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where 0 is the M-by-M cyclic permutation matrix (28) and A(i) 

is defined in (4). 
Let us first consider the case M = 21, - 1. Define the following 

M-by-M matrices: 

the M-by-M matrices Q,T, and B are defined as follows: 

1 1 1 1 “’ ‘1 

1 1 1 ..’ 1 
1 t (2 es . . . (2,u--11 

;2 ;3 . . . ;w1, 

(‘4.2) 

$ es . . . &--1 

Q = 

p-L . . . . 

2-l . . . . . . 

T = diag (l,l, (j’ Jj),---, (j’ :j)) 

B = M diag (1,1,2,2,. . . ,2). 

T=diag(l,(:?j),-.-,(:?j)) (A.3) 

and 

B = M diag (1,2,2,2,. . . ,2) (-4.4) 

where 

2% 
c = exp jz 

2a 
‘t=exp-js (A.5) 

We have 

P = B-li2TQ. (-4.6) 

Proof: By direct computation, it is easy to show that 
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Since T and QOQT exhibit a quasidiagonal form, to compute 
T(QOQ T, T T it is sufficient to consider only the product 

Thus 

TQOQTTT = M diag 

2 cos 5 2 sin 5 

,-2sing 2cosg 

2 cos E (u - 1) 2 sin g (V - 1) 

---9 (A.9) 

-2 sin !$ (V - 1) 2 cos $ (V - 1) 

Premultiplying and postmultiplying (A.9) by Bell2 and taking 
into account (A.6), we see that (A.l) holds true. Hence, we have 
only to show that P is orthogonal. By direct computation, we 

get 

(TQ) (TQ) T = B 

so that 

(B--1’2TQ)(B--1’2TQ) T = I 

and P = BW1i2TQ is orthogonal. Q.E.D. 

The construction of P when M = 2u is similar, provided that 
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Some Long Rate One-Half Binary Convolutional Codes 
with an Optimum Distance Profile 

ROLF JOHANNESSON, MEMBER, IEEE 

Abstract-This correspondence gives a tabulation of long sys- 

tematic, and long quick-look-in (QLI) nonsystematic, rate R = ?$ 

binary convolutional codes with an optimum distance profile 

(ODP). These codes appear attractive for use with sequential de- 

coders. 

In this correspondence we report the results of computer 
searches for long rate R = $ fixed convolutional encoders (FCE’s) 
with an optimum distance profile (ODP codes), i.e., with a dis- 
tance profile equal to or superior to that of any other code with 
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TABLE I 
ODP SYSTEMATIC CONVOLUTIONAL CODES WITH RATER = $ 

M &2) II paths 

36 6711454544-fo4 14 5 

37 6711454544676 14 2 

38 6711454575564 15 31 

39 71446165734534 15 12 

40 67114545755712 15 3 

41 71446165734537 15 1 

42 671145457556464 16 31 

43 714461626554012 16 14 

44 7144616265544Z'l 16 5 

45 7144616265544274 16 1 

46 6711454575564666 17 39 

47 6711454575564667 17 13 

48 67114545755646674 17 4 

49 67114545755646676 17 1 

50 67114545'755646676 la 38 

51 671145457556466760 la 16 

52 671145457556466'f60 la 7 

53 714461626553260462 la 2 

54 7144616265556137204 19 43 

55 7144616265556137206 19 20 

56 7144616265556137206 19 7 

57 71446162655561372064 19 2 

58 71446162655561372064 20 60 

59 67114545755646670367 20 25 

60 6711454575564667036'lO 20 10 

TABLE II 
ODP QLI CONVOLUTIONAL CODES WITH R = l/2 

M &l) &2) # paths 

24 740424174 540424174 11 11 

25 740415562 540415562 11 5 

26 740424173 540424173 11 1 

27 7404241724 5404241724 12 23 

28 7404241712 5404241712 12 a 

29 7404241713 5404241713 12 2 

30 74042402074 54042402074 13 43 

31 74042402072 54042402072 13 15 

32 74042402071 54042402071 13 4 

33 740424020-fl4 540424020714 13 1 

34 740424020712 540424020712 14 34 

35 740424026637 540424026637 14 14 

36 7404240266364 5404240266364 14 5 

37 7404240266362 5404240266362 14 2 

38 7404240207121 5404240207121 15 31 

39 74042417136114 54042417136114 15 12 

40 74042402071132 54042402071132 15 3 

41 74042417136111 5404241-fl36111 15 1 

42 740424020712164 540424020712164 16 31 

43 740424020712166 54042402O'l12166 16 14 

44 '740424020713351 540424020713351 16 5 

45 7404240207133514 54042402O'l133514 16 1 
46 7404240207121636 5404240207121636 1-I 39 

47 7404240207121635 5404240207121635 17 13 

48 74042402071216354 54042402071216354 17 4 

49 74042402071216356 54042402071216356 l-7 1 

50 -f4042402071216357 54042402071216357 la 38 
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Fig. 1. Minimum distance d,+, for some rate ‘j convolutional codes. - 
dM for ODP codes; . . . . . dy for codes of Bussgang (0 I kf < I5), 
Lin-Lyne (16 I M < 20), and Forney (21 5 M I 48); - - - - - d,+., for 
systematic Costello Al codes; x - x - x - x - dM for Massey-Costello QLI 
codes (0 I M I 47); . - . - . - : - Gilbert bound. 

the same memory M. In a recent paper [l], we introduced the (M 
+ 1)-tuple d = [d&i, . . a ,d~] and called it the distance profile 

of the FCE, where dj is the jth order column distance [2], i.e., the 
minimum Hamming distance between any two encoded paths 
of length 0’ + 1) branches, in the infinitely long trellis defined by 
the FCE, resulting from information sequences with a differing 
first branch. In particular, dM is called the minimum distance 

and d, is called the free distance of the FCE. When comparing 
two codes of the same memory and rate, we say that a distance 
profile d is superior to a distance profile d’ when there is some 
n such that 

di 
i 

= d;, j = O,l, -. . ,n - 1 

> d;, j = n. 

Thus d > d’ implies that the “early growth’ of dj with j is greater 
than that of d;l with j.,(It could, of course, happen that for suffi- 
ciently large j, dj < dj.) 

Systematic ODP codes are already known for M I 35 [l]. 
Newly found systematic ODP codes are listed in Table I for 36 
I M I 60. The code generators are given in an octal form ac- 
cording to the convention in [l] . In cases where the optimum code 
is not unique, ties were resolved using the number of low-weight 
paths as a further optimality criterion. 

Massey and Costello [3] introduced a class of quick-look-in 
(QLI) nonsystematic codes in which the two generators differ 
only in the second position. In Table II, we list newly found ODP 
QLI codes for 24 I M I 50. For M I 23 such codes are already 
known [l]. 

The excellence as regards dM for the ODP codes can be seen 
from Fig. 1 in which we have plotted ‘do for these codes; the best 
of the systematic codes found by Bussgang [4], Lin-Lyne [5], and 
Forney [6]; Costello’s Algorithm Al systematic codes [2]; and 
Massey-Costello’s QLI codes [2], [3]. The codes are also com- 
pared with the Gilbert bound [2], [4]. We notice that the newly 
found codes have dM equal to or superior to that of any previously 
known code with the same memory. 
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Some Two-Weight Codes with Composite Parity-Check 
Polynomials 

TOR HELLESETH 

Abstract-The Hamming weight enumerator polynomials of 

some two-weight codes are presented. The codes have parity-check 

polynomials which are products of two irreducible polynomials. 

I. INTRODUCTION 

Let $ be a primitive element of GF(q”). Let hd(x) E GF(q)[r] 

denote the minimum polynomial of tid. Then hd(x) is a primitive 
polynomial if and only if gcd (d,qk - 1) = 1. 

It is well known that codes which have primitive parity-check 
polynomials are equidistant in the Hamming metric. In Kjeldsen 
[2] and Oganesyan, Yagdzyan, and Tairyan [3], some other cyclic 
equidistant codes are found. From the papers of Semakov and 
Zinov’ev [4] and Semakov, Zinov’ev, and Zaitsev [5], it can be 
concluded that every equidistant cyclic code has an irreducible 
parity-check polynomial. 

Here we study codes that have parity-check polynomials which 
are the product of two irreducible polynomials. Since the codes 
do not have an irreducible parity-check polynomial, at least two 
nonzero Hamming weights must occur in the codewords. We 
present here a family of nonbinary cyclic codes with composite 
parity-check polynomials such that only two nonzero weights 
occur. 

Some of the codes have parity-check polynomials which are 
a product of two primitive polynomials of the same degree. The 
complete weight enumerator of such codes has been studied in- 
directly by studying the cross-correlation function between two 
maximal-length linear sequences. In Helleseth [l], it is proved 
that, for q = pn, where p is a prime and n = 1, at least three dif- 
ferent nonzero weights occur in the complete weight enumerator. 
In particular, if we consider instead the Hamming weight enu- 
merator, it is possible to achieve only two nonzero weights. 

II. THE TWO-WEIGHT CODES 

Let deg h(x) denote the degree of h(x) and let per h(x) denote 
the least positive integer r such that h(x) divides xr - 1. 

Lemma: Let gcd (k,Nl) = gcd (k,Nz) = gcd (t,Nz) = 1, where 
NlandNzdivideq-l.Letdl=(qk-l)/N1+landdp=t(qk 
- l)/Nz + 1. Then we have that 

i) deg hdl(x) = deg hd&) = k; 

ii) per hdl(x) = (qk - l)/gcd (dl,Nl), 
per hd&) = (4” - lkd (dz,Nd; 

iii) let dl s qidz (mod q k - l), for all i 2 0; let h(x) = 

h,jl(x)h&), then per h(r) = (ik - l)/gcd 

(ddJ’J1,Nd. 
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Proof: i) Let deg hd,(X) = m. By ‘definition, m is the least 
positive integer such that 

(++1vNl+l)q~-1 = 1. 

Therefore 

((qk - l)/Nl+ l)(q” - 1) = 0 (mod qk - 1). 

Since N1 divides q - 1, this means 

4 m - 1 = 0 (mod qk - 1). 

Hence m 2 lz and, therefore, m = k. The proof that deg h&x) = 

k is similar. 
ii) Since gcd (di,qk - 1) = gcd (di,Ni), for i = 1,2, we have 

per h&(x) = (qk - l)/gcd (di,qk - 1) 

= (qk - l)/gcd (di,Ni). 

iii) Since dl s qid2 (mod qk - l), for all i 2 0, we have gcd 
(hdl(x),hd2(x)) = 1. Hence 

Per h(x) = lcm (Per hdl(X), per hd&)) 

(qk - U2/kcd (dl,Nl)gcd (d2,Nz)) 

= gcd ((qk - 1)&d &,NA(q” - l)/gcd (dz,Nz)) 

= (qk - Wgcd (ddd%,Nd. 

We are now able to prove the main theorem. 

Theorem: Let dl and da be defined as in the lemma. Put N = 
lcm (Nl,Nz). Suppose gcd (dl,d2,N1,N2) = 1. Let V be the (qk 

- 1,2k) cyclic code with parity-check polynomial h(x) = 

hdl(x)hd2(X). Then the weight enumerator polynomial of V is 

A(z) = 1 + (qk - 1) NZqk-‘(s-l)-sk-‘(q-l)u/N 
U 

where 

q2k - 1 - (qk - 1) i!! Zqk-‘(q-l) 

U > 

u = gcd 
( 

N,E- t x 
NI N2 > 

. 

Proof: By iii) of the lemma, we have per h(x) = qk - 1. Let 
al,a2 E GF(q”). Let v(al,az) = (~0~1,. . . ,uqk-2) with 

Vj = tr $(al*dG i- a2qdi), 

where 

tr t(x) = ‘c’x@. 
i=o 

We then have 

V = Ma1,a2)la1,~2 E GJ’tqk)l. 

Let j = Nj2 + j,, with 0 s j2 < (qk - 1)/N and 0 5 j, < N. 
Then 

vj = tr ~(al,f,dlWj2+jl) + a2,phWjz+jl)) 

= tr ~(al,pjz+dUl + a2$Nj2+dtil), 

since diN = ((qk - l)/Nl + 1)N q N (mod qk - l), for i = 1,2. 
Therefore 

VNj,+jl = tr :(+Nj2(a1+di1 + U2tidti1)). 

Let T(a) = lbltr l(c@‘j) # 0, 0 2 j < (qk - l)/N)I. From 
Oganesyan, Yagdzyan, and Tairyan [3, p. 2201 we have 

T(a) = ” 
ifa =0 

qk-% - 1)/N, ifa # 0. 

Let 

S(al,a2) = Idjllal$d~l + u2+dil = 0,O z jl < N)I. 


