<

Filomat 32:7 (2018), 2625-2634
https://doi.org/10.2298/FIL1807625H

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. In this paper, we generalize some matrix inequalities involving the matrix power means and
Karcher mean of positive definite matrices. Among other inequalities, it is shown that if A = (A4,---, A,)
is an n-tuple of positive definite matrices such that 0 < m < A; <M (i = 1,--- , n) for some scalars m < M
and w = (wy, -+ ,w,) is a weight vector with w; > 0 and Y\, w; = 1, then

n

@P(Zn: wiA) < 'O (Pw; A)  and  @¥( Z wiA;) < a' D (A(w; A)),

i=1 i=1

(M4+m)2  (M+m)?
Mm 7 2
4P M

wherep >0, a = max{ }, @ is a positive unital linear map and ¢ € [-1, 1]\{0}.

m

1. Introduction and preliminaries

Let M be the C*-algebra of all k X k complex matrices with the identity I, and (., -) be the standard scalar
product in C*. For Hermitian matrices A, B € M, we write A > 0 if A is positive semidefinite, A > 0 if A
is positive definite, and A > Bif A — B > 0. If m, M are real scalars, then we mean m < A < M whenever
ml <A< MI

The Gelfand map f(t) — f(A) is an isometrical *isomorphism between the C*-algebra C(sp(A)) of
continuous functions on the spectrum sp(A) of a Hermitian matrix A and the C*-algebra generated by A
and I. If f,g € C(sp(A)), then f(t) > g(t) (t € sp(A)) implies that f(A) > g(A). A linear map ® on M; is
positive if @(A) > 0 whenever A > 0. It is said to be unital if ®(I) = I. Let A, B € M, be two positive definite
and t € [0,1]. The operator t-weighted arithmetic, geometric, and harmonic means of A, B are defined
by AV,B = (1 — H)A + tB, A#iB = A2(A"2BA~2)!Az and A!;B = ((1 — A" + tB1)™}, respectively, in which
AlB < AfiB < AV,B. In particular, for t = % we get the usual operator arithmetic mean V, the geometric
mean f§ and the harmonic mean !.

Throughout the paper, let A = (Aj,---,A,) be an n-tuple of positive definite matrices A; (i = 1,--- ,n)
and w = (wy,--- ,w,) be a positive probability weight vector (we simply write the weight vector), where
w; >0({=1,---,n) and Y.y w; = 1. In [15], Lim and Palfia introduced matrix power mean of positive
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definite matrices of some fixed dimension. The matrix power mean P(w; A) is defined to be the unique
positive definite solution of the non-linear equation:

X = Z wiXthA), t € (0,1].
i=1

Fort € [-1,0), itis defined by Pi(w; A) = P_y(w; A™")"!, where A = (A7',--- , A;"). For further information
we refer the reader to [14, 20] and references therein. We denote by Pi(w; A) = Y., w;A; and P_q(w; A) =
(X wiA71)™!, the weighted arithmetic and harmonic means of Ay, - -+, A, respectively.

There is one of the important properties of matrix power mean P;(w; A), that P;(w; A) interpolates between
the weighted harmonic and arithmetic means:

n
) w!
i=1

for all + € [-1,1]\{0}. The Karcher mean of n positive definite matrices Aj,---, A, is defined as the
unique minimizer of the sum of squares of the Riemannian trace metric distances to each of the A;, i.e,,
Aw; Ay, -+ ,Ay) = argminyep Y.y w;0*(X, A;) (Recall that the trace metric distance between two positive
definite matrices is given by 6(A, B) = (Y., log(Ai(A™1B))Y/2, where 1;(X) denotes the i-th eigenvalue of X
in ascending order.). In fact, the Karcher mean coincides with the unique positive definite solution of the
Karcher equation:

-1 n
<Pw; A) < ) wid M

i=1

Zn“ w;log (X-%Aix-%) =0. )

The Karcher mean satisfies from (2) that A(w; A™)™! = A(w; A). It is well known that (see [15])
ltirrol Piw; A) = AMw; A) 3)

and

1 n
< Alw; A) < Z w;A;
i=1

.
) w!
i=1

For further information about the matrix power mean, Karcher mean, operator mean and their properties,
we refer the readers to [4, 5, 14-16] and references therein.
It is well known that for two positive definite matrices A and B, if A > B, then

AP >B (0<p<1). 4)

In general (4) is not true for p > 1. Let @ be a unital positive linear map. The following inequality is known
as Choi’s inequality(see [7, 12]):

DA) T < DA™, (5)
Marshal and Olkin [19] proved a counterpart of Choi’s inequality (5) as follows:
_ M +m)? _
<
PAT) < — D(A)~ (6)

for positive definite A with 0 < m < A < M. In addition, Lin [17] and Fu [9] improved inequality (6) for
p > 2 to the form /(A1) < (<M+'”> ) D(A).

"M
The matrix power means satisfy the following inequality(see [8, 15]): For each t € (0, 1]

O(Py(w; A)) < Py(w; D(A)), )
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where @ is a unital positive linear map, A = (A1, -+ ,Ay) is a n-tuple of positive definite matrices and
D(A) = (D(A1),--- ,P(A,)). Ando [1] proved that if @ is a positive linear map, then for positive definite
matrices A, B € My, we have

D(AHB) < O(A)HD(B). (8)
A reverse of Ando’s inequality (8) states that [12, Remark 5.3]: If A,B € My and 0 <m < A, B <M, then

D(A)DB) < MM gayB).
2 m

By inequality (4) we get

@B < (> D AB), ©0<p<1) ©)

In [10], Fujii et al. obtained a reverse of inequality (1) as following:
2
Z WiA; < (M m) L py(w; A).
Applying (7), we can obtain the following operator inequality:

ZwA (M+ )(D(Pt(a) A))

< (M + m)2

i L@ (A)).

Now, using inequality (4), we get
ZwA (M - m) ) Pl(w; @A)  (0<p<1). (10)

Dehghani et al. [8] established counterparts of (7) involving matrix power means as follows:

2
o @y )

P (w; D(A)) <
forallt € [-1,1]\{0} and 0 < m < A; < M (1 <i < n). Applying inequality (4), we get

(m + M) \p

Ph@; ®(A) < (S =) @ (Plw; &), (0<p <2). an

It is interesting to ask whether inequality (11) is true for p > 2. This is the first motivation of this paper.
Moreover, we improve inequality (9) for p > 2. We also obtain some reverses of (1). In the last section, we
establish several refinements of obtained inequalities.

2. Main results

To prove our first result, we need the following lemmas.
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Lemma 2.1. [2, 3, 6, 11] Let A, B € M be positive definite matrices and a > 0. Then
(i) IIAB|| < 1IIA + B|%.

(ii) For B > 1,]|AP + BF|| < |I(A + B)#|I.

(iii) A < aB if and only if |A2 B3| < a2.

(iv) F0<A<Band0<m <A <M, then A? < %BZ.

Lemma 2.2. [13] Let A € My and t be a positive number. Then |A| < tI if and only if |A|l < t if and only if
tH A . ..
A i |8 positive.

Theorem 2.3. Let A = (A1, -+, Ay) be an n-tuple of positive definite matrices with0 <m <A; <M (i=1,--- ,n)
for some scalars m < M and w = (wy, - -+ , wy) be a weight vector. If ® is a unital positive linear map, then

Pf(a); DO(A)) <

(S MY 4y 1) (12)
P

foreveryp > 2and t € [-1,1]\{0}.
Proof. Applying Lemma 2.1(iii), inequality (12) is equivalent to

Hence, it is enough to prove inequality (13). So

P @i 0N (P AN < S 13)

MEmt{|P w; DN (P w; A))| = [P (@ @ANMEmE &~ (Py(w; )

1|
< =
4

4 pop I 2
P’ (w; B(A)) + Mim* o (Py(w; A))”
(by Lemma 2.1(1))

< 7| Prwr o)) + M 2yw; S|

(by Lemma 2.1(ii))

= JIP@; ) + M Py AD)IF

< 7 Puw; o) + Mmeo(pyw; A

(by (5)
P

IA
N

n n
Z WiD(A) + Mmq)(Z wAT)
i=1 i=1

(by (1))
n p
_ 411 Y wi( @A) + Mud(A)|| - (14)

i=1

It follows from 0 < m < A; < M that (M — A;)(m — Ai)Ai‘1 <0((=1,2,---,n). Hence

MmDA +DA) <M+m (=12, ,n). (15)
Applying inequalities (14) and (15), we get

||Ptg (w; CD(/A))q)—%(pt(w; Al < M

This completes the proof. [
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Corollary 2.4. Let A = (A1, -+, Ay) be an n-tuple of positive definite matrices with0 <m < A; <M (i=1,--- ,n)
for some scalars m < M and w = (wy, - -+, wy) be a weight vector. If O is a unital positive linear map, then

AP (w; D(A)) <

(M g A ) 16)

4rmM
for every p > 2.
Proof. The proof follows from Theorem 2.3 and relation (3). O

We would like to state the following lemma which use in the next result (see [21, page 582]).

Lemma 2.5. Let A, B € My be positive definite. Then
A(l-a,a;A,B) = A,B
fora € (0,1).

Proof. Using the definition of Karcher mean for two positive definite matrices A,B and w = (1 — a,a) we
have

(1-a)log(X7 AX7) + alog(X? BX?) = 0. (17)

Let X be the positive solution of (17). We assert that X = Af,B = A%(A%BA%)“A%. First, we shall show
that the Karcher mean of two matrices I and B is the operator B®. Let X be the solution of (1 — a)log X™! +

ozlog(X?] BX7) = 0, which is equivalent to X% = X7BX7. Hence X = B or equivalently A(w; I, B) = B*.
Hence by the properties of Karcher mean (see [15, Corollary 4.5]), we have
Aw; A, B) = Az A(w;I, A7 BAZ)A:
= AI(A7BAT)*A? = Af},B.
O

Corollary 2.6. Let A,B € M, be positive definite matrices such that 0 < m < A,B < M for some scalars m < M
and a € [0,1]. Then

(@A) D(B)) <

(LMD g g, )

4rmM
for any p > 2 and unital positive linear map .

Proof. Applying Lemma 2.5, we have A(1 — o, a; A, B) = A#,B, (@ € [0,1]). If we putn =2, w7 =1 —a and
w; = a in inequality (16), then we get the desired result. [

In the next theorem, we show an extension of inequality (10) for p > 1.
Theorem 2.7. Let A = (A1, -+ ,An) be an n-tuple of positive definite matrices with0 <m <A; <M (i=1,--- ,n)

for some scalars m < M and w = (wy, - -+, wy) be a weight vector. Then

CD”( Zn: wiAi) < o’ OF(Pr(w; A)), (18)
i=1

(M+m)?  (M+m)? }

wheret € [-1,1]\{0}, p > 1 and a = max{ Mm 72
4P Mm
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Proof. First we show inequality (18) for p = 2. We have

o

n

Z WA (Py(w; A))|| =

wiAi)MmQD‘l(Pt(w; A))||
i=1

n 2
S}L O Y wiA;) + Mm®™ (Py(w; A))
i=1
(by Lemma 2.1)
2
1 n n i
<7 o 2 wiA;) +MmCD(Z wiATY)
< 1(M +m)?
<3 ,
whence
- _ M + m)?
AN LP(o: ANl < ML+
o 2 WiA;)0™ (Py(w; A))ll <
Hence
Z < (M2 0y ).
=1
Therefore

n

q)p(Z wiA;) < ((M 4]:;[::)2 )p O’ (Pi(w; A))  (0<p<2).
i=1

Now, we prove inequality (18) for p > 2. In this case we have

o ZwA MEmiars (Puw; A < 5

Ll ( Zw, )+ Mémbo~t (pyw; )|
(by Lemma 2.1(i))

H Zw i) + Mm®™(Py(w; A)))’ H2

(by Lemma 2.1(ii))

- }lan( Z W) + Mm® ™\ (Py(w; A))”p
i=1

< (M+m)”'
4

qﬁ(‘ WA )™ (Pylw; A))|| < 4((MJ””))

rop
im:z

(Y wid) < ((TZLM)Z)”@(H(@; A).
i=1 rim

2
Now, if we take @ = max { (Mm)? (M+m)?

47 Mm

yYY TR A } then applying (19) and (20) we get the desired result.

2630

(19)

(20)
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Corollary 2.8. Let A = (A1, -+, Ay) be an n-tuple of positive definite matrices with0 <m < A; <M (i=1,--- ,n)
for some scalars m < M and w = (w, - -+, wy) be a weight vector. Then

CD”( Zn: wiAi) < a’DP(A(w; A)),
i=1

_ (M+m)?  (M+m)?
wherep > 1and a = max{ TR }
Remark 2.9. By letting A = (A,B) and w = (w1, wy) with wy = w, = % in Theorem 2.7, the following inequality
holds:

A+B
cpﬂ( ;“ )SaPCID”(AﬂB)
(M+m)?  (M+m)?

fora = max{ i 2 }, which is appeared in [12, Theorem 4].
47 Mm

In the next result we extend inequalities (12) and (18) to the following form:

Theorem 2.10. Let A = (Ay,- -+, Ay) bean n-tuple of positive definite matrices with0 <m < A; <M (i=1,--- ,n)
for some scalars m < M and w = (w1, -+, wy) be a weight vector, let t € [-1, 1]\{0} and also ® be a positive unital
linear map. Then

P} (w; D(A)DP(Py(w; A)) + D (Py(w; A))P} (w; D(A)) < 2a7
and
(Y wA) O (Pi(w; ) + O (Pyw; A Y widl) < 20, (21)
i=1 i=1

(m+M)?  (m+M)? }

wherep > 0and a = max{ R —

Proof. Applying inequality (11) and Lemma 2.1(iii) for 0 < p < 1, we have

b, _ . (m + M)*\p
1P} (w; PIA)DPTF(Pr(w; A))II < (W) .
We puta = ('Z;ﬁ)z. Applying Lemma 2.2,
_ afl P} (w; D(A) D (Py(w; A)) |
| O (Pi(w; A))P} (w; P(A)) arl
and
arl O (Py(w; AP} (w; D(A)) ]
P} (w; D(A) PP (Py(w; A))
afl
are positive. Hence
2071 P} (@; D(ANDT (Py(w; A)) + D7 (P(w; PA))P, (; D(A))
D (Py(w; A)P] (@; D(A)) + P (@; (AN (Pr(w; A)) 2aP1

is positive. Applying Lemma 2.2, we get
P} (@; D(A) D (Pi(w; A)) + PP (Pylw; A) P (w; D(A)) < 207

For p > 1, applying inequality (12) with the same argument, we get the desired inequality.
Applying Theorem 2.7 and a similar method we have inequality (21). O
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Corollary 2.11. Let A = (A1, -, Ay) be a n-tuple of positive definite matrices with0 <m < A; <M (i=1,---,n)
for some scalars m < M and w = (wy, - - ,wy) be a weight vector, and also @ be a positive unital linear map. Then

N (w; D(AND TP (A(w; A)) + PP (Aw; A) A (w; D(A)) < 207

and

n n

o ( Z WA O (A(w; B)) + D (A(w; A)) PP Z wiA;) < 20,

i=1 =1

(m+M)? (m+M)2}
T .
4mM 7 47 mM

wherep > 0and a = max{

3. Some refinements

In this section, we give a refinement of inequality (18). This inequality can be refined by a similar
method that known in [22].

Theorem 3.1. Let A = (A1, ,An) be an n-tuple of positive definite matrices with0 <m <A; <M (i=1,--- ,n)
for some scalars m < M and w = (wy, - -+, wy) be a weight vector, and also let t € [-1,1]\{0}. Then for every positive
unital linear map @

- K(M? + m?))%*
2p A (— 2p ;
® (Z{ WiAi) S o — O (Pilw; A)), 2)
i=
where p > 2 and K = (Af;ﬁ)z.

Proof. For p > 2, we have

K
(by Lemma 2.1(i))

< 31'|(K®2(i wiA) + MM 432 b o A)))g
i=1

(3 A e s oo )| < Hkéor( Y i) + 5o b
i=1 i=1

2

K
(by Lemma 2.1(ii))

- e F )+ et )
i=1

Now, It follows from inequality (18) and operator reverse monotonicity of the inverse that

O2(Py(w; A)) < K07 Z WiA;).
i=1
So
o ( 2 wid P @t (P )| < 5 (ke ; W) + KM 2 wiAs)|

< }l(K(MZ +m?))P (by [18, (4.7)]).



M. Hajmohamadi et al. / Filomat 32:7 (2018), 2625-2634 2633
Hence

K(M? + m?) )p

Mm (23)

||¢)p(gwiA,-)®‘p(Pt(w; A < 5(

Since (23) is equivalent to (22), thus inequality (22) holds. O

Corollary 3.2. Let A = (Ay, -+, A,) be an n-tuple of positive definite matrices with0 <m < A; <M (i=1,--- ,n)
for some scalars m < M and w = (wy, - - -, wy) be a weight vector. Then for every positive unital linear map ©

X n N (K(MZ + mZ))ZP ) .
D p(Zl‘ w1A1) < W(D ”(A(a),A)),
=

(M+m)?
4mM

wherep > 2 and K =

Remark 3.3. If we put A = (A, B) and w = (w1, wy) with wy = wy = % in Corollary 3.2, then we get [22, Theorem
2.6] as follows:

¥ (A#B).

o (A + B) < (K(M? + m?))

2 16M%»m?
Theorem 3.4. Let A = (A1, -+, An) be an n-tuple of positive definite matrices withQ <m <A; <M (i=1,--- ,n)

for some scalars m < M and w = (wy, - -+, wy) be a weight vector, and also let t € [-1,1]\{0}. Then for every positive
unital linear map @

(K(M? + m?))%

2
P (@; B(R)) < o O (Pu(w; ), 4)
wherep > 2 and K = %.

Proof. For p > 2, we have

[Pt oammrmrars b 4] = g |2 Pl sy + kantyiomr e )|

(by Lemma 2.1(i))
2

IN
==

(%Pg(a); D(A)) + KM*m>d~2(Py(w; A)))g

(by Lemma 2.1(ii))

(%P%(a); D(A)) + KM*m* D (Py(w; A)))”p

IA
N

(KD2(Py(w; A)) + KM ~2(Py(w; A)))”p
(by (12))
< }I(K(M2 +m?))P. (by [18, (4.7)])

Therefore

K(M2 + mz) )P

[P s pane@iw; )| < 1(Frs

Since the last inequality is equivalent to (24), this completes the proof. [
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Corollary 3.5. Let A = (A1, -+, Ay) be an n-tuple of positive definite matrices with0 <m < A; <M (i=1,--- ,n)
for some scalars m < M and w = (wy, - -+, wy) be a weight vector. Then for every positive unital linear map @

(K(M? + m2))%

2p¢, .. 2p .
N (@, D(A) < 0P (A w; A))
wherep > 2 and K = (Af;;'?z.
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