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Some Mantel–Haenszel tests of Rasch model
assumptions

Tom Verguts* and Paul De Boeck

University of Leuven, Belgium

A class of Rasch model tests is proposed, all of them based on the Mantel±Haenszel

chi-squared statistic. All tests make use of the `suf®cient statistics’ property the
Rasch model possesses. One element of our general class, the test for item bias

developed by Holland and Thayer, has been discussed extensively in the psycho-
metric literature. Three applications of the general procedure are presented, two on

unidimensionality and one on item dependence in educational testing. In each case,
simulation results are reported. Our procedure is also applied to real data.

1. Introduction

Suppose Xpi is a dichotomous random variable which indicates the score (1 or 0) for person p

on item i ( p 5 1, . . . , P; i 5 1, . . . , I). With person p we associate an ability parameter yp and

with item i a dif®culty ei, both parameters positive-valued. The Rasch model can then be

stated as

Pr(Xpi 5 1|yp, ei) 5

ypei

1 1 ypei

. (1)

It can be shown that model (1) is equivalent with the following ®ve assumptions (Fischer,

1995a): (i) unidimensionality of the `latent trait’ y; (ii) monotonicity of Pr(´) in y; (iii) lower

limit 0 and upper limit 1 of Pr(´) for y going to 0 and 1`, respectively (denoted no guessing,

for short). The two key assumptions, which will be used in the following, are: (iv) local

stochastic independence; and (v) suf®ciency of raw sum score for yp and number correct per

item for ei. (Actually, these ®ve assumptions are equivalent to a `family of Rasch models’, in

the sense that the factor ypei in (1) may be replaced with b(ypei)
a

for any choice of a, b where

both a, b > 0. However, without loss of generality we choose the constants a 5 b 5 1; see

Fischer, 1995a.) In the following, the phrase `under the Rasch model’ will denote the

occurrence of these ®ve assumptions together. Suf®ciency is the key property used here and

will be elaborated later on.

The methodology developed in this paper is a contingency table approach to testing Rasch

model assumptions. Rather than estimating item or person parameters and then performing

goodness-of-®t tests, this method directly uses contingency table(s) constructed from the data

to test model assumptions. We base our test on a fundamental property of the Rasch model,

British Journal of Mathematical and Statistical Psychology (2001), 54, 21±37 Printed in Great Britain

© 2001 The British Psychological Society

21

* Requests for reprints should be addressed to Tom Verguts, Department of Psychology, Katholieke Universiteit
Leuven, Tiensestraat 102, B-3000 Leuven, Belgium (e-mail: Tom.Verguts@psy.kuleuven.ac.be).



namely, that the conditional distribution of the responses given the total raw score is

independent of the person parameters. This property forms the basis, for example, for

conditional maximum likelihood estimation (Fischer, 1974) and the conditional likelihood

ratio test (Andersen, 1973).

One procedure that uses this property was developed by Holland & Thayer (1988). These

authors use the fact that, under the Rasch model, gender (or any other binary, external,

criterion) and `score on item i’ should be (statistically) independent variables given a certain

score level t (which follows from the fundamental property referred to in the previous

paragraph). The item i should be included in the calculation of t; we will come back to this

point later. Since gender and `score on item i’ are independent, the Mantel±Haenszel (MH)

chi-squared statistic (Mantel & Haenszel, 1959) based on these variables is distributed as chi-

squared with one degree of freedom. Further studies of this method can be found in Parshal &

Miller (1995), Uttaro & Millsap (1994), Zwick (1990), and Zwick, Donoghue & Grima

(1993).

In this paper we extend the differential item functioning (DIF) application by showing that

the MH methodology can be used to test, besides DIF, other Rasch model assumptions as

well. The key point is an appropriate choice of row and column headings in the MH table. For

appropriately constructed tables, the Rasch model predicts that the MH chi-squared statistic

should be x2 distributed. On the other hand, if the MH chi-squared statistic turns out to be too

high, this indicates that some aspect of the model is violated.

Many testing procedures for the Rasch model have been described in the literature. We

distinguish two such types of procedures, the ®rst parametric, in which (estimated) person

and/or item parameters are used, and the second non-parametric, which involves constructing

a test without the need for these parameters. The approach adhered to in this paper is the non-

parametric one.

One class of commonly used parametric tests is the set of likelihood ratio tests. An example

is a test proposed by Martin-LoÈfÐsee Glas & Verhelst (1995), whose terminology we follow,

and Gustafsson (1980). The key idea here is to estimate the item parameters ei in two separate

groups of items and also in the total group of items, and then to check (with a likelihood ratio

test) whether the two sets of estimated parameters conform to each other. Let the items be

partitioned in two sets consisting of I1 and I2 items respectively. Let t 5 (t1, t2) denote a

vector of scores on the ®rst and the second set of items respectively, and nt the number of

people with this score pattern; nt is the number of people with a score t on the total item set.

The Martin-LoÈf statistic is then de®ned as

LR 5 2
X

t

nt ln
nt

P

§ ¨

2

X

t

nt ln
nt

P

§ ¨

2 ln LC 1 ln L
(1)
C 1 ln L

(2)
C

Á !

, (2)

in which LC, L
(1)
C , and L

(2)
C denote the likelihood functions based on the total, the ®rst and the

second item set respectively, evaluated in the conditional maximum likelihood estimators.

Under the Rasch model, this statistic has a chi-squared distribution with I1I2 2 1 degrees of

freedom. The items can be assigned to the two sets in different ways, yielding different tests

of the model (Gustafsson, 1980). For example, if the items are grouped according to

dif®culty, the test yields a test of differing person slopes. If the items are grouped according

to two purported underlying dimensions, the statistic tests unidimensionality between the two

sets of items. This second application will be discussed later.
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Concerning the non-parametric approach, we have already mentioned the Holland and

Thayer (1988) DIF application. A second non-parametric approach to test model assumptions

was developed by Rosenbaum (1984), although the tests were derived under some general

assumptions (monotonicity and conditional independence), rather than under the Rasch

model (which entails a few more assumptions). In this procedure, participants are ordered

using a subset J1 of the test. At each level of the score on J1, the scores on the remaining part

of the test should be associated, meaning that any increasing functions g1(J2) and g2(J2)

should be non-negatively correlated. For example, if participants are grouped according to

their score on all items except items i and j, these items should be correlated at each level of

this subscore. Otherwise, the monotonicity assumption would be violated (for these two

items). Rosenbaum constructs a test to investigate this correlation. It is interesting to note that

this author also uses the MH chi-squared statistic and that some of his methods are similar

(but not identical) to the procedures developed here.

Another non-parametric procedure was developed by Ponocny (1999; Ponocny &

Ponocny-Seliger, 1999), extending an idea presented by Rasch (1966), namely that under

the Rasch model every data matrix with the same marginals has the same probability of

occurring. From this property, Ponocny shows how a uniformly most powerful test of the

Rasch model against a large set of alternative hypotheses may be constructed. This entails

calculating a statistic T in the observed data set and in all other matrices with the same

marginal totals (i.e., person sum scores and item scores), and checking the proportion of

matrices where T is larger than the value of T in the observed data matrix; this gives the

desired p-value of the Rasch model versus the alternative. A problem with this procedure

is the phrase `all other matrices with the same marginals’; it turns out to be very dif®cult

to enumerate all these matrices. Ponocny presents an ingenious algorithm to obtain or

approximate the desired proportion, although in practice the procedure is still limited to data

matrices of moderate size.

A ®rst (practical) advantage of using the MH chi-squared statistic to test model assump-

tions is its ease of use. No parameters need to be estimated, and the MH chi-squared statistic

is part of many standard statistical software packages. Also, the computation time is very low,

even for large data matrices. A second advantage is that they are all quite speci®c; that is, they

are sensitive to speci®c types of model violation. The corresponding drawback is that if the

MH table is incorrectly speci®ed, then the model will not be rejected even if there are model

misspeci®cations.

The remainder of this paper is organized as follows. First, we introduce the concept of

suf®ciency and discuss some ways to test the Rasch model based on this concept. Then, we

present our general class of Rasch model tests, followed by three applications and

corresponding simulation studies. Finally, we present an analysis of a real data set with

our methodology.

2. Suf�ciency, independence, and the MH chi-squared statistic

The fact that model (1) has suf®cient statistics for its parameters follows from being a

member of the exponential family (Mood, Graybill & Boes, 1974). For the yp parameter, the

suf®cient statistic is the raw sum score Tp º SiXpi, with realizations tp. Suf®ciency means that

Pr(Xpi 5 1|tp, yp, e) 5 Pr(Xpi 5 1|tp, e), (3)
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where e 5 (e1, . . . , eI ). That is, all persons within a score group have the same probability of

solving an item correctly.

Suppose every person is assigned to one of two groups based on a criterion external to the

test, for example, male or female. The variable G will indicate this, so G 5 0 can stand for

male, G 5 1 for female. It is clear from the suf®ciency property (3) that under the Rasch

model, the factors `membership’ (G) and `score on item i’ (1 or 0) are independent, given the

score level t. Formally, the Rasch model implies

Pr(Xpi 5 1|tp, G 5 1) 5 Pr(Xpi 5 1|tp, G 5 0). (4)

Note that the matching variable (in this case t) includes the studied item i (Holland & Thayer,

1988).

From this result, Holland and Thayer (1988) developed a test for DIF starting from success

and failure counts for a given item in two groups, as represented in Table 1, for every score

group t. The row headings indicate group membership (G 5 0 or 1, e.g., male or female), and

column headings denote the score on item i. In the upper left cell, for example, we have n11t,

the number of persons who are member of group G 5 1, scored item i correctly (5 1), and

achieved a score of (exactly) t. Then, one may construct the Mantel±Haenszel statistic MH,

which is de®ned as

MH 5

X

t

N11t 2

X

t

E(N11t|nt)

Á !2

Var
X

t

N11t|n1, n2, . . . , nI21

Á ! 5

X

t

N11t 2

X

t

E(N11t|nt)

Á !2

X

t

Var(N11t|nt)
, (5)

with E(´) and Var(´) denoting mean and variance respectively, where

E(N11t|nt) 5 (N11t 1 N01t)(N11t 1 N10t)/nt,

Var(N11t|nt) 5 E(N11t|nt)[(N01t 1 N00t)/nt][(N10t 1 N00t)/(nt 2 1)],

nt 5 N11t 1 N10t 1 N01t 1 N00t

and nt equals the number of subjects who belong to score-group t. Each summation is taken

over t 5 1, . . . , I 2 1, since for t 5 0 or I the contribution is always zero. It is possible to

correct for continuity in (5), but this will not be pursued here. Under independence of G and

Xi, the MH chi-squared statistic is asymptotically x2 distributed with one degree of freedom,

so if the Rasch model holds, MH should be asymptotically x2 distributed. On the other hand,

high values of MH are indicative of DIF in item i.

Fischer (1993, 1995b) generalizes this result in the following way. He proposes

T. Verguts and P. De Boeck24

Table 1. Item bias data

Xi

G 1 0

1 n11t n10t

0 n01t n00t



considering as column headings not responses to single items but rather to two items, so that,

for items (i, j), the possible patterns are (1, 1), (1, 0), (0, 1) and (0, 0). He shows that the Rasch

model predicts independence in the resulting 2 34 table and proposes a Pearson x2 statistic

per table. This statistic has (2 2 1)(4 2 1) degrees of freedom per table. Since the values can

be added over all score groups t 5 2, . . . , I 2 2, the resulting statistic has 3(I 2 3) degrees of

freedom. This extended procedure has the advantage that it is also sensitive to model

violations caused by item interactions (i.e., association between items).

We will generalize the Holland and Thayer (1988) idea in two ways. First, we show that

other criteria for choosing the column headings (rather than Xi 5 0, 1) can be employed.

Second, we show that choosing the row headings can also be based on an internal criterion,

that is a criterion based on the observed responses, rather than just on an external criterion

such as male/female. This allows us to use the MH chi-squared statistic to test other model

assumptions besides item bias and item interactions.

3. A general class of MH Rasch model tests

Let the complete set of I items be partitioned in two sets of IR and IC items respectively.

Note that IR
1 IC

5 I. The two sets of items will be denoted JR and JC, consisting of IR and

IC items respectively. (The R/C notation, for `rows’ and `columns’, will become clear later

on.) The score on the item sets JR and JC is denoted by tRp and tCp , respectively (so

tp 5 tRp 1 tCp ). Response patterns are denoted by w 5 (w1, . . . , wI), and they can analogously

be partitioned as w 5 (wR
, wC

), with corresponding random variable WC for wC.

For example, all response patterns wC are based on the item set JC. Consider a level of the

score variable tC, and consider all patterns wC that result in this score (i.e., all response

patterns wC with Siw
C
i 5 tC). Denote this set by Q(tC); it consists of IC

tC

§ ¨

elements.

To illustrate these de®nitions, consider a test of I 5 4 items, and JC
5 {item 1, item 2, item

3}. Further, consider tC 5 1, hence Q(tC) 5 {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, which are 3
1

— ˜

5 3

elements. Take an arbitrary proper subset of this set, and denote it by Q(tC, 1). The

corresponding set of remaining response patterns is denoted Q(tC, 2). In the example,

Q(tC, 1) might be equal to {(1, 0, 0)} and hence Q(tC, 2) 5 {(0, 1, 0), (0, 0, 1)}.

This terminology allows one to construct MH tables in the following way. First, classify

every person according to her score on tC to one of the tables. Hence, tC is the classi®cation

variable. Next, in every such table, classify every person to the left column if her score pattern

on JC is in Q(tC, 1). Otherwise, assign her to the right column. Next, choose a criterion G; for

example, the criterion may be external, as in the classi®cation male/female. But the criterion

can also be based on the response patterns from the item set JR; for example, if only one item i

is in JR, one may choose G 5 1 if Xi 5 1 and G 5 0 otherwise.

This illustrates the R/C notation: The item set JC is used to construct the columns of the

MH table, and participants with a response pattern wC
[ Q(tC, 1) are assigned to the ®rst

column. Hence, the set JC is used to perform the column classi®cation. Also, the variable tC is

used to segregate the MH tables, that is, for the MH table classi®cation. Furthermore, the set

JR can (but does not have to) be used to construct the row headings, and can thus serve to

perform the row classi®cation.

Now we may state the following: under the Rasch model,

Pr(WC
[ Q(tC, 1)|t

C
, G 5 1) 5 Pr(WC

[ Q(tC, 1)|t
C
, G 5 0). (6)
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The criterion G may or may not be based on the item set JR (but not on the items comprising

JC). Note, however, that the construction of the rows is always based on information non-

overlapping with the information for the column classi®cation. Equation (6) is our central

result, and it is proven in the Appendix. It shows that the Rasch model predicts independence

for a wide class of MH tables, and hence a x2 distribution for the MH statistic. Therefore, an

appropriate choice of row and column classi®cations can serve as a test of speci®c

assumptions of the Rasch model.

One special case is the MH DIF application. Here, choose the criterion G 5 0 or 1 if person

p is male or female respectively (or any other criterion external to the test itself); JC
5 J (so

JR is an empty set). Furthermore, pattern wC is a member of Q(tC, 1) if and only if Siw
C
i 5 tC

and wi 5 1, i.e., if the response pattern results in a subscore tC and has a 1 at the position of

item i. Note that this implies that item i has to be included in calculating the score t, as was

done by Holland and Thayer (1988) as well. More applications of this general procedure will

be given in the following paragraphs.

A ®nal remark is that one of both columns may sometimes remain empty; for example, if tC

is the perfect score, then the only possible pattern (1, 1, . . . , 1) (tC ones) will be assigned to the

left- or right-hand column, so one column must remain empty. This is harmless, however,

since contributions from this tC value will become zero in both numerator and denominator. If

this occurs too often, a loss of power results. However, the problem will not occur for a

reasonable choice of the column classi®cation. We now turn to the applications.

4. Testing for unidimensionality: External criterion

Consider a test consisting of two sets of items, for example, verbal and geometrical analogies.

It is suspected that males are relatively better at the geometrical items, while females are

relatively better at the verbal items. The Rasch model predicts that gender does not establish a

preference for one type of items. To be concrete, we construct the set JC as consisting of all

items in J (so JR is an empty set). For each score level t, an MH table is constructed (so

tC 5 t). The set J 5 JC is now partitioned as (Jverb
, Jgeom

), where Jverb and Jgeom contain all

verbal and geometrical items, respectively. For the row classi®cation, all males are assigned

to Group G 5 0, while females are assigned to G 5 1. This example is called an external

criterion test because the row classi®cation is not based on item responses. For the column

classi®cation, the patterns w in which the score on verbal items is higher than or equal to the

score on geometrical items are assigned to the set Q(t, 1). More precisely, if we split a

response w into (wverb
, wgeom

), a response pattern w is assigned to Q(t, 1) if and only if
X

i

wverb
i $

X

i

w
geom
i . (7)

In other words, if the person has a higher score on the verbal items than on the geometrical

items, she is assigned to the left column of the MH table. The number of verbal and

geometrical items need not be equal, but a more or less equal number will, of course, increase

the power of the test. Second, if the number of items is unequal, it may be more meaningful to

take the mean instead of the absolute sum score in (7).

Ties can be handled arbitrarily, and in our application we assign them to the ®rst column

(the `verbal’ column). The reasoning in the previous paragraph shows that the Rasch model

predicts independence and hence a x2 distribution of the MH chi-squared statistic. On the
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other hand, if men prefer geometrical items to verbal items (in comparison with women),

unidimensionality will be violated and the MH chi-squared statistic will turn out to be too

high.

A simulation study for this application will now be presented. Two types of persons are

considered (e.g., male and female). The test involved will be an I 5 40 item test, of which 20

are verbal, 20 geometrical items. (The item naming is, of course, arbitrary in a simulation

study, but we pursue the verbal/geometrical naming for concreteness.)

Four factors are varied: number of participants (P); magnitude of Rasch model violation

(u); item parameters; and ability distribution. First, all item parameters bi 5 2 ln(ei) for this

and the following study are shown in Table 2. From this table one may note that verbal and

geometrical items either have identical (distributions of) dif®culty levels b (see the left-hand

column of the table), or have different (distributions of) dif®culty levels (see the right-hand

column of the table). In the case of different distributions, the 20 verbal items are always at

least as easy as the geometrical items. These cases are extreme, of course, and in most real-

life examples the separation will not be that clear. However, this condition is introduced

because it gives a conservative power estimate: the more similar the item parameters are, the

more powerful the test will be.

Second, abilities v 5 ln(y) for male participants always are sampled from an N(0, 1)

distribution. Female abilities are either sampled from an N(0, 1) or from an N(0.5, 1)

distribution (see the Table 3 headings vfem ~ N(0, 1) and vfem ~ N(0.5, 1), respectively).

Third, the number of participants P varies from 100 to 1000; this factor is given in the row

headings of Table 3. Fourth, the Rasch model is violated with magnitude u (u 5 0, 0.1 or 0.5).

For a geometrical item, this implies that item dif®culties bi decrease by an amount u when a

male person is solving the item. Similarly, females consider verbal items to be easier, so item

dif®culties decrease by an amount u when a female person is solving the item. If u 5 0, data

are pure Rasch data and the MH chi-squared statistic should be x2 distributed with one degree

of freedom.

Rasch model tests 27

Table 2. Item parameters for the three applications

Item parameters b

Criterion Item set Same Different

External J
verb

21, 21, 21, 21, 20.5, 20.5, 21, 21, 21, 21, 21, 21, 21, 21,

20.5, 20.5, 0, 0, 0, 0, 0.5, 0.5, 20.5, 20.5, 20.5, 20.5, 20.5, 20.5,

0.5, 0.5, 1, 1, 1, 1 20.5, 0, 0, 0, 0

J
geom

21, 21, 21, 21, 20.5, 20.5, 0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

20.5, 20.5, 0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1

0.5, 0.5, 1, 1, 1, 1

Internal J
verb1

21, 21, 20.5, 20.5, 0, 0, 21, 21, 20.5, 20.5, 20.5, 20.5,

0.5, 0.5, 1, 1 0, 0, 0, 0
J

verb2
21, 21, 20.5, 20.5, 0, 0, 21, 21, 20.5, 20.5, 20.5, 20.5,

0.5, 0.5, 1, 1 0, 0, 0, 0
J

geom1
21, 21, 20.5, 20.5, 0, 0, 0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 1, 1 1, 1
J

geom2
21, 21, 20.5, 20.5, 0, 0, 0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 1, 1 1, 1



For each factor combination, 1000 data sets are generated and the MH chi-squared statistic

is calculated for each data set. We report the proportion of data sets that is rejected at the

a 5 0.05 level. An asterisk (*) is written if all 1000 data sets are rejected. Theoretical

expectations are as follows. All cells with u 5 0 should have a rejection proportion of about

0.05. Notice that this holds independent of ability distributions or item dif®culties, as was

stated above and proven in the Appendix. However, these factors may be expected to

in¯uence the power of the test: unequal v distributions result in a loss of power since males

and females will less often be found in the same MH table (i.e., will less often have the same

value on the classi®cation variable t). Similarly, unequal item dif®culties result in a tendency

for data to be concentrated in one column of the MH table, which again lowers power. That

the number of participants (P) and size of violation (u) factors in¯uence the power of the test

is obvious.

Most of these predictions are shown to be valid in Table 3. Notice, however, that unequal

ability distributions hardly (if at all) in¯uence the power of the test statistic. Furthermore, one

may note that even very small deviations (u 5 0.1) can be detected by this test if the sample

size (P) is suf®ciently large. On the other hand, with small P(P 5 100), the test has only

reasonable power in the condition with a reasonably strong violation and equal item

dif®culties. In the following section, the same example will be pursued.

5. Testing for unidimensionality: Internal criterion

Let us now assume that no good a priori classi®cation is known; nevertheless, it is suspected

that some people are better at one part of the test, some better at another (again, assume

the verbal/geometrical distinction can be made). To test for this, again make the division

(wverb
, wgeom

), but then split each part again in two, so that the complete response pattern is

now w 5 (wverb1
, wverb2

, wgeom1
, wgeom2

). The set JR consists of all items involved in wverb1

and wgeom1. The set JC contains all items involved in the response patterns wverb2 and wgeom2.

This test is called an internal criterion test because the row classi®cation is based on item
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Table 3. Simulation results for the external criterion MH test

Item dif®culties

Same Different

Violation (u) Violation (u)

0 0.1 0.5 0 0.1 0.5

vfem ~ N(0, 1)

P 5 100 0.043 0.157 0.993 0.030 0.038 0.478
P 5 500 0.044 0.648 * 0.044 0.200 *

P 5 1000 0.048 0.930 * 0.049 0.369 *

vfem ~ N(0.5, 1)

P 5 100 0.054 0.142 0.994 0.025 0.039 0.500
P 5 500 0.052 0.659 * 0.051 0.211 *

P 5 1000 0.046 0.924 * 0.043 0.366 *



responses. All persons with the same score on the variable

tC 5

X

i

wverb2
i 1

X

i

w
geom2
i

are assigned to the same MH table (for score tC). In such a table, a person with score tC is

assigned to row 1 (i.e., G 5 1) if

X

i

wverb1
i $

X

i

w
geom1
i

and to row 2 (G 5 0) otherwise. A person is assigned to column 1 if
X

i

wverb2
i $

X

i

w
geom2
i

and to column 2 otherwise. Note that, as always, rows and columns are constructed based on

non-overlapping information.

As before, it is not necessary that all parts contain the same number of items, but the same

arguments about loss of power and about taking means instead of sums apply here. Under the

Rasch model, there should be no association between the row heading `better at verbal

material in the ®rst part’ and the column heading `better at verbal material in the second part’

(or vice versa, of course). On the other hand, if some people are relatively better at verbal

items, some better at geometrical, this will be detected by the procedure constructed above. In

contrast with the previous example, it is not known a priori which person belongs to which

group. However, a priori knowledge about the items is still required.

Some simulation results for this test will now be described. Again, the test is an I 5 40 item

test and P 5 100, 500 or 1000 (see Table 4). Two types of persons are considered, denoted the

verbal group and the geometrical group, respectively. Abilities of the geometrical group are

N(0, 1) distributed, while abilities in the verbal group are either N(0, 1) or N(0.5, 1)

distributed (see the column headings in Table 4; abilities of the verbal group are here

denoted by vverb). Rasch model violation (u) is de®ned as follows. If a person (with constant

ability vp) belonging to the verbal group is solving a verbal item, the dif®culty of this item

decreases to a value bi 2 u (of course, it again increases to bi when solving a geometrical

item). Similarly, every parameter bi of a geometrical item decreases to a value bi 2 u when a

person from the geometrical group is solving the item. Again, the case u 5 0 denotes the case

in which the Rasch model is not violated. Denote the verbal items in JR by Jverb1, the verbal

items in JC by Jverb2, and similarly for geometrical items. The corresponding item parameters

can be found in Table 2. Again, there is the case in which verbal and geometrical items are

equally distributed, and the case in which geometrical items are never easier. As in the

previous simulation study, the latter case is expected to be less powerful.

Results for this application are shown in Table 4. A major difference from the previous

example is that the power is lower in general. Presumably, this is because the column

classi®cation is now based on 20 items only (instead of 40). However, for model violations

that are suf®ciently large and for a not too small P the MH test detects that the item set is not

unidimensional.

A test that can be used to investigate the same hypothesis is the Martin-LoÈf (ML) test

described above. Hence, it seems useful to compare the present simulation results with results

from the ML test. We resimulate data from cell (vverb ~ N(0, 1), u 5 0, P 5 500) of Table 4,
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where item dif®culties for both items sets are the same. The ML procedure requires that each

item set is split into two subsets and estimation is done in each subset separately. We chose

the verbal/geometrical distinction to split the items as this results in a test of unidimension-

ality (see Gustafsson, 1980). The mean ML value was equal to 235.185,while the mean of the

corresponding chi-square distribution is equal to 399 (5 202
2 1); clearly the chi-square

approximation is not good. Zero data sets (out of 1000) were rejected, while the expected

number is 50 at level a 5 0.05. Similarly, if we change the parameter u to 0.5 (and all other

parameters are unchanged), zero data sets were rejected, while the corresponding MH test has

large power (890 out of 1000 data sets rejected; see Table 4).

We lower the number of items in a data set in order to make the chi-squared approximation
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Table 4. Simulation results for the internal criterion MH test

Item dif®culties

Same Different

Violation (u) Violation (u)

0 0.1 0.5 0 0.1 0.5

vverb ~ N(0, 1)

P 5 100 0.051 0.060 0.253 0.034 0.042 0.131
P 5 500 0.047 0.059 0.890 0.054 0.043 0.512

P 5 1000 0.055 0.051 0.993 0.062 0.044 0.793

vverb ~ N(0.5, 1)

P 5 100 0.057 0.035 0.225 0.038 0.035 0.128
P 5 500 0.048 0.065 0.841 0.054 0.061 0.487

P 5 1000 0.059 0.050 0.991 0.046 0.054 0.756

Table 5. Comparison of (internal criterion) MH and ML test

Procedure

Mantel±Haenszel Martin-LoÈf

Violation (u) Violation (u)

0 0.5 1 0 0.5 1

vverb ~ N(0, 1)

P 5 100 0.049 0.081 0.357 0.028 0.050 0.330
P 5 500 0.063 0.178 0.960 0.043 0.128 0.993

P 5 1000 0.047 0.321 * 0.050 0.226 *

vverb ~ N(0.5, 1)

P 5 100 0.048 0.074 0.362 0.018 0.036 0.331
P 5 500 0.047 0.176 0.938 0.032 0.136 0.996

P 5 1000 0.042 0.291 0.998 0.051 0.426 *



more accurate. There are now six verbal and six geometrical items (so I 5 12 instead of

I 5 40), with parameter vector b 5 (21, 0, 1, 21, 0, 1) for both sets. This lower number

of items may result in a lower power. Hence, in order to see the full range of the `power

spectrum’ we enlarged the violation size u to u 5 0, 0.5 or 1. The results comparing the two

procedures (MH and ML) on the same data sets are shown in Table 5. One can see that both

tests have similar properties. Both are chi-squared distributed under the Rasch model; when

the model is violated, sometimes the power of one test is higher, sometimes the other,

possibly re¯ecting just random ¯uctuations. Hence, the conclusion of the comparison would

be that, if the number of items is relatively large, the MH test presented here does better.

Otherwise, the ML test is appropriate also.

6. Item dependence

Under local stochastic independence, any two items are independent given the latent trait v:

the score on an item does not contain a clue to the score on other items. In reality, it may well

be that two items are dependent given v. This would occur, for example, if solving one item is

dependent on the answer obtained in the previous item. Conditional association in this sense

may also be seen as a violation of unidimensionality. For example, Van den Wollenberg

(1982) developed a procedure based on this idea to test for unidimensionality (his Q2

statistic). We present a test to investigate two-item dependence which is a member of the

class discussed above.

Suppose two items j and k are suspected to be associated conditional on v. The item set is

partitioned into JR
5 {item j}, and JC

5 {item 1, . . . , item j 2 1, item j 1 1, . . . , item I};

the corresponding partitioning within response patterns is (wj, w2j) where w
2j denotes the

response pattern w in which item j is deleted. For example, if j 5 1, then w
21 5 (w2, . . . wI ).

Further, de®ne

tC 5

X

iÞj

wi. (8)

The MH classi®cation variable is tC as de®ned in (8), that is, the sum score where item j is

deleted. This follows from the fact that G already `uses’ the item j, so tC can no longer include

this item as well. The column classi®cation is based on item k: every person solving k correctly
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Table 6. Simulation results for the item dependence MH test

Item dif®culties

Same Different

Violation (u) Violation (u)

0 0.1 0.5 0 0.1 0.5

v ~ N(0, 1)

P 5 100 0.053 0.053 0.128 0.063 0.058 0.139

P 5 500 0.047 0.084 0.614 0.053 0.067 0.582
P 5 1000 0.051 0.100 0.925 0.028 0.079 0.887



is assigned to the left column, all others to the right one. The row classi®cation is based on item

j: persons solving j correctly are assigned to the upper row, other persons to the lower one. As

shown above, such a table is not associated under the Rasch model. On the other hand, if there is

some covariance left between these items, the MH chi-squared statistic will be too large.

It is useful to make a link here with the procedure of Rosenbaum (1984) discussed above. If

one were to apply Rosenbaum’s procedure, the MH classi®cation variable would consist of

the sum score based on all items except items j and k; the row and column classi®cations

would look exactly the same. Correlation larger than or equal to zero would be predicted

under the model (and tested for). A difference from our approach is that Rosenbaum’s

procedure was derived assuming two general assumptions, monotonicity and conditional

independence, rather than a speci®c model.

A simulation study is now set up for the item dependence MH test. Sample and test sizes

are as before (i.e., I 5 40 and P 5 100, 500 or 1000). Item parameters b can be found in the

upper left cell of Table 2 (see the headings `Criterion±external’ and `Item parameters±

Same’). Abilities v are sampled from a standard normal distribution. We either compare two

items j and k with b 5 0 (under the heading `Item dif®culties±Same’ in Table 6) or two items

j and k with bj and bk equal to 20.5 and 0.5, respectively (under the heading `Item

dif®culties±Different’ in Table 6). Violation of the Rasch model is implemented as follows:

people with Xj 5 1 solve item k with item dif®culty bk 2 u instead of the usual bk (note that

this implies j < k). The results are displayed in Table 6. The power seems less than for the two

previous examples. The test now is only powerful if both violation size and sample size (P)

are reasonably large. One plausible reason is that violation is only unidirectionally de®ned in

this example, in the sense that solving item j is bene®cial for solving item k, but not solving

item j (i.e., belonging to G 5 0) does not in¯uence the ability. Thus, model violations are not

detected when the violation is only small.

7. Illustration

As an illustration of this method, we analyse a data set of 441 participants, who have

completed a test consisting of 78 questions on diverse topics. The test was an assessment test

(we will denote it the Law Entry Test) for aspiring law students: the subjects covered were

courses they would take in their curriculum, such as law, sociology and psychology. In total,

there were 11 topics, with six to ten questions on each topic. The global R1c Rasch model test

(Glas, 1988) was applied to these data, which turned out to be signi®cant ( p 5 0.000). This

test, however, does not provide much speci®c information about which model assumptions

are violated. On the other hand, our MH testing approach is capable of testing many speci®c

aspects of the model, as will now be illustrated.

One obvious way in which unidimensionality may be violated is that different courses

assess different abilities. This may be evaluated by comparing items from different courses.

Suppose we wish to compare the psychology and the law parts of the Law Entry Test. In this

®ctional example, items 1±6 are law items and 7±12 psychology items. In each such table are

grouped those participants who have the same score on the variable

X4 1 X5 1 X6 1 X10 1 X11 1 X12,

to which may be added the score of additional items if desired (items 13, 14, . . .), but not

items 1, 2, 3, 7, 8 and 9, because they are used in the row classi®cation. This row classi®cation
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is based on the score on the ®rst part of the psychology and law items, the column

classi®cation on the second part. More speci®cally, we assign to row 1 everyone with

x1 1 x2 1 x3 $ x7 1 x8 1 x9,

while others are assigned to row 2. Similarly, we assign to column 1 everyone with

x4 1 x5 1 x6 $ x10 1 x11 1 x12,

while others are placed in column 2. An important consideration here is that to be maximally

powerful items (4, 5, 6) should be of comparable dif®culty to items (10, 11, 12), and items (1,

2, 3) should be comparable to (7, 8, 9). Moreover, if the number of items on both sides of the

equation is not equal, it is more sensible to take means instead of sums, as was noted earlier.

For example, if the items 4 and 5 are assigned to column 1, and the items 10, 11 and 12 to

column 2, it is allowed to classify response patterns according to

x4 1 x5 $ x10 1 x11 1 x12,

but since a loss of power is likely to be the result, it is more sensible to classify response

patterns according to

x4 1 x5

2
$

x10 1 x11 1 x12

3
,

which of course reduces to the previous expression if the numbers of variables on each side of

the equation are equal. This approach (i.e., taking means instead of sums) will also be pursued

in the following.

We will compare the law and psychology parts of the test using this procedure. These parts

consist of six and eight items, respectively. The ®rst three items of the law test and the ®rst

four items of the psychology test are used to construct the row classi®cation as described

above. That is, if the mean score on the law subtest is higher than the mean score on the

psychology subtest, a person is assigned to the ®rst row; otherwise, she is assigned to the

second row. A similar procedure is followed for the remaining items in the column

classi®cation. This results in an MH value of 10.820 (df 5 1; p < 0.01). Similarly, the

Martin-LoÈf test rejects the model (ML 5 175.97;df 5 47;p < 0.01). The reason for this

multidimensionality might be that some very speci®c ability is shared by only a few items

within one of the parts, such as knowledge of a speci®c fact, resulting in item dependence.To

test whether this phenomenon occurs, we have to construct the MH table in a different way. In

any such table we aggregate those participants who have achieved a score of t, in which item j

is excluded from the calculation. We take the law subtest and compare some of the items
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Table 7. Some comparisons between the Law

Entry Subtest questions

Question numbers MH p-value

73±76 1.159 0.28
73±77 1.264 0.26

73±78 22.778 <0.01

76±77 3.185 0.07
76±78 0.956 0.32

77±78 6.290 0.01



because previous research has indicated that this test may contain item dependencies

(Tuerlinckx & De Boeck, 1998). The results are displayed in Table 7. As can be seen

some dependencies exist between the items which cannot be explained by the model. In

particular, the relation between items 73 and 78 seems problematic. Upon inspection of these

two items, one can see that they both require knowledge of a speci®c fact, namely that the

government in Belgium is stronger than the parliament.

Although construction of a new model is beyond the scope of this paper, we may perform a

new analysis in which item 78 is removed. This item is believed to be worse than item 73

because it is also rather strongly correlated with item 77 (see Table 7), while item 73 is not. If

we again apply the MH unidimensionality test to the law and psychology subtests, we end up

with a MH value of 3.559 ( p 5 0.06), so now the hypothesis of unidimensionality is no

longer rejected.

8. Discussion and conclusion

In this paper, we have constructed a general class of Rasch model tests, from which various

examples may be derived according to the wishes of the investigator. Standard (or easily

implemented) MH software can then be used to test different Rasch model assumptions.

However, the simulation results described above indicate that, in some applications,

violations will only be detected if the violation and the sample size are large enough. The

Law Entry Test illustration shows that the method is useful for detecting and testing the

occurrence of speci®c violations.

The set of tests we have proposed can be characterized on several dimensions. First, model

tests may or may not use estimated (item or person) parameters in the calculation. This aspect

distinguishes parametric from non-parametric tests. The present class of tests is non-

parametric in this sense; this makes it (relatively) easy to apply the test and derive results

concerning its distribution.

Secondly, tests may or may not have a known (asymptotic) distribution under the null

hypothesis. The tests we have proposed all possess this property. The same holds, for

example, for Glas’s (1998) R1c test and Rosenbaum’s set of test statistics.

Thirdly, we have constructed a whole set of tests all based on the same theorem (i.e.,

equation (6)). The Holland and Thayer (1988) item bias test is a special case of this class.

Other general classes of Rasch model tests were proposed by Glas (1988) and Rosenbaum

(1984). Such a general class is useful since it allows the testing of some hypotheses which

were dif®cult to test directly before. For example, the external criterion/unidimensionality

test described above seems to be a test for an interesting hypothesis which was dif®cult to

evaluate previously.

Acknowledgements

We wish to thank Eric Maris, Patrick Onghena and Gert Storms for their useful comments and

Laurence Claes and Piet J. Janssen for the use of their data.

References

Andersen, E. B. (1973). A goodness of ®t test for the Rasch model. Psychometrika, 38, 123±140.

T. Verguts and P. De Boeck34

http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0033-3123^28^2938L.123[aid=299560]
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Appendix

Consider the left-hand side of equation (6):

Pr(WC
[ Q(tC, 1)|t

C
, G 5 1) 5

X

wC
[Q (t C ,1)

Pr(wC
|t

C
, G 5 1) 5

X

wC
[Q (t C ,1)

Pr(wC
|G 5 1)

Pr(tC
|G 5 1)

,
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since Pr(wC, tC|G 5 1) 5 Pr(wC
|G 5 1): The score tC is simply the sum of the item scores in

wC. This can be elaborated as

X

wC
[Q (t C ,1)

…

y

Pr(wC
|y, G 5 1)dF(y|G 5 1)

…

y

Pr(tC, |y, G 5 1)dF(y|G 5 1)

. (A1)

Now consider an arbitrary numerator of a term in equation (A1),

…

y

Pr(wC
|y, G 5 1)dF(y|G 5 1),

which can be expanded as

…

Y

i[ J C

(yei)
wC

i

1 1 yei

dF(y|G 5 1), (A2)

since the group membership G is not based on the items in JC and since we have conditioned

on y (from which the local stochastic property can be applied). Furthermore, in (A2), wC
i is the

response on item i in response pattern wC. Bringing the y-independent part outside of the

integral sign, we can write (A2) as

Y

i [J C

e
wC

i

i

…

y
tC

Y

i [J C

1

1 1 yei

dF(y|G 5 1). (A3)

On the other hand, a denominator of a term in (A1) can be written as

X

wC
[Q (t C)

…

Pr(wC
|y, G 5 1)dF(y|G 5 1), (A4)

where the summation is taken over all response patterns resulting in the sum score tC (which

was earlier de®ned as Q(tC)). Hence, (A4) can be rewritten, along the lines of the derivation

just given, as

X

wC
[Q (t C)

Y

i[ J C

e
wC

i

i

…

ytC
Y

i[ J C

1

1 1 yei

dF(y|G 5 1)

5

…

y
tC

Y

i[ J C

1

1 1 yei

dF(y|G 5 1)
X

wC
[ Q (t C)

Y

i [ J C

e
wC

i

i . (A5)

Since the integrals in (A3) and (A5) are of the same form, dividing (A3) by (A5) gives

Y

i [J C

e
wC

i

i

gtC (e)
,
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where gt(.) denotes the elementary symmetric function of order t (Verhelst, Glas & Van der

Sluis, 1984). The formula (A1) is then equal to
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[Q (t C ,1)
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eiw
C
i

gtC (e)
,

and so Pr(WC
[ Q(tC, 1)|t

C
, G 5 1) is independent of the variable G (which only depends on

external variables or the item set JR) and the result follows.
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