ensure the
identification between Cosserat rotation and lattice rotation. In that case, the skew–symmetric part of the
force stress tensor must be regarded as a reaction force associated with the internal constraint. A similar
(but different) situation is met in the so–called Koiter or couple stress theory for which the Cosserat
microrotation coincides with the material rotation itself [24].

When the constraint (20) is enforced, the Cosserat directors are lattice vectors. In that case, the following
relationship is obtained between Cosserat, material and lattice rotations:

− ǫ
∼

.Φ̇ = w
∼

e = w
∼

− w
∼

p (21)

where w
∼

= (∇u̇ )a, w
∼

p = ė
∼

pa are the skew–symmetric parts of the total and plastic deformation rates
respectively. The associated rotation vectors therefore satisfy the relation:

Φ̇ =
×
w −

×
w

p (22)

4 Schmid law with a non–symmetric stress tensor

Plastic slip is activated when the resolved shear stress on a given slip system reaches a critical value. The
resolved shear stress τ s is the component of the traction vector acting on the slip plane in the slip direction:

τα = (σ
∼

.n α).l α = σ
∼

: P
∼

α = σ
∼

s : P
∼

αs + σ
∼

a : P
∼

αa (23)

= τ symα − xα (24)
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A decomposition of the total resolved shear stress is found into a component τ sym which is nothing but
the resolved shear stress computed with the symmetrized stress tensor, and an internal stress variable xs

defined as:

xα = −σ
∼

a : P
∼

αa =
×
σ .(l α ∧ n

α) (25)

where ∧ denotes the vector product. The additional contribution associated with the skew–symmetric
part of the stress will therefore act as a back–stress in the yield criterion. An alternative expression of
the internal stress can be worked out by taking the balance of moment of momentum equation (5) into
account:

xα = −
1

2
(div m

∼

).(l α ∧ n
α) (26)

which relates the internal stress xα to a projection of the divergence of the couple stress tensor.
The slip activation criterion for slip system α is

fα(σ
∼

, τα
c ) = |τα| − τα

c = |τ symα − xs| − τα
c = 0 (27)

This criterion involves the critical resolved shear stress τα
c for which usual hardening laws of crystal

plasticity can be used. At this stage, the evolution of τα
c can be limited to the effect of so–called statistically

stored dislocations (density ρS). The effect of the dislocation density tensor, or equivalently so–called
geometrically necessary dislocation densities (GND), enters the model via the back–stress xs related to
couple stresses and therefore to lattice curvature, as a result of the celebrated Nye relation connecting the
dislocation density tensor and lattice curvature [6]. This is at variance with the quite common modification

of Taylor’s rule, namely τc proportional to
√

ρS + ρG, where different dislocation density measures are
combined in the friction stress [25].

A viscoplastic flow rule is adopted to compute the amount of plastic glide:

γ̇ =

〈

f

K

〉n

sign(τα) (28)

in the form of a power law involving the viscosity parameter K and the power n. The brackets denote the
positive part of the quantity.

5 Application to single slip

We derive here the special form of the previous constitutive and balance equations when plastic deformation
proceeds through single slip in a plane of normal n in the direction l :

ė
∼

p = γ̇ l ⊗ n (29)

We adopt a Cartesian coordinate system such that the third vector of the basis is

e 3 = l ∧ n (30)

We assume that no gradient will develop along the out of plane direction. In this two–dimensional situation,
the lattice rotation will take place with respect to the third axis:

Φ = Φ3e 3 (31)
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6 Taylor & Francis

We assume that the loading is such that this holds also for the material rotation rate:

×
w = w3e 3 (32)

In this context, the second elasticity law (15) reduces to

m
∼

= 2βκ
∼

, m3i = 2βΦ3,i (33)

The internal stress x is then related to the third component of the divergence of the couple stress tensor:

x = −
1

2
(div m

∼

)3 = −
1

2
(m31,1 + m32,2) = −β∆Φ3 (34)

where ∆ is the Laplace operator.
The lattice rotation can be expressed in terms of the material and plastic rotation following (21) which
becomes:

Φ̇ =
×
w −

×
w

p, with
×
w

p = −
1

2
ǫ
∼

: (l ⊗ n ) (35)

In the single slip case, the only non–vanishing component is

Φ̇3 =
×
w3 +

γ̇

2
(36)

Accordingly, the Schmid law (27) can be written as

τ = ±τc = τ sym − x = τ sym + β∆Φ3 (37)

so that

τ sym = ±τc − β∆Φ3 = ±τc − β(∆
×
ω3 +

1

2
∆γ) (38)

where
×
ω3 is obtained by time integration of

×
w3. The internal stress is found to depend on the Laplacian

of material rotation and amount of slip.
It is important to check that there is no effect of a pure gradient of slip normal to the slip plane in the

model. This is due to the fact that such a gradient of slip does not induce any lattice rotation. To see
that, we consider the following kinematics of single glide γ̄(x2) which depends on the coordinate normal
to the glide plane u = γ̄(x2)x2e 1, where γ̄ is the prescribed non–homogeneous shear. The gradient of
displacement and the plastic deformation take the form

∇u = (γ̄,2x2 + γ̄) e 1 ⊗ e 2, e
∼

p = γ e 1 ⊗ e 2 (39)

As a result of equation (36), the lattice rotation is

Φ3 = −
1

2
(γ̄,2x2 + γ̄) +

γ

2
(40)

and the total Cosserat deformation

e
∼

=
1

2
(γ̄,2x2 + γ̄ + γ) e 1 ⊗ e 2 −

1

2
(γ̄,2x2 + γ̄) e 2 ⊗ e 1 (41)

= (ee
12 + γ) e 1 ⊗ e 2 + ee

21 e 2 ⊗ e 1 (42)
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Figure 1. Rectangular array of parallel edge dislocation considered by Kröner [3].

The balance of force stresses requires that the stress component σ12 does not depend on x2, which in turn
implies that

ee
12 =

1

2
(γ̄,2x2 + γ̄ − γ) = −Φ3 (43)

is constant. The curvature κ32 = Φ3,2 therefore vanishes.
In other words, this feature of the model shows that the proposed Cosserat theory includes only effect of
geometrically necessary dislocations, contrary to the full second gradient model in [5].

6 Relation to strain gradient plasticity models

There is a link between lattice curvature and the rotational part of plastic deformation, related to the
dislocation density tensor. This relation can be obtained by applying the curl operator to the following
expression of total Cosserat deformation rate, within the context of small deformations and rotations:

ė
∼

= ∇u̇ − w
∼

e = ė
∼

e + ė
∼

p (44)

The elastic deformation e
∼

e is symmetric when the constraint (20) that the Cosserat microrotation coincides
with lattice rotation is enforced. We get:

− curlw
∼

e = curl ė
∼

e + curl ė
∼

p (45)

The curl of the lattice rotation rate is equal to the transpose of the curvature rate tensor by:

curlw
∼

e = (∇
×
w

e)T = (∇Φ̇ )T = κ̇
∼

T (46)
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8 Taylor & Francis

h s

b

 

τ

τ
1

 2

3

 0

Figure 2. Dislocation bowing in the soft phase. A part of the loop gliding in the plane 1-3 is shown, with the curved (originally screw)
section and edge segments at the soft / hard phase interface. The resolved shear stress τ and Burgers vector b are indicated. Labels s

and h are used to designate the soft and hard phase, respectively.

In the strain gradient crystal plasticity theories proposed in [7,9], the curl of plastic deformation is intro-
duced into the free energy function. These theories turn out to be identical to the present Cosserat model
if the curl of the elastic strain is neglected in (45), as initially done by Nye [6] to derive a direct relation
between the dislocation density tensor and lattice curvature.

In the case of single slip, the curl of plastic deformation is computed as:

[curl ė
∼

p] =





0 0 γ̇,2n1n2 − γ̇,1n
2
2

0 0 −γ̇,2n
2
1 + γ̇,1n1n2

0 0 0



 (47)

where n1 and n2, n3 = 0 are the components of the normal vector to the slip plane. The couple stress
tensor can be approximated by

m
∼

= 2βκ
∼

≃ −2β(curle
∼

p)T (48)

so that

(div m
∼

)3 ≃ −2β(2γ,12n1n2 − γ,11n
2
2 − γ,22n

2
1) (49)

and

x = −
1

2
(div m

∼

)3 ≃ β(2γ,12n1n2 − γ,11n
2
2 − γ,22n

2
1) (50)

This expression, when inserted into (27), gives a yield condition involving the second derivative of the
amount of slip in the spirit of the model proposed by [26].

7 Generalized kinematic hardening modulus

The material parameter β appearing in (34) can be regarded as a generalized kinematic hardening modulus,
with the physical dimension MPa.mm2. It has been evaluated by Kröner as the bending stiffness of a crystal
element containing a rectangular array of edge dislocations. The existence of couple stresses in a dislocated

Page 22 of 33

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

9

crystal was put forward by Kröner [3] by considering the residual stress field after bending and torsion
of single crystals. Kröner derived the expression of a material constant linking a couple–stress component
to the corresponding lattice curvature tensor component, in the special case depicted in figure 1. This
derivation can be interpreted as follows: to maintain a zero plane curvature in a box inside the dislocated
crystal of figure 1, a torque must be applied. Conversely, in the absence of couple stresses acting on
the volume element, lattice planes are curved due to the excess of dislocations of a definite sign. The
characteristic length which goes into this constant is the glide plane distance d between dislocations. Using
the present notations, Kröner’s relation reads:

m31 =
π2

6

µ

1 − ν
d2κ31 (51)

corresponding to the following value of the parameter β from (33):

β =
π2

12

µ

1 − ν
d2 =

π2

12

µ

1 − ν

1

ρ
(52)

where µ and ν respectively are the shear modulus and Poisson ratio of the crystal, and d the distance
between dislocations estimated as the inverse of the square root of the dislocation density ρ of geometrically
necessary dislocations.

The presence of non–homogeneous couple–stresses induces the building up of skew–symmetric force
stresses as noticed in [27] following the balance equation (5).

Another interpretation of parameter β has been given in the references [12,13] considering a continuous
distribution of screw dislocations bowing in a channel undergoing single slip between hard elastic layers,
see figure 2. The slip plane is assumed to be perpendicular to the interfaces. During shear in a direction
perpendicular to the interfaces, the dislocations continuously bow out in the channel and induce a pile–up
of edge parts at the interfaces. It has been shown in [12,13] that the Cosserat model (together with other
strain gradient plasticity models) can capture the non–homogeneous distribution of plastic slip in the
channel. The Cosserat model has been identified from the dislocation model, with the estimation

β =
2µ

ρ
(53)

Let’s take for instance: µ = 40000 MPa and ρ = 1012 m−2, we get β = 0.08 Pa.m2 = 0.08 MPa.mm2.
Both dislocation–based models indicate that the characteristic length associated with the overall Cosserat

or strain gradient plasticity models:

lc =

√

β

µ
(54)

should not be a constant one but should evolve with deformation. Both models provide an inverse depen-
dence of the generalized kinematic hardening modulus on the dislocation density, that can be used in the
phenomenological Cosserat or gradient theories.

8 Relation to a statistical mechanics based dislocation model

A statistical theory of dislocations has been developed for single slip in [28,2]. It starts from the equation
of motion of individual dislocations and shows that the influence of the short range dislocation–dislocation
interactions can be well described by a local back–stress that includes a so–called “non–local diffusion–
like term”, in the spirit of [26]. The model has been compared successfully with two–dimensional discrete
dislocation dynamics (DDD) simulations in [14]. A closed set of constitutive equations was formulated and
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1

2

0 0.003 0.006 0.009 0.012 0.015

Figure 3. Periodic shearing of a two–phase laminate microstructure. From top to bottom: initial finite element mesh (hard phase in
white), prescribed glide E12 = 0.01 according to classical crystal plasticity, prescribed glide E12 = 0.01 according to Cosserat crystal
plasticity, prescribed glide E12 = −0.01 according to Cosserat crystal plasticity. The plotted field is |γ|. The material parameters are

µ = 26920 MPa, τc = 10 MPa, β = 10 MPa.mm2.

incorporated into the continuum crystal plasticity framework by these authors in the form:

ε̇
∼

p = γ̇
1

2
(l ⊗ n + n ⊗ l ), γ̇ = ρb .v (55)

v =
b

B
(τ − x) (56)

x =
Dµb

2π(1 − ν)ρ
.
∂κ

∂r
(57)

where B,D are material parameters. The Burgers vector is b . The total and excess dislocation densities
ρ = ρ+ + ρ−, κ = ρ+ − ρ−, fulfill the following evolution partial differential equations:

ρ̇ + div (κv ) = f (58)
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κ̇ + div (ρv ) = 0 (59)

where the function f accounts for dislocation creation and annihilation.
In the case of single slip with v = ve 1 and b = be 1 = bl , the equation (59) reduces to

κ̇ +
1

b
γ̇,1 = 0 (60)

so that the back–stress takes the form:

x = −
αµ

ρ
γ,11 (61)

with α a material parameter. This relation is to be compared to (34) and (50) derived in the Cosserat
model. In particular, setting n1 = 0 in (50), i.e. for a slip plane normal to direction 2, the same dependence
on γ,11 is retrieved. The inverse dependence of the generalized kinematic hardening modulus with ρ is in
accordance with the estimations of the bending stiffness β in section 7, but obtained here in a more general
context.

9 Cyclic plasticity in a two–phase laminate

The problem of the mechanical behaviour of the two–phase laminate of figure 2 initially studied in the
references [12, 13], is reexamined here in the context of cyclic deformation and derivation of the resulting
global kinematic hardening. Screw dislocations are gliding in a channel along a glide plane perpendicular
to the plane parallel interfaces, under the action of a shear stress τ = σ12. They deposit edge parts along
the interface inducing non–homogeneous plastic deformation in the direction 1 in the channel, and internal
stresses associated with the pile–ups. The test is controlled by the prescribed mean total amount of glide
γ̄. The displacement field in the channel is of the form:

u = γ̄x2 e 1 + u2(x1) e 2, Φ = Φ3(x1) e 3 (62)

with periodicity conditions for the fluctuation u2(x1) and the micro–rotation Φ3 (see figure 2 for the
geometry and coordinate system of the studied microstructure). The hard phase is regarded as an elastic
Cosserat medium with a characteristic length much smaller than the one associated with the soft phase.
This allows the transmission of the force and couple traction vectors and the continuity of displacement
and micro–rotation, at the interface between hard and soft phases. In the elastic hard phase, the micro–
rotation coincides with the material rotation. The active component of the curvature tensor inside the
plastic zone is

κ31 = 2βΦ3,1 (63)

According to the balance of momentum equation σ21,1 = 0, the stress component σ21 is constant. The
Schmid law (27) indicates that the stress component σ12 = τc is constant. When applied to the equation
of balance of moment of momentum (5), and assuming a constant parameter β, this gives:

m31,1 − σ12 + σ21 = 0 =⇒ m31,11 = 0 =⇒ Φ3,111 = 0 (64)

which leads to a parabolic profile of lattice rotation in the channel. This is the same qualitative result as
in [13] where however only the symmetric part of the stress was considered for the evaluation of Schmid
law. This periodic boundary value problem has also been solved based on the finite element method, as
shown in figure 3 for cyclic loading γ̄ = ±0.01. In particular the field γ(x1) is given in figure 3. The
curvature effects in the channel are clearly visible.
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Figure 4. Mean stress–strain curve for the cycling shearing of a two–phase laminate microstructure (µ = 26920 MPa, τc = 10 MPa,
β = 10 MPa.mm2).

The effective properties of such a laminate material can be derived from the periodic unit cell by proper
averaging procedures. Such homogenization techniques have been developed for heterogeneous Cosserat
media in [29]. The nature of the effective medium depends on the ratio of the Cosserat characteristic
lengths and on the size of constituents. We use the averaging relations obtained for an effective Cosserat
medium:

Σ12 =< σ12 >=
1

V

∫

V

σ12 dV, E12 =< u1,2 >=
1

V

∫

V

u1,2 dV = γ̄ (65)

The stress–strain loop obtained for γ̄ = ±0.01 is shown in figure 4, revealing effective linear kinematic
hardening, induced by the internal stresses in the channel. The observed effective kinematic hardening
modulus is found to be directly proportional to the parameter β.

The generated linear kinematic hardening is similar to the one derived by Tanaka and Mura in the case
of a regular distribution of pile–ups in a grain [30], as analyzed in [13]. The kinematic hardening modulus
scales with the inverse of the channel width s.

10 Conclusions

Two main links between available phenomenological generalized continuum crystal plasticity models and
the statistical approach to dislocation dynamics have been found:

• In the Cosserat model, the skew–symmetric part of the force stress tensor induces a local back–stress
in the generalized Schmid law. This back–stress is a projection of the divergence of couple stresses. A
similar contribution exists in strain gradient plasticity models involving the effect of the curl of plastic
deformation. In the case of single slip, the latter form of the internal stress is identical to the contribution
found in the statistical theory of dislocations of [28,2].

• Dislocation models based either on square arrays of edge dislocations or on the glide of screw dislocations
in a channel systematically lead to the existence of a generalized linear kinematic hardening modulus
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which is proportional to the inverse of dislocation density. This dependence can be directly implemented
in the phenomenological generalized continuum model. It is also in accordance with the prediction of
the statistical approach.

The analysis of the simple case of heterogeneous plastic slip in a channel shows that the internal stresses
result in an effective linear classical kinematic hardening on the overall stress–strain curve. Non–linearity
can be introduced when the dependence of parameter β on dislocation density is implemented. In the
given examples, the total dislocation density coincides with the GND content. In more general cases, it is
conjectured that the generalized kinematic hardening modulus should depend on the GND part only.

The question arises of the limit case when ρ is going to zero. The kinematic hardening modulus β

increases for decreasing ρ. On the other hand, the curvature is going to zero when density of dislocations
in excess decreases. This may result in an indeterminate value of the couple stress according to (33). In
the statistical theory of dislocations, it is not excluded that the dislocation density ρ appearing in the
expression of back–stress may include parts of both statistical and geometric contents. One may consider
the case of a fixed dislocation density ρS and a vanishing curvature, or equivalently, density ρG → 0, which
leads to vanishing couple stresses and associated back–stress.

For single slip, most strain gradient plasticity models coincide in predicting a back–stress related to
the second derivative of slip in the slip direction. Extensions to the multislip case are currently mainly
heuristic and the phenomenological approach based on generalized continua can help formulating them in
a consistent manner. Formulations that explicitly introduce the gradient of individual slip or dislocation
densities [15, 16, 31] share the drawback that (dis–)continuity conditions at grain boundaries cannot be
formulated unambiguously because the variables γα, ρα are defined in each grain only up to a crystal
symmetry [32]. In contrast, plausible extensions can be proposed based on the rotational part of the full
plastic deformation, i.e. the full dislocation density tensor in [9,17], or on the full lattice torsion–curvature
tensor [1, 21]. These extensions have also the advantage that the number of degrees of freedom does not
increase when the number of slip systems increases. In the Cosserat model for instance, the number of
degrees of freedom remains equal to 3, the three components of the lattice rotation vector, irrespective of
the crystallography of the studied system. The specific crystallographic structure of the studied materials
enters the model via the number of internal variables, for instance the number of slip variables γs which
depends on the number of slip systems.

References

[1] S. Forest, G. Cailletaud, and R. Sievert. A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Archives of
Mechanics, 49(4):705–736, 1997.

[2] I. Groma, F.F. Csikor, and M. Zaiser. Spatial correlations and higher-order gradient terms in a continuum description of dislocation
dynamics. Acta Materialia, 51:1271–1281, 2003.
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