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Abstract. The quadratic phase function is fundamental in describing
and computing wave-propagation-related phenomena under the Fresnel
approximation; it is also frequently used in many signal processing algo-
rithms. This function has interesting properties and Fourier transform
relations. For example, the Fourier transform of the sampled chirp is also
a sampled chirp for some sampling rates. These properties are essential
in interpreting the aliasing and its effects as a consequence of sampling
of the quadratic phase function, and lead to interesting and efficient al-
gorithms to simulate Fresnel diffraction. For example, it is possible to
construct discrete Fourier transform (DFT)-based algorithms to compute
exact continuous Fresnel diffraction patterns of continuous, not neces-
sarily bandlimited, periodic masks at some specific distances. © 2004
Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1802232]
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1 Introduction

Conducting digital simulations of diffraction-related optical
phenomena has been a common practice in various appli-
cations; computer-generated holography, analysis of holo-
grams by digital means, and the design of diffractive opti-
cal elements are a few examples. The Fresnel
approximation to diffraction~Ref. 1, Ch. 4! is valid for
many practical cases. Therefore, digital simulation of the
Fresnel diffraction plays an important role in optics.

The quadratic phase function,ha(x,y)5exp@ ja(x2

1y2)#, 2`,x, y,` is fundamental in optics and other
wave-related fields since this function is the kernel of the
convolution which represents scalar wave propagation un-
der Fresnel approximation.1–3 It is also called the 2-D two-
sided chirp function, zone lens term, or the Fresnel kernel.
This kernel plays an essential role not only in the descrip-
tion of various optical systems, but also in signal process-
ing; for example, the fractional Fourier transform is a form
of chirp transform.4,5

Discretization of the Fresnel kernel is unavoidable when
the Fresnel diffraction is going to be simulated by digital
means. Furthermore, discretization naturally occurs when
the light interacts with structures that inherently sample the
diffraction field, such as gratings with periodic transparent
holes over opaque substrates or sensor arrays in imaging
devices. Hybrid systems that consist of both analog optical
parts and digital processing units employ explicit or im-
plicit sampling of the kernel~or related! functions at some
stage of their operations as long as the underlying Fresnel
approximation is valid. Sampling and discretization mean

exactly the same process within the scope of this paper: a
continuous function is represented by a set of numbers cor-
responding to its values at predefined isolated points.

For example, quadratic phase functions are sampled in
Ref. 3 for digital decoding of optically recorded holograms
where the diffraction is modeled as a 2-D linear shift in-
variant system. A similar approach and associated sampling
issues are the main topic in Ref. 6. Sampling issues are
fundamentally important for the general fast numerical al-
gorithms discussed in Ref. 5. Sampling and the Nyquist
rate issues are essential for the digital Fresnel diffraction
simulations carried out in Refs. 7 and 8. Numerical recon-
struction of holograms at tilted angles involves sampling
issues in conjunction with Fresnel approximation in Ref. 9.
Computer-generated holographic optical elements such as
diffractive grids can also be analyzed within the context of
sampling of the diffraction field; interestingly, the process-
ing is not digital but analog in these cases.10 Recording of
holographic signals using CCD arrays~or other discrete
recording techniques! essentially involves sampling of ho-
lograms; it is shown in Ref. 11 that the full reconstruction
is feasible even if the high frequencies of the associated
kernel ~the two-sided chirp! are severely undersampled.
Digital computation of the fractional Fourier transform is
also directly related to the sampling of the quadratic phase
function.12 Sampling issues play a primary role in digital
reconstructions of the particle field and other types of
holograms.13–15

Understanding of the properties of the underlying
Fresnel kernel under sampling is essential both for correct
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interpretation of the sampling results and for designing ef-
ficient and correct simulation algorithms. There is no doubt
that the sampling-related issues regarding general convolu-
tion are well known. Therefore, general convolution with
an arbitrary convolution kernel, and the associated discreti-
zation, is not the main concern of this paper. Instead, this
paper shows that when the convolution kernel is restricted
to be the quadratic phase function, then there are implica-
tions and benefits reaching far beyond the general case.

There seems to be a widespread tendency to associate
bandlimitedness and sampling in almost every problem.
Surely, lossless discretization of a continuous function re-
quires some constraints on the set of functions being con-
sidered. Bandlimitedness is a common constraint and fits
well in many practical cases; and the associated sinc inter-
polation has been well known since Shannon. What is dis-
turbing is the automatic application of the bandlimitedness
constraint to almost any problem, even if there are more
obvious and maybe stronger constraints that would lead to
much more efficient discretization. Even more disturbing is
to give up lossless sampling when the functions do not
happen to be bandlimited even if there are much more con-
venient constraints that would lead to lossless sampling.
This tendency is so strong that many even had the wrong
impression that lossless sampling is impossible when the
functions are not bandlimited! One trivial counterexample
is the set of piecewise constant functions~a very strong
constraint!, f (t)5ci , iT<t,( i 11)T, whereT is a con-
stant, and theis are integers. Obviously, these functions are
not bandlimited due to step jumps at eachiT, but they can
be fully recovered trivially from samples taken at instants
t1 iT, 0<t,T. Of course, the reconstruction~interpola-
tion! method depends on the constraint imposed on the
functions, and it is not the sinc interpolator if the constraint
is not bandlimitedness.

If the impulse response of a continuous linear shift-
invariant system is not an arbitrary function but is restricted
to be the quadratic phase function, as in the Fresnel diffrac-
tion case, then there is no need for bandlimitedness for full
recovery of the input~objects! from samples of the system
output8 ~the diffraction field!. When the convolution kernel
is the quadratic phase function, the Nyquist rate require-
ment can be easily violated and full recovery may still be
possible under other constraints. This observation may
yield much more sparse sampling than the Nyquist rate and
yields much more efficient digital signal processing. How-
ever, the strong tendency to associate sampling always with
bandlimitedness has apparently kept many researchers
away from this possibility. For example, the bandlimited-
ness assumption~or externally imposed bandlimitedness by
explicit filtering! is unnecessarily used in Ref. 1, pp. 352–
354 and Refs. 5 to 7; if the fact that the convolution kernel
is a quadratic phase function is used as a constraint instead,
significant savings in sampling rate requirements would
have been achieved.

These seemingly unusual, but actually not so surprising,
observations and the associated efficiency trigger even fur-
ther interest in sampling properties of the quadratic phase
function. Indeed, quadratic phase functions have interesting
properties under sampling. The purpose of this paper is to
derive and collate some useful relations associated with
sampling of the quadratic phase function. The issues related

to sampling of the continuous Fresnel hologram to recon-
struct the underlying objects digitally are given in Ref. 8.
The primary concern here in this paper is different from
that in Ref. 8 in the sense that now we concentrate on the
sampling of the Fresnel kernel itself and issues related to
digital simulations of the Fresnel diffraction. We start from
simple and well-known properties of the quadratic phase
function, for the sake of completeness, and then we use
these basic features to reveal other properties. Then we use
these properties to clearly and fully interpret the digital
simulations of the Fresnel diffraction using the discrete
Fourier transform~DFT!.

2 Properties

For notational clarity and simplicity, we start with 1-D sig-
nals for the preliminaries; extensions to higher dimensions
follows. The 1-D two-sided quadratic phase function is
ha(x)5exp(jax2), 2`,x,`. This function is neither
space nor band limited; it is not causal, either.

Many properties of the quadratic phase function are well
known. A few simple examples, well known in the litera-
ture, are briefly repeated here; the intention is to provide
continuity as more obscure, but useful, properties are
proven later. For example, its Fourier transform is

F@ha~x!#5F@exp~ j ax2!#

5E
2`

`

ha~x!exp~2 j vx!dx5Ha~v!

5S j
p

a D 1/2

expS 2 j
v2

4a D . ~1!

When a51/2, the Fourier transform of quadratic phase
function is equal to a constant times its own complex con-
jugate. Even though the quadratic phase function is not the
eigenfunction of the Fourier transform, in the formal sense,
it can still be used in many applications where benefits are
expected from using the eigenfunction approach where the
conjugation may not be the primary concern.

Other properties of quadratic phase function are also
well known. For example, modulation of this function is
essentially equivalent to shifting it since
exp(jax2)exp(jv0x)5ca,v0

exp@ ja(x1v0/2a)2#, where

ca,v0
5exp(2jv0

2/4a), which is a constant for givenv0

and a. As a consequence of Fourier transform properties,
we get,

F@ha~x!exp~ j v0x!#5Ha~v2v0!

5ca,v0
Ha~v!expS j

v0

2a
v D . ~2!

Therefore, modulation of the quadratic phase function in
space domain also results in a modulation in the Fourier
domain. Furthermore, whena51/2, F@h1/2(x)exp(jv0x)#
5c1/2,v0

H1/2(v)exp(jv0v). In other words, the modulation
of this quadratic phase by a complex exponential function
results in the same modulation of its Fourier transform in
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the Fourier domain within a constant gain. Having the men-
tioned modulation/shift equivalence, one can prove that

F@ha~x1x0!#5c1/4a,x0
* Ha~v22ax0!. ~3!

Thus, shifting a quadratic phase in space also results in a
shift of its Fourier transform. This property reduces to
F@h1/2(x1x0)#5c1/2,x0

* H1/2(v2x0), whena51/2.

Actually, bearing in mind thatha(x)5exp(jax2), one
can easily show that properties given by Eqs.~2! and ~3!
are equivalent: starting with Eq.~2!, observing that
ha(x)exp(jv0x)5ca,v0

ha(x1v0/2a), and substitutingx0 for

v0/2a, one would get the property given by Eq.~3!.
Two simple properties given by Eq.~2! and ~3! can be

used to construct a rather more obscure one, related to sam-
pling. The sampling property of the Fourier transform
states that,

FF f ~x!(
n

d~x2nX!G5
1

X (
n

FS v2
2p

X
nD , ~4!

whereX is the sampling period, andF(v) is the Fourier
transform off (x). Applying this property to the quadratic
phase function and using Eq.~2!, we get

FFha~x!(
n

d~x2nX!G5
1

X (
n

HaS v2
2p

X
nD

5
1

X (
n

S j
p

a D 1/2

3expF2 j
S v2

2p

X
nD 2

4a
G

5
1

X (
n

ca,2pn/XHa~v!

3expS j
pn

aX
v D . ~5!

Therefore,

ha~x!(
n

d~x2nX!5F 21F 1

X (
n

ca,2pn/XHa~v!

3expS j
pn

aX
v D G . ~6!

Now, using the well-known propertyF 21@exp(jvx0)F(v)#
5f(x1x0), we can rewrite the last equation as

ha~x!(
n

d~x2nX!5
1

X (
n

ca,2pn/XhaS x1
p

aX
nD . ~7!

This is an important~and not quite obvious! property,
which states that the sampled quadratic phase function@the
left-hand side of Eq.~7!# is equal to a weighted sum of the
shifted versions of the same~original continuous! quadratic

phase function. This property is valid for anX anda. Sam-
pling causes severe aliasing sinceha(x) is not bandlimited,
but the equation is still valid. The same property may also
be interpreted as

ha~x!(
n

d~x2nX!5F(
n

S 1

X
ca,2pn/XD

3dS x1
p

aX
nD G* ha~x!, ~8!

where* denotes the convolution operation. Since the coef-
ficients,ca,2pn/X , are symmetric with respect ton, the im-
pulse train on the right-hand side of Eq.~8! can be replaced
by d@x2(p/aX)n# if desired.

The implication of the form given in Eq.~8! is the key in
the interpretation of the effects of using the discrete form of
the convolution kernel in wave-propagation related digital
simulations, like in computation of diffraction fields, or ho-
lograms and their reconstructions3,8 employing the Fresnel
approximation. For example, if the goal is to simulate
f (x)* ha(x), and if the discretized version ofha(x) is used
in simulations, as in many diffraction-related simulation ap-
plications, we get,

f ~x!* Fha~x!(
n

d~x2nX!G
5 f ~x!* F(

n
S 1

X
ca,2pn/XD dS x1

p

aX
nD G* ha~x!

5F(
n

S 1

X
ca,2pn/XD f S x1

p

aX
nD G* ha~x!. ~9!

Left-hand side of this equation represents the convolution
of a function ~input! by the sampled Fresnel kernel. The
right-hand side represents the convolution of a function
~given in the square brackets! by the continuous Fresnel
kernel. Therefore, the effect of discretization of the qua-
dratic phase function is equivalent to replacingf (x) by
$(n@(1/X)ca,2pn/X# f @x1(p/aX)n#% in the original con-
tinuous convolution. Since the coefficients,ca,2pn/X , are
just weights, what we have is a convolution of a sum of
weighted shifts of original continuousf (x) with the kernel
ha(x). In other words, even though we no longer use the
original continuous Fresnel kernel, but its discrete version,
we still achieve a result that is equal to the continuous
Fresnel diffraction of a function, which is no longer equal
to original f (x), but another continuous function closely
related to it ~weighted periodic replicas!. This result has
important implications; one example can be found in Ref.
8, where it is shown that exact recovery of objects from
their sampled diffraction patterns is still possible even if
there is severe aliasing during sampling. By the way, it is
well known that a grid~sampling! generates diffraction
orders,10 and actually what is implied by Eq.~9! is equiva-
lent to this fact. Note that the functionf (x) is arbitrary in
these formulations. It may represent a continuous function,
and in this case, the ongoing discussions are for the sake of
understanding the issues related to sampling of the qua-
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dratic phase function. Or,f (x) may represent the multiplied
version of a continuous function by an impulse train and
thus the discussion evolves more closer to purely digital
simulations; sampling issues off (x) should also be care-
fully evaluated as usual. In any case, the discussions related
to Eq. ~9! are valid for anyf (x).

One can relate the sampling periodX to a to get specific
results. For example, it is possible to haveca,2pn/X51 for
all n, by choosingX5(p/2ar )1/2, where r is a positive
integer. Such a sampling rate reduces Eq.~7! to,

ha~x!(
n

d~x2nX!5
1

X (
n

haS x1
p

aX
nD . ~10!

Knowing the Fourier transform relation,

(
n

f ~x1nP!5F 21FF~v!
2p

P (
n

dS v2
2p

P
nD G , ~11!

one can take the Fourier transform of Eq.~10! to get,

FFha~x!(
n

d~x2nX!G52aHa~v!(
n

d~v22aXn!.

~12!

This is an interesting result, too: the Fourier transform of
sampled quadratic phase function is also equal to a sampled
~conjugate! quadratic phase function. Ifa51/2, and if X
5(p/2ar )1/2, then the Fourier transform of sampled qua-
dratic phase is equal to a constant times its own complex
conjugate. Furthermore, the impulsive nature of the Fourier
transform ~right-hand side! in Eq. ~12! implies that
ha(x)(nd(x2nX) is periodic, and this is also clearly seen
from equation ~10!, where the period is (p/aX)
5(2pr /a)1/2. Therefore, even thoughha(x) is not peri-
odic, its sampled version is, ifX5(p/2ar )1/2. This can
also be proven directly since,

haD@n#,ha~nX!5exp@ j a~nX!2#5exp$ j a@~n1Nq!X#2%

5ha~nX1NqX!5haD@n1Nq# ;n,q,

~13!

for X5(p/2ar )1/2, andN52rp, wherep andq are nonne-
gative integers.

Finally, the impulsive and periodic nature of both sides
of Eq. ~12! indicates theN-point DFT relationship for the
sampled quadratic phase function. SincehaD@n#5ha(nX)
and HaD@k#5Ha(2akX), for n,kP@0,N21#, and if the
sampling period is chosen to satisfyX5(p/2ar )1/2 for a
positive integerr, and if N52r , then

DFTN@haD@n##5 (
n50

N21

HaD@n#expS 2 j
2p

N
knD

5
1

X
HaD@k#5AjNhaD* @k#. ~14!

The DFT property as stated by Eq.~14! and the discussions
presented in this section provide both a powerful computa-
tional algorithm and appropriate interpretations of its out-
put, as follows.

The sampled quadratic phase is a periodic signal when
the sampling rate is chosen as stated before. TheN-point
DFT of one period of sampled quadratic phase gives the
exact samples of the continuous Fourier transform of con-
tinuous quadratic phase within a constant gain factor. Peri-
odic concatenations of the DFT output remain as exact
samples of the continuous Fourier transform of the original
continuous quadratic phase function. And these are true de-
spite the fact that there is significant aliasing during sam-
pling. This is not the case for arbitrary functions: usually, as
a consequence of aliasing, the DFT of the input samples are
not necessarily the exact samples of the continuous Fourier
transform of the original continuous input function. In gen-
eral, typical signal processing applications, the initial dis-
cretization related issues~aliasing etc.! and the issues re-
lated to simple utilization of DFTs to implement
convolutions ~i.e., circular convolution instead of linear
convolution! are known and taken into consideration to
minimize their undesirable effects. However, as shown in
this paper, and as a consequence of the preceding discus-
sion, both the aliasing and the circular convolution issues
are much easier to deal with when the kernel is the qua-
dratic phase function.

Probably the most important observation as a conse-
quence of the results provided in this section is the fact that,
if a periodic input object consisting of equally spaced im-
pulsive elements diffracts an incident plane wave, the
resultant Fresnel diffraction patterns at some specific
distances are also periodic and impulsive. One period
of this periodic and impulsive Fresnel diffraction
pattern is computed exactly by the algorithm
DFTN

21$DFTN@ f @n##AjNhaD* @n#%, where the resultant ar-
ray elements correspond to the weights of the impulses
which form the diffraction pattern. If, for example,X is
fixed, then thosea’s corresponding toa5(p/2rX2), r
51,...,̀ , would generate the impulsive and periodic
Fresnel diffraction patterns, with periodNX, N52r . To
convert the parametera to physical parameters, we note
that a5p/(lz), wherel is the wavelength andz is the
distance between the object and the diffraction planes.
Therefore, the distance for periodic impulsive Fresnel dif-
fraction isz5(2rX2)/l, r 51,...,̀ .

Since the Fresnel diffraction is a linear shift-invariant
operator~a convolution!, one can extend the results already
presented to better fit the physical cases. For example, the
condition on impulses at the input mask can be relaxed by
replacing them with their low-pass counterparts; this will
then result in replacing the impulses at the output~diffrac-
tion pattern! with also their same low-pass filtered versions.
The overall discussion, including the DFT operations and
the exactness of the solutions under the presented condi-
tions, are still valid; we just simply interpret the input and
output arrays of the DFTs as the weights of the associated
‘‘low-pass filtered impulses,’’ instead of the weights of the
impulses in the original case. If the impulsive~discrete!
periodic input function is obtained by sampling a continu-
ous periodic input function at a rate above its own Nyquist
rate, we can recover the original continuous input with no
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loss from its samples by passing the samples through a
proper low-pass filter. If this is the case, we can perform the
same low-pass filtering operation to the samples of the dif-
fraction pattern as computed using the DFTs as in the above
paragraph, and get the exact Fresnel diffraction pattern cor-
responding to the continuous input. Again, for this to be
correct, the above-mentioned restriction that relates the
sampling interval, the period, and the distance between the
planes must be satisfied.

By the way, the output of DFT of the discrete Fresnel
kernel is known analytically as shown by Eq.~14!, under
the stated conditions, and therefore, there is no need for a
DFT computation to find its numerical result.

Note that the discussions above follow from the particu-
lar choice of ca,2pn/X51 which led to Eq.~10!. Other
choices are also possible, leading to different forms of pe-
riodicities of larger sizes. For example, one can specify
ca,2pn/X5(21)n. Following similar steps, we can compute
the exact Fresnel diffraction pattern of a periodic and im-
pulsive input whose one period is the pattern obtained by
concatenating the discrete object~size N!, with the
same object pattern multiplied by21. Thus the period
becomes 2N. The associated size-2N discrete
kernel, and its 2N-point DFT, are exp@ j(p/2N)n2#, and,
Aj 2N exp@ j(p/2N)k2#, respectively. Extensions toca,2pn/X

5$exp@2j(2p/M)#%n will lead to M concatenations of the
size-N object, where each concatenation multiplied by a
complex number~M roots of 1!; the kernel, and its DFT
will be exp@ j(p/MN)n2# and AjMN exp@2j(p/
MN)k2#, respectively. As expected, the obtained array ele-
ments correspond to the weights of the impulses of the
periodic and impulsive exact Fresnel diffraction pattern for
such objects at specified distances.

3 Extension to Two Dimensions

Naturally, simulations of optical phenomena will involve
2-D inputs and outputs. The extension of the properties
discussed in the previous section is straightforward; there-
fore, we will not derive them, again. Instead, we will
present the results corresponding to Eqs.~9! to ~14! and
then extend the discussions to interpret the 2-D DFT usage
for Fresnel diffraction simulations.

Let V be the 2-D sampling matrix; therefore, sampling
of a 2-D function f (x), wherex5@x y#T, is achieved by
multiplying the function with a 2-D impulse mesh as,
f (x)(nd(x2Vn). As usual,n5@n1 n2#T. Matrix U is de-
fined as 2pV2T. Following similar steps as in the previous
section, we get,

f ~x!** Fha~x!(
n

d~x2Vn!G
5 f ~x!** F(

n
S 1

udetVu
ca,UnD dS x1

Un

2a D G** ha~x!

5F(
n

S 1

udetVu
ca,UnD f S x1

Un

2a D G** ha~x!, ~15!

where** is now the 2-D convolution operation, andca,U0

for a matrix index is exp@2j(U0
TU0)/4a#. If we choose to

restrict the sampling matrixV to get ca,Un51 for all n,
then we can write

FFha~x!(
n

d~x2Vn!G54a2Ha~u!(
n

d~u22aVn!,

~16!

where the 2-D Fourier transform is fromx domain tou
domain. The restriction on the sampling matrixV to
achieve above result is to satisfy that (p/a)V21V2T is an
integer matrixP, and qTPq is an even number for any
integer arrayq.

The impulsive nature of the right-hand side of preceding
equation implies a 2-D periodicity of the left-hand side,
where the associated 232 discrete domain periodicity ma-
trix is P5(p/a)V21V2T. @The corresponding continuous
domain periodicity is described by the matrixVP
5(p/a)V2T.] Indeed, this can also be shown directly,
since,

haD@n#,ha~Vn!5exp@ j a~nTVTVn!#

5exp$ j a@~n1Pq!TVTV~n1Pq!#%

5ha@V~n1Pq!#5haD@n1Pq# ;n,q,

~17!

whereq is a 2-D vector with integer elements, andP sat-
isfies the abovementioned relation.

Denoting the discrete arrayhaD@n#5ha(Vn), and
HaD@k#5Ha(2aVk) we further get

DFTP@haD@n##,(
n50

N21

haD@n#exp~2 j 2pkTP21n!, ~18!

which turns to

DFTN3N@haD@n##

,(
n50

N21

haD@n#expS 2 j
2p

N
kTnD

5
1

udetVu
HaD@k#5 jNhaD* @k# for P5FN 0

0 NG .
~19!

Thus, we obtain the desired tools to form and interpret
the digital simulations to compute the Fresnel diffraction.
As indicated in the previous section, if the input mask
is periodic and consists of regularly spaced impulses,
then the elements of the resultant array of
DFTN3N

21 $DFTN3N( f @n#)• jNhaD* @k#% correspond to the
weights of the periodic Fresnel diffraction pattern which
also consists of regularly spaced impulses. The described
diffraction pattern is not a numerical approximation, but an
exact solution in the sense that if the described mask is
placed in front of an incident wave and the continuous
Fresnel diffraction is found, it will be the same as the de-
scribed function. However, the restriction on the relations
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between the sampling interval, pattern period, and the dis-
tance between the object and diffraction planes must obey
the given constraint.

Following observations similar to those in the 1-D case,
we know that we can apply the same linear operator to the
input and the output and still keep the exact nature of the
Fresnel diffraction relationship. A useful case is to con-
volve the input impulses by

hf~x!5H 1 xP@0,X#3@0,X#

0 else.

This is equivalent to converting each impulse to constant
gray-level pixel for an input mask, which consists of pixels
~mosaic!. Using arguments similar to those in previous
paragraph, we can get the corresponding exact Fresnel dif-
fraction simply by implementing the given DFT-based al-
gorithm, and then generating an image at the output, con-
sisting of square pixels where each pixel value is equal to
the corresponding element of the output array obtained
from the algorithm. Please note that all this is possible as a

consequence of the properties of the Fresnel kernel under
sampling; approximation of a general convolution by DFTs
would not normally lead to such a surprising result.

A 2-D example is shown in Fig. 1, where Fig. 1~a! is a
2563256 discrete object~transparent background, opaque
lettersL. ONURAL!. Each discrete element is depicted as a
square pixel with a uniform gray level. The periodicity ma-
trix P5@p1 p2#, wherep1 andp2 are equal to@256 0#T and
@0 256#T, respectively. So the corresponding sampling ma-
trix is, V5@v1 v2#, where v1 and v2 are equal to
@(p/256a)1/2 0#T and @0 (p/256a)1/2#T, respectively.
Therefore, the example is for the simple rectangular sam-
pling case.

The circular convolution kernel ishaD@n#5ha(Vn)
5exp@ ja(nTVTVn)#5exp@ j(p/256)nTn# for n1 , n2

P@0,255#. The DFT of this function is known analytically
as jN exp@2j(p/256)kTk#. Figure 1~b! shows the magni-
tude of the complex pattern DFT21$DFT@ f @n##
• jNexp@2j(p/256)kTk#%, where each array element is de-
picted as a square pixel, exactly as done for the input array.

Fig. 1 Fast computation of exact Fresnel diffraction pattern using a
DFT-based algorithm: (a) one period of a periodic mask, consisting
of 2563256 square pixels, and (b) one period of its periodic exact
Fresnel diffraction pattern, which also consists of 2563256 square
pixels.

Fig. 2 Implied rectangular periodicity of the simulations shown in
Fig. 1: (a) four periods of a periodic input mask, where each period
consists of 2563256 square pixels and (b) the corresponding peri-
odic exact Fresnel diffraction pattern, which also consists of square
pixels.

Onural: Some mathematical properties . . .

2562 Optical Engineering, Vol. 43 No. 11, November 2004

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 9/28/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



Therefore, the diffraction pattern of Fig. 1~b! is the exact
Fresnel diffraction pattern in magnitude of the periodic in-
put whose one period is shown in Fig. 1~a!. In other words,
if a periodic pattern whose four periods are shown in Fig.
2~a! is physically brought in front of an incident plane
wave, and if the Fresnel approximation is valid, the mag-
nitude of the optical diffraction pattern at the corresponding
distance will be exactly like the periodic pattern shown in
Fig. 2~b!. The corresponding sampling intervalX is
(lz/256)1/2, and the period of the input and Fresnel diffrac-
tion patterns is 256X3256X. We can convert the normal-
ized parameters to physical counterparts by noting that
(NX2/lz)51. Therefore, ifl50.6mm, andX5100mm,
the simulation of Fig. 1~b! corresponds to the Fresnel dif-
fraction at z54.26 m; both the mask and its diffraction
patterns are periodic in both directions with a period of
25.6 mm with square tile geometry. The same simulation
result correspond to many different physical cases, as long
asX, l, andz satisfy the preceding condition.

Incidentally, the discrete kernel exp@ j(p/N)nTn# is also
the kernel which is used in simulations in Ref. 3.

4 Conclusions

Sampling of the quadratic phase function causes aliasing
since this function is not bandlimited. The form of aliasing,
however, is very specific and manageable. A sampled ver-
sion of the quadratic phase function is equal to shifted and
overlapped continuous quadratic phase functions. The Fou-
rier transform of the sampled quadratic phase function is
equal to~within a constant gain factor! samples of its own
complex conjugate if some conditions are imposed on the
sampling interval. A sampled quadratic phase function can
be a periodic signal for some sampling rates; unlike the
general case for arbitrary functions, the DFT of one period
of the quadratic phase function is equal to~within a con-
stant! exact samples of the continuous Fourier transform of
the original continuous quadratic phase function, despite
the fact that there is aliasing. These results are important
when discretization of diffraction related signals is needed
for digital computation.

Looking at the discussions, it is interesting to see that
some operations on the quadratic phase function in the
space domain results in similar types of operations in the
Fourier domain. For example, a shift in space results in a
shift in the Fourier domain; similarly, a modulation also
transforms to a modulation. Some of these are well known
and utilized in practice: for example, the real part of the
quadratic phase function has been used to test the fre-
quency response of imaging and image transmission~TV!
systems for many decades since the frequency response can
be seen from the space attenuation distribution of the qua-
dratic phase function. However, the extent of such invari-
ance is interesting to investigate: for example, as proven in
this paper, sampling in the space corresponds to sampling
in the Fourier domain. The primary reason behind this in-
variance of the operations in the space and Fourier domains
can be attributed to the fact that the quadratic phase func-
tion has a linearly increasing instantaneous frequency.

Using these properties it is shown that exact Fresnel
diffraction patterns of periodic masks at certain distances
can be efficiently computed using DFTs. Furthermore, we

also conclude that the exact Fresnel diffraction patterns of a
periodic mask consisting of regularly spaced impulses are
also periodic and consist of regularly spaced impulses for
some distances.

The provided results are important in designing digital
diffraction simulators and interpreting the outputs of such
simulators appropriately.

Furthermore, the DFT relations given in this paper also
form an efficient recipe to compute the discrete fractional
Fourier transform for some values of the fraction.
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