

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Matrix Power and Karcher Means Inequalities Involving Positive Linear Maps

Monire Hajmohamadi^a, Rahmatollah Lashkaripour^a, Mojtaba Bakherad^a

^aDepartment of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, I.R.Iran.

Abstract. In this paper, we generalize some matrix inequalities involving the matrix power means and Karcher mean of positive definite matrices. Among other inequalities, it is shown that if $\mathbb{A} = (A_1, \dots, A_n)$ is an n-tuple of positive definite matrices such that $0 < m \le A_i \le M$ $(i = 1, \dots, n)$ for some scalars m < M and $\omega = (w_1, \dots, w_n)$ is a weight vector with $w_i \ge 0$ and $\sum_{i=1}^n w_i = 1$, then

$$\Phi^{p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \alpha^{p} \Phi^{p}\left(P_{t}(\omega; \mathbb{A})\right) \quad \text{and} \quad \Phi^{p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \alpha^{p} \Phi^{p}\left(\Lambda(\omega; \mathbb{A})\right),$$

where p > 0, $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{2}{p}}Mm}\right\}$, Φ is a positive unital linear map and $t \in [-1,1] \setminus \{0\}$.

1. Introduction and preliminaries

Let \mathcal{M}_k be the C^* -algebra of all $k \times k$ complex matrices with the identity I, and $\langle \cdot, \cdot \rangle$ be the standard scalar product in \mathbb{C}^k . For Hermitian matrices $A, B \in \mathcal{M}_k$, we write $A \geq 0$ if A is positive semidefinite, A > 0 if A is positive definite, and $A \geq B$ if $A - B \geq 0$. If m, M are real scalars, then we mean $m \leq A \leq M$ whenever mI < A < MI.

The Gelfand map $f(t) \mapsto f(A)$ is an isometrical *-isomorphism between the C^* -algebra $C(\operatorname{sp}(A))$ of continuous functions on the spectrum $\operatorname{sp}(A)$ of a Hermitian matrix A and the C^* -algebra generated by A and I. If $f,g \in C(\operatorname{sp}(A))$, then $f(t) \geq g(t)$ ($t \in \operatorname{sp}(A)$) implies that $f(A) \geq g(A)$. A linear map Φ on \mathcal{M}_k is positive if $\Phi(A) \geq 0$ whenever $A \geq 0$. It is said to be unital if $\Phi(I) = I$. Let $A, B \in \mathcal{M}_k$ be two positive definite and $t \in [0,1]$. The operator t-weighted arithmetic, geometric, and harmonic means of A, B are defined by $A\nabla_t B = (1-t)A + tB$, $A\sharp_t B = A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^tA^{\frac{1}{2}}$ and $A!_t B = ((1-t)A^{-1} + tB^{-1})^{-1}$, respectively, in which $A!_t B \leq A\sharp_t B \leq A\nabla_t B$. In particular, for $t = \frac{1}{2}$ we get the usual operator arithmetic mean ∇ , the geometric mean \sharp and the harmonic mean!.

Throughout the paper, let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices A_i ($i = 1, \dots, n$) and $\omega = (w_1, \dots, w_n)$ be a positive probability weight vector (we simply write the weight vector), where $w_i \ge 0$ ($i = 1, \dots, n$) and $\sum_{i=1}^n w_i = 1$. In [15], Lim and Palfia introduced matrix power mean of positive

Keywords. Matrix power means, Karcher mean, positive definite matrix, positive linear mapping, unitarily invariant norm. Received: 09 July 2017; Accepted: 05 October 2017

Communicated by Fuad Kittaneh

²⁰¹⁰ Mathematics Subject Classification. Primary 47A64; Secondary 47A63, 47A60, 47A30

Email addresses: monire.hajmohamadi@yahoo.com (Monire Hajmohamadi), lashkari@hamoon.usb.ac.ir (Rahmatollah Lashkaripour), mojtaba.bakherad@yahoo.com; bakherad@member.ams.org (Mojtaba Bakherad)

definite matrices of some fixed dimension. The matrix power mean $P_t(\omega; \mathbb{A})$ is defined to be the unique positive definite solution of the non-linear equation:

$$X=\sum_{i=1}^n w_i(X\sharp_t A_i),\ t\in (0,1].$$

For $t \in [-1,0)$, it is defined by $P_t(\omega;\mathbb{A}) = P_{-t}(\omega;\mathbb{A}^{-1})^{-1}$, where $\mathbb{A}^{-1} = (A_1^{-1},\cdots,A_n^{-1})$. For further information we refer the reader to [14, 20] and references therein. We denote by $P_1(\omega;\mathbb{A}) = \sum_{i=1}^n w_i A_i$ and $P_{-1}(\omega;\mathbb{A}) = \sum_{i=1}^n w_i A_i$ $(\sum_{i=1}^{n} w_i A_i^{-1})^{-1}$, the weighted arithmetic and harmonic means of A_1, \dots, A_n , respectively.

There is one of the important properties of matrix power mean $P_t(\omega; \mathbb{A})$, that $P_t(\omega; \mathbb{A})$ interpolates between the weighted harmonic and arithmetic means:

$$\left(\sum_{i=1}^{n} w_i A_i^{-1}\right)^{-1} \le P_t(\omega; \mathbb{A}) \le \sum_{i=1}^{n} w_i A_i \tag{1}$$

for all $t \in [-1,1]\setminus\{0\}$. The Karcher mean of n positive definite matrices A_1, \dots, A_n is defined as the unique minimizer of the sum of squares of the Riemannian trace metric distances to each of the A_i , i.e., $\Lambda(\omega; A_1, \dots, A_n) = \arg\min_{X \in \mathbb{P}} \sum_{i=1}^n w_i \delta^2(X, A_i)$ (Recall that the trace metric distance between two positive definite matrices is given by $\delta(A, B) = (\sum_{i=1}^n \log(\lambda_i(A^{-1}B))^{1/2}$, where $\lambda_i(X)$ denotes the *i*-th eigenvalue of Xin ascending order.). In fact, the Karcher mean coincides with the unique positive definite solution of the Karcher equation:

$$\sum_{i=1}^{n} w_i \log \left(X^{-\frac{1}{2}} A_i X^{-\frac{1}{2}} \right) = 0.$$
 (2)

The Karcher mean satisfies from (2) that $\Lambda(\omega; \mathbb{A}^{-1})^{-1} = \Lambda(\omega; \mathbb{A})$. It is well known that (see [15])

$$\lim_{t \to 0} P_t(\omega; \mathbb{A}) = \Lambda(\omega; \mathbb{A}) \tag{3}$$

and

$$\left(\sum_{i=1}^n w_i A_i^{-1}\right)^{-1} \leq \Lambda(\omega; \mathbb{A}) \leq \sum_{i=1}^n w_i A_i.$$

For further information about the matrix power mean, Karcher mean, operator mean and their properties, we refer the readers to [4, 5, 14–16] and references therein.

It is well known that for two positive definite matrices A and B, if $A \ge B$, then

$$A^p \ge B^p \quad (0 \le p \le 1). \tag{4}$$

In general (4) is not true for p > 1. Let Φ be a unital positive linear map. The following inequality is known as Choi's inequality(see [7, 12]):

$$\Phi(A)^{-1} \le \Phi(A^{-1}). \tag{5}$$

Marshal and Olkin [19] proved a counterpart of Choi's inequality (5) as follows:

$$\Phi(A^{-1}) \le \frac{(M+m)^2}{4Mm} \Phi(A)^{-1} \tag{6}$$

for positive definite A with $0 < m \le A \le M$. In addition, Lin [17] and Fu [9] improved inequality (6) for $p \ge 2$ to the form $\Phi^p(A^{-1}) \le \left(\frac{(M+m)^2}{4^{\frac{p}{p}}Mm}\right)^p \Phi(A)^{-p}$. The matrix power means satisfy the following inequality(see [8, 15]): For each $t \in (0,1]$

$$\Phi(P_t(\omega; \mathbb{A})) \le P_t(\omega; \Phi(\mathbb{A})),\tag{7}$$

where Φ is a unital positive linear map, $\mathbb{A} = (A_1, \dots, A_n)$ is a n-tuple of positive definite matrices and $\Phi(\mathbb{A}) = (\Phi(A_1), \dots, \Phi(A_n))$. Ando [1] proved that if Φ is a positive linear map, then for positive definite matrices $A, B \in \mathcal{M}_k$, we have

$$\Phi(A\sharp B) \le \Phi(A)\sharp \Phi(B). \tag{8}$$

A reverse of Ando's inequality (8) states that [12, Remark 5.3]: If $A, B \in \mathcal{M}_k$ and $0 < m \le A, B \le M$, then

$$\Phi(A)\sharp\Phi(B) \le \frac{M+m}{2\sqrt{Mm}}\Phi(A\sharp B).$$

By inequality (4) we get

$$(\Phi(A)\sharp\Phi(B))^{p} \le \left(\frac{M+m}{2\sqrt{Mm}}\right)^{p} \Phi^{p}(A\sharp B), \ \ (0$$

In [10], Fujii et al. obtained a reverse of inequality (1) as following:

$$\sum_{i=1}^n w_i A_i \leq \frac{(M+m)^2}{4Mm} P_t(\omega; \mathbb{A}).$$

Applying (7), we can obtain the following operator inequality:

$$\Phi\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \frac{(M+m)^{2}}{4Mm} \Phi(P_{t}(\omega; \mathbb{A}))$$

$$\leq \frac{(M+m)^{2}}{4Mm} P_{t}(\omega; \Phi(\mathbb{A})).$$

Now, using inequality (4), we get

$$\Phi^{p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \left(\frac{(M+m)^{2}}{4Mm}\right)^{p} P_{t}^{p}(\omega; \Phi(\mathbb{A})) \qquad (0 \leq p \leq 1).$$

$$\tag{10}$$

Dehghani et al. [8] established counterparts of (7) involving matrix power means as follows:

$$P_t^2(\omega; \Phi(\mathbb{A})) \le \left(\frac{(m+M)^2}{4mM}\right)^2 \Phi^2(P_t(\omega; \mathbb{A}))$$

for all $t \in [-1,1] \setminus \{0\}$ and $0 < m \le A_i \le M$ $(1 \le i \le n)$. Applying inequality (4), we get

$$P_t^p(\omega; \Phi(\mathbb{A})) \le \left(\frac{(m+M)^2}{4mM}\right)^p \Phi^p(P_t(\omega; \mathbb{A})), \quad (0 \le p \le 2). \tag{11}$$

It is interesting to ask whether inequality (11) is true for $p \ge 2$. This is the first motivation of this paper. Moreover, we improve inequality (9) for $p \ge 2$. We also obtain some reverses of (1). In the last section, we establish several refinements of obtained inequalities.

2. Main results

To prove our first result, we need the following lemmas.

Lemma 2.1. [2, 3, 6, 11] Let $A, B \in \mathcal{M}_k$ be positive definite matrices and $\alpha > 0$. Then

- (i) $||AB|| \le \frac{1}{4}||A + B||^2$.
- (ii) For $\beta \ge 1$, $||A^{\beta} + B^{\beta}|| \le ||(A + B)^{\beta}||$.
- (iii) $A \le \alpha B$ if and only if $||A^{\frac{1}{2}}B^{-\frac{1}{2}}|| \le \alpha^{\frac{1}{2}}$.
- (iv) If $0 \le A \le B$ and $0 < m \le A \le M$, then $A^2 \le \frac{(M+m)^2}{4Mm}B^2$.

Lemma 2.2. [13] Let $A \in \mathcal{M}_k$ and t be a positive number. Then $|A| \le tI$ if and only if $||A|| \le t$ if and only if $\begin{bmatrix} tI & A \\ A^* & tI \end{bmatrix}$ is positive.

Theorem 2.3. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ $(i = 1, \dots, n)$ for some scalars m < M and $\omega = (w_1, \dots, w_n)$ be a weight vector. If Φ is a unital positive linear map, then

$$P_t^p(\omega; \Phi(\mathbb{A})) \le \left(\frac{(m+M)^2}{4^{\frac{2}{p}}mM}\right)^p \Phi^p(P_t(\omega; \mathbb{A})) \tag{12}$$

for every $p \ge 2$ and $t \in [-1, 1] \setminus \{0\}$.

Proof. Applying Lemma 2.1(iii), inequality (12) is equivalent to

$$\left\| P_t^{\frac{p}{2}}(\omega; \Phi(\mathbb{A})) \Phi^{-\frac{p}{2}}(P_t(\omega; \mathbb{A})) \right\| \le \frac{(m+M)^p}{4M^{\frac{p}{2}}m^{\frac{p}{2}}}. \tag{13}$$

Hence, it is enough to prove inequality (13). So

$$M^{\frac{p}{2}}m^{\frac{p}{2}} \| P_{i}^{\frac{p}{2}}(\omega; \Phi(\mathbb{A}))\Phi^{-\frac{p}{2}}(P_{t}(\omega; \mathbb{A})) \| = \| P_{i}^{\frac{p}{2}}(\omega; \Phi(\mathbb{A}))M^{\frac{p}{2}}m^{\frac{p}{2}}\Phi^{-\frac{p}{2}}(P_{t}(\omega; \mathbb{A})) \|$$

$$\leq \frac{1}{4} \| P_{i}^{\frac{p}{2}}(\omega; \Phi(\mathbb{A})) + M^{\frac{p}{2}}m^{\frac{p}{2}}\Phi^{-\frac{p}{2}}(P_{t}(\omega; \mathbb{A})) \|^{2}$$

$$(by Lemma 2.1(i))$$

$$\leq \frac{1}{4} \| (P_{t}(\omega; \Phi(\mathbb{A})) + Mm\Phi^{-1}(P_{t}(\omega; \mathbb{A})))^{\frac{p}{2}} \|^{2}$$

$$(by Lemma 2.1(ii))$$

$$= \frac{1}{4} \| (P_{t}(\omega; \Phi(\mathbb{A})) + Mm\Phi^{-1}(P_{t}(\omega; \mathbb{A}))) \|^{p}$$

$$\leq \frac{1}{4} \| (P_{t}(\omega; \Phi(\mathbb{A})) + Mm\Phi(P_{t}(\omega; \mathbb{A})^{-1}) \|^{p}$$

$$(by (5))$$

$$\leq \frac{1}{4} \| \sum_{i=1}^{n} w_{i}\Phi(A_{i}) + Mm\Phi(\sum_{i=1}^{n} w_{i}A_{i}^{-1}) \|^{p}$$

$$(by (1))$$

$$= \frac{1}{4} \| \sum_{i=1}^{n} w_{i}(\Phi(A_{i}) + Mm\Phi(A_{i}^{-1})) \|^{p} .$$

$$(14)$$

It follows from $0 < m \le A_i \le M$ that $(M - A_i)(m - A_i)A_i^{-1} \le 0$ $(i = 1, 2, \dots, n)$. Hence

$$Mm\Phi(A_i^{-1}) + \Phi(A_i) \le M + m \qquad (i = 1, 2, \dots, n).$$
 (15)

Applying inequalities (14) and (15), we get

$$\|P_t^{\frac{p}{2}}(\omega;\Phi(\mathbb{A}))\Phi^{-\frac{p}{2}}(P_t(\omega;\mathbb{A}))\| \leq \frac{(m+M)^p}{4M^{\frac{p}{2}}m^{\frac{p}{2}}}.$$

This completes the proof. \Box

Corollary 2.4. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ $(i = 1, \dots, n)$ for some scalars m < M and $\omega = (w_1, \dots, w_n)$ be a weight vector. If Φ is a unital positive linear map, then

$$\Lambda^{p}(\omega; \Phi(\mathbb{A})) \le \left(\frac{(m+M)^{2}}{4^{\frac{2}{p}}mM}\right)^{p} \Phi^{p}(\Lambda(\omega; \mathbb{A})) \tag{16}$$

for every $p \ge 2$.

Proof. The proof follows from Theorem 2.3 and relation (3). \Box

We would like to state the following lemma which use in the next result (see [21, page 582]).

Lemma 2.5. Let $A, B \in \mathcal{M}_k$ be positive definite. Then

$$\Lambda(1-\alpha,\alpha;A,B) = A\sharp_{\alpha}B$$

for $\alpha \in (0,1)$.

Proof. Using the definition of Karcher mean for two positive definite matrices A, B and $\omega = (1 - \alpha, \alpha)$ we have

$$(1-\alpha)\log(X^{\frac{-1}{2}}AX^{\frac{-1}{2}}) + \alpha\log(X^{\frac{-1}{2}}BX^{\frac{-1}{2}}) = 0.$$
(17)

Let X be the positive solution of (17). We assert that $X=A\sharp_{\alpha}B=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\alpha}A^{\frac{1}{2}}$. First, we shall show that the Karcher mean of two matrices I and B is the operator B^{α} . Let X be the solution of $(1-\alpha)\log X^{-1}+\alpha\log(X^{-\frac{1}{2}}BX^{-\frac{1}{2}})=0$, which is equivalent to $X^{\frac{1-\alpha}{\alpha}}=X^{-\frac{1}{2}}BX^{-\frac{1}{2}}$. Hence $X=B^{\alpha}$ or equivalently $\Lambda(\omega;I,B)=B^{\alpha}$. Hence by the properties of Karcher mean (see [15, Corollary 4.5]), we have

$$\Lambda(\omega; A, B) = A^{\frac{1}{2}} \Lambda(\omega; I, A^{\frac{-1}{2}} B A^{\frac{-1}{2}}) A^{\frac{1}{2}}$$
$$= A^{\frac{1}{2}} (A^{\frac{-1}{2}} B A^{\frac{-1}{2}})^{\alpha} A^{\frac{1}{2}} = A \sharp_{\alpha} B.$$

Corollary 2.6. Let $A, B \in \mathcal{M}_n$ be positive definite matrices such that $0 < m \le A, B \le M$ for some scalars m < M and $\alpha \in [0, 1]$. Then

$$(\Phi(A)\sharp_{\alpha}\Phi(B))^{p}\leq \Big(\frac{(m+M)^{2}}{4^{\frac{2}{p}}mM}\Big)^{p}\Phi^{p}(A\sharp_{\alpha}B)$$

for any $p \ge 2$ and unital positive linear map Φ .

Proof. Applying Lemma 2.5, we have $\Lambda(1 - \alpha, \alpha; A, B) = A \sharp_{\alpha} B$, $(\alpha \in [0, 1])$. If we put n = 2, $w_1 = 1 - \alpha$ and $w_2 = \alpha$ in inequality (16), then we get the desired result. \square

In the next theorem, we show an extension of inequality (10) for p > 1.

Theorem 2.7. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ $(i = 1, \dots, n)$ for some scalars m < M and $\omega = (w_1, \dots, w_n)$ be a weight vector. Then

$$\Phi^{p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \alpha^{p} \Phi^{p}(P_{t}(\omega; \mathbb{A})), \tag{18}$$

where $t \in [-1, 1] \setminus \{0\}$, p > 1 and $\alpha = \max \left\{ \frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{2}{p}}Mm} \right\}$.

Proof. First we show inequality (18) for p = 2. We have

$$Mm \left\| \Phi\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \Phi^{-1}(P_{t}(\omega; \mathbb{A})) \right\| = \left\| \Phi\left(\sum_{i=1}^{n} w_{i} A_{i}\right) Mm \Phi^{-1}(P_{t}(\omega; \mathbb{A})) \right\|$$

$$\leq \frac{1}{4} \left\| \Phi\left(\sum_{i=1}^{n} w_{i} A_{i}\right) + Mm \Phi^{-1}(P_{t}(\omega; \mathbb{A})) \right\|^{2}$$
(by Lemma 2.1)
$$\leq \frac{1}{4} \left\| \Phi\left(\sum_{i=1}^{n} w_{i} A_{i}\right) + Mm \Phi\left(\sum_{i=1}^{n} w_{i} A_{i}^{-1}\right) \right\|^{2}$$

$$\leq \frac{1}{4} (M+m)^{2},$$

whence

$$\left\|\Phi\left(\sum_{i=1}^n w_i A_i\right) \Phi^{-1}(P_t(\omega; \mathbb{A}))\right\| \leq \frac{(M+m)^2}{4Mm}.$$

Hence

$$\Phi^2\Big(\sum_{i=1}^n w_i A_i\Big) \leq \Big(\frac{(M+m)^2}{4Mm}\Big)^2 \Phi^2(P_t(\omega;\mathbb{A})).$$

Therefore

$$\Phi^{p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \left(\frac{(M+m)^{2}}{4Mm}\right)^{p} \Phi^{p}(P_{t}(\omega; \mathbb{A})) \qquad (0 \leq p \leq 2).$$

$$\tag{19}$$

Now, we prove inequality (18) for p > 2. In this case we have

$$\left\| \Phi^{\frac{p}{2}} \Big(\sum_{i=1}^{n} w_{i} A_{i} \Big) M^{\frac{p}{2}} m^{\frac{p}{2}} \Phi^{-\frac{p}{2}} (P_{t}(\omega; \mathbb{A})) \right\| \leq \frac{1}{4} \left\| \Phi^{\frac{p}{2}} \Big(\sum_{i=1}^{n} w_{i} A_{i} \Big) + M^{\frac{p}{2}} m^{\frac{p}{2}} \Phi^{-\frac{p}{2}} (P_{t}(\omega; \mathbb{A})) \right\|^{2}$$

$$(by Lemma 2.1(i))$$

$$\leq \frac{1}{4} \left\| \Big(\Phi \Big(\sum_{i=1}^{n} w_{i} A_{i} \Big) + M m \Phi^{-1} (P_{t}(\omega; \mathbb{A})) \Big)^{\frac{p}{2}} \right\|^{2}$$

$$(by Lemma 2.1(ii))$$

$$= \frac{1}{4} \left\| \Phi \Big(\sum_{i=1}^{n} w_{i} A_{i} \Big) + M m \Phi^{-1} (P_{t}(\omega; \mathbb{A})) \right\|^{p}$$

$$\leq \frac{(M+m)^{p}}{4}.$$

Hence

$$\left\|\Phi^{\frac{p}{2}}\Big(\sum_{i=1}^n w_i A_i\Big)\Phi^{-\frac{p}{2}}(P_t(\omega;\mathbb{A}))\right\| \leq \frac{1}{4}\Big(\frac{(M+m)^p}{M^{\frac{p}{2}}m^{\frac{p}{2}}}\Big).$$

Thus

$$\Phi^{p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \left(\frac{(M+m)^{2}}{4^{\frac{2}{p}} M m}\right)^{p} \Phi^{p}(P_{t}(\omega; \mathbb{A})). \tag{20}$$

Now, if we take $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{2}{p}}Mm}\right\}$, then applying (19) and (20) we get the desired result. \square

Corollary 2.8. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ $(i = 1, \dots, n)$ for some scalars $m \le M$ and $\omega = (w_1, \dots, w_n)$ be a weight vector. Then

$$\Phi^p\left(\sum_{i=1}^n w_i A_i\right) \le \alpha^p \Phi^p(\Lambda(\omega; \mathbb{A})),$$

where $p \ge 1$ and $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{2}{p}}Mm}\right\}$.

Remark 2.9. By letting $\mathbb{A} = (A, B)$ and $\omega = (w_1, w_2)$ with $w_1 = w_2 = \frac{1}{2}$ in Theorem 2.7, the following inequality holds:

$$\Phi^p\left(\frac{A+B}{2}\right) \le \alpha^p \Phi^p(A \sharp B)$$

for $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{n}{p}}Mm}\right\}$, which is appeared in [12, Theorem 4].

In the next result we extend inequalities (12) and (18) to the following form:

Theorem 2.10. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ $(i = 1, \dots, n)$ for some scalars $m \le M$ and $\omega = (w_1, \dots, w_n)$ be a weight vector, let $t \in [-1, 1] \setminus \{0\}$ and also Φ be a positive unital linear map. Then

$$P_{t}^{p}(\omega;\Phi(\mathbb{A}))\Phi^{-p}(P_{t}(\omega;\mathbb{A})) + \Phi^{-p}(P_{t}(\omega;\mathbb{A}))P_{t}^{p}(\omega;\Phi(\mathbb{A})) \leq 2\alpha^{p}$$

and

$$\Phi^{p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \Phi^{-p}(P_{t}(\omega; \mathbb{A})) + \Phi^{-p}(P_{t}(\omega; \mathbb{A})) \Phi^{p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq 2\alpha^{p}, \tag{21}$$

where p > 0 and $\alpha = \max \left\{ \frac{(m+M)^2}{4mM}, \frac{(m+M)^2}{4^{\frac{1}{p}}mM} \right\}$.

Proof. Applying inequality (11) and Lemma 2.1(iii) for 0 , we have

$$||P_t^p(\omega; \Phi(\mathbb{A}))\Phi^{-p}(P_t(\omega; \mathbb{A}))|| \le \left(\frac{(m+M)^2}{4mM}\right)^p.$$

We put $\alpha = \frac{(m+M)^2}{4mM}$. Applying Lemma 2.2,

$$\left[\begin{array}{cc} \alpha^{p}I & P_{t}^{p}(\omega;\Phi(\mathbb{A}))\Phi^{-p}(P_{t}(\omega;\mathbb{A})) \\ \Phi^{-p}(P_{t}(\omega;\mathbb{A}))P_{t}^{p}(\omega;\Phi(\mathbb{A})) & \alpha^{p}I \end{array}\right]$$

and

$$\begin{bmatrix} \alpha^{p}I & \Phi^{-p}(P_{t}(\omega;\mathbb{A}))P_{t}^{p}(\omega;\Phi(\mathbb{A})) \\ P_{t}^{p}(\omega;\Phi(\mathbb{A}))\Phi^{-p}(P_{t}(\omega;\mathbb{A})) & \alpha^{p}I \end{bmatrix}$$

are positive. Hence

$$\begin{bmatrix} 2\alpha^{p}I & P_{t}^{p}(\omega;\Phi(\mathbb{A}))\Phi^{-p}(P_{t}(\omega;\mathbb{A})) + \Phi^{-p}(P_{t}(\omega;\Phi\mathbb{A}))P_{t}^{p}(\omega;\Phi(\mathbb{A})) & 2\alpha^{p}I & 2\alpha^$$

is positive. Applying Lemma 2.2, we get

$$P_t^p(\omega;\Phi(\mathbb{A}))\Phi^{-p}(P_t(\omega;\mathbb{A})) + \Phi^{-p}(P_t(\omega;\mathbb{A}))P_t^p(\omega;\Phi(\mathbb{A})) \leq 2\alpha^p$$
.

For p > 1, applying inequality (12) with the same argument, we get the desired inequality. Applying Theorem 2.7 and a similar method we have inequality (21). \Box

Corollary 2.11. Let $\mathbb{A} = (A_1, \dots, A_n)$ be a n-tuple of positive definite matrices with $0 < m \le A_i \le M$ $(i = 1, \dots, n)$ for some scalars $m \le M$ and $\omega = (w_1, \dots, w_n)$ be a weight vector, and also Φ be a positive unital linear map. Then

$$\Lambda^{p}(\omega; \Phi(\mathbb{A}))\Phi^{-p}(\Lambda(\omega; \mathbb{A})) + \Phi^{-p}(\Lambda(\omega; \mathbb{A}))\Lambda^{p}(\omega; \Phi(\mathbb{A})) \leq 2\alpha^{p}$$

and

$$\Phi^p\Big(\sum_{i=1}^n w_i A_i\Big)\Phi^{-p}(\Lambda(\omega;\mathbb{A})) + \Phi^{-p}(\Lambda(\omega;\mathbb{A}))\Phi^p\Big(\sum_{i=1}^n w_i A_i\Big) \leq 2\alpha^p,$$

where p > 0 and $\alpha = \max\left\{\frac{(m+M)^2}{4mM}, \frac{(m+M)^2}{4^{\frac{1}{p}}mM}\right\}$.

3. Some refinements

In this section, we give a refinement of inequality (18). This inequality can be refined by a similar method that known in [22].

Theorem 3.1. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ ($i = 1, \dots, n$) for some scalars $m \le M$ and $\omega = (w_1, \dots, w_n)$ be a weight vector, and also let $t \in [-1, 1] \setminus \{0\}$. Then for every positive unital linear map Φ

$$\Phi^{2p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \frac{(K(M^{2} + m^{2}))^{2p}}{16M^{2p} m^{2p}} \Phi^{2p}(P_{t}(\omega; \mathbb{A})), \tag{22}$$

where $p \ge 2$ and $K = \frac{(M+m)^2}{4mM}$

Proof. For $p \ge 2$, we have

$$\left\| \Phi^{p} \left(\sum_{i=1}^{n} w_{i} A_{i} \right) M^{p} m^{p} \Phi^{-p} (P_{t}(\omega; \mathbb{A})) \right\| \leq \frac{1}{4} \left\| K^{\frac{p}{2}} \Phi^{p} \left(\sum_{i=1}^{n} w_{i} A_{i} \right) + \left(\frac{M^{2} m^{2}}{K} \right)^{\frac{p}{2}} \Phi^{-p} (P_{t}(\omega; \mathbb{A})) \right\|^{2}$$

$$(by Lemma 2.1(i))$$

$$\leq \frac{1}{4} \left\| \left(K \Phi^{2} \left(\sum_{i=1}^{n} w_{i} A_{i} \right) + \frac{M^{2} m^{2}}{K} \Phi^{-2} (P_{t}(\omega; \mathbb{A})) \right)^{\frac{p}{2}} \right\|^{2}$$

$$(by Lemma 2.1(ii))$$

$$= \frac{1}{4} \left\| \left(K \Phi^{2} \left(\sum_{i=1}^{n} w_{i} A_{i} \right) + \frac{M^{2} m^{2}}{K} \Phi^{-2} (P_{t}(\omega; \mathbb{A})) \right) \right\|^{p}.$$

Now, It follows from inequality (18) and operator reverse monotonicity of the inverse that

$$\Phi^{-2}(P_t(\omega; \mathbb{A})) \le K^2 \Phi^{-2} \Big(\sum_{i=1}^n w_i A_i \Big).$$

So

$$\left\| \Phi^{p} \left(\sum_{i=1}^{n} w_{i} A_{i} \right) M^{p} m^{p} \Phi^{-p} (P_{t}(\omega; \mathbb{A})) \right\| \leq \frac{1}{4} \left\| \left(K \Phi^{2} \left(\sum_{i=1}^{n} w_{i} A_{i} \right) + K M^{2} m^{2} \Phi^{-2} \left(\sum_{i=1}^{n} w_{i} A_{i} \right) \right\|$$

$$\leq \frac{1}{4} (K (M^{2} + m^{2}))^{p} \qquad \text{(by [18, (4.7)])}.$$

Hence

$$\left\|\Phi^{p}\left(\sum_{i=1}^{n}w_{i}A_{i}\right)\Phi^{-p}(P_{t}(\omega;\mathbb{A}))\right\| \leq \frac{1}{4}\left(\frac{K(M^{2}+m^{2})}{Mm}\right)^{p}.$$
(23)

Since (23) is equivalent to (22), thus inequality (22) holds. \Box

Corollary 3.2. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ ($i = 1, \dots, n$) for some scalars $m \le M$ and $\omega = (w_1, \dots, w_n)$ be a weight vector. Then for every positive unital linear map Φ

$$\Phi^{2p}\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \leq \frac{(K(M^{2} + m^{2}))^{2p}}{16M^{2p} m^{2p}} \Phi^{2p}(\Lambda(\omega; \mathbb{A})),$$

where $p \ge 2$ and $K = \frac{(M+m)^2}{4mM}$.

Remark 3.3. If we put $\mathbb{A} = (A, B)$ and $\omega = (w_1, w_2)$ with $w_1 = w_2 = \frac{1}{2}$ in Corollary 3.2, then we get [22, Theorem 2.6] as follows:

$$\Phi^{2p}\left(\frac{A+B}{2}\right) \le \frac{(K(M^2+m^2))^{2p}}{16M^{2p}m^{2p}}\Phi^{2p}(A\sharp B).$$

Theorem 3.4. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ ($i = 1, \dots, n$) for some scalars $m \le M$ and $\omega = (w_1, \dots, w_n)$ be a weight vector, and also let $t \in [-1, 1] \setminus \{0\}$. Then for every positive unital linear map Φ

$$P_t^{2p}(\omega; \Phi(\mathbb{A})) \le \frac{(K(M^2 + m^2))^{2p}}{16M^{2p}m^{2p}} \Phi^{2p}(P_t(\omega; \mathbb{A})), \tag{24}$$

where $p \ge 2$ and $K = \frac{(M+m)^2}{4mM}$

Proof. For $p \ge 2$, we have

$$\left\| P_{t}^{p}(\omega; \Phi(\mathbb{A})) M^{p} m^{p} \Phi^{-p}(P_{t}(\omega; \mathbb{A})) \right\| \leq \frac{1}{4} \left\| \frac{1}{K^{\frac{p}{2}}} P_{t}^{p}(\omega; \Phi(\mathbb{A})) + (KM^{2}m^{2})^{\frac{p}{2}} \Phi^{-p}(P_{t}(\omega; \mathbb{A})) \right\|^{2}$$

$$(by Lemma 2.1(i))$$

$$\leq \frac{1}{4} \left\| \left(\frac{1}{K} P_{t}^{2}(\omega; \Phi(\mathbb{A})) + KM^{2}m^{2} \Phi^{-2}(P_{t}(\omega; \mathbb{A})) \right)^{\frac{p}{2}} \right\|^{2}$$

$$(by Lemma 2.1(ii))$$

$$= \frac{1}{4} \left\| \left(\frac{1}{K} P_{t}^{2}(\omega; \Phi(\mathbb{A})) + KM^{2}m^{2} \Phi^{-2}(P_{t}(\omega; \mathbb{A})) \right) \right\|^{p}$$

$$\leq \frac{1}{4} \left\| \left(K\Phi^{2}(P_{t}(\omega; \mathbb{A})) + KM^{2}m^{2} \Phi^{-2}(P_{t}(\omega; \mathbb{A})) \right) \right\|^{p}$$

$$(by (12))$$

$$\leq \frac{1}{4} (K(M^{2} + m^{2}))^{p}. \qquad (by [18, (4.7)])$$

Therefore

$$\left\|P_t^p(\omega;\Phi(\mathbb{A}))\Phi^{-p}(P_t(\omega;\mathbb{A}))\right\| \leq \frac{1}{4}\Big(\frac{K(M^2+m^2)}{Mm}\Big)^p.$$

Since the last inequality is equivalent to (24), this completes the proof. \Box

Corollary 3.5. Let $\mathbb{A} = (A_1, \dots, A_n)$ be an n-tuple of positive definite matrices with $0 < m \le A_i \le M$ $(i = 1, \dots, n)$ for some scalars $m \le M$ and $\omega = (w_1, \dots, w_n)$ be a weight vector. Then for every positive unital linear map Φ

$$\Lambda^{2p}(\omega;\Phi(\mathbb{A})) \leq \frac{(K(M^2+m^2))^{2p}}{16M^{2p}m^{2p}}\Phi^{2p}(\Lambda(\omega;\mathbb{A})),$$

where $p \ge 2$ and $K = \frac{(M+m)^2}{4mM}$.

4. Acknowledgement.

The authors would like to sincerely thank the referee for some useful comments and suggestions.

References

- [1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 27 (1979), 203-241.
- [2] T. Ando, X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann. 315 (1999), 771-780.
- [3] M. Bakherad, Refinements of a reversed AM-GM operator inequality, Linear and Multilinear Algebra 64 (2016), no. 9, 1687–1695.
- [4] M. Bakherad, M.S. Moslehian, Complementary and refined inequalities of Callebaut inequality for operators, Linear Multilinear Algebra 63 (2015), no. 8, 1678–1692.
- [5] M. Bakherad, A. Morassaei, Some operator Bellman type inequalities. Indag. Math. (N.S.) 26 (2015), no. 4, 646-659.
- [6] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000), 203-211.
- [7] M.D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Proc. Amer. Math. Soc. 8 (1974), 565-574.
- [8] M. Dehghani, M. Kian, Y. Seo, Matrix power means and the information monotonicity, Linear Algebra Appl. 521 (2017), 57–69.
- [9] X. Fu, C. He, Some operator inequalities for positive linear maps, Linear and Multilinear Algebra 63 (2015), no. 3, 571–577.
- [10] J.I. Fujii, M. Fujii, M. Nakamura, J. Pečarić, Y. Seo, A reverse inequality for the weighted geometric mean due to Lawson-Lim, Linear Algebra Appl. 427 (2007), 272-284.
- [11] M. Fujii, S. Izumino, R. Nakamato, Y. Seo, Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J. 8 (1997), no. 2, 117-122.
- [12] J. Pečarić, T. Furuta, J. Mićić Hot, Y. Seo, Mond Pečarić method in operator inequalities, Element, Zagreb, 2005.
- [13] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
- [14] J. Lawson, Y. Lim, Karcher means and Karcher equations of positive definite operators, Trans. Amer. Math. Soc., Series B 1 (2014), 1-22.
- [15] Y. Lim, M. Palfia, Matrix power means and the Karcher mean, J. Funct. Anal. 262 (2012), 1498-1514.
- [16] Y. Lim, T. Yamazaki, On some inequalities for the matrix power and Karcher means, Linear Algebra Appl. 438 (2013), 1293-1304.
- [17] M. Lin, On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. Appl. 402 (2013), 127-132.
- [18] M. Lin, Squaring a reverse AM-GM inequality, Studia Math. 215 (2013), 189-194.
- [19] A.W. Marshall, I. Olkin, Matrix versions of Cauchy and Kantorovich inequalities, Aequationes Math. 40 (1990), 89-93.
- [20] M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26 (2005), no. 3, 735–747.
- [21] T. Yamazaki, The Riemannian mean and matrix inequalities related to the Ando-Hiai inequality and chaotic order, Oper. Matrices 6 (2012), no. 3, 577–588.
- [22] P. Zhang, More operator inequalities for positive linear maps, Banach J. Math. Anal. 9 (2015), no. 1, 166-172.