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Abstract. Relation on a set is a simple mathematical model to which many

real-life data can be connected. In fact, topological structures are generalized

methods for measuring similarity and dissimilarity between objects in the uni-
verses. In this work, some methods for generating topologies are obtained using

binary relations. The relationship between these methods are discussed. We
also investigate some properties of these topologies. Moreover, we obtain a

quasi-discrete topology from a symmetric relation instead of an equivalence

relation. Finally, several examples are given to indicate counter connections.
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1. Introduction

Relations are used in the construction of topological structures in many fields such as
dynamics [4], rough set theory and approximation space [8, 9], digital topology [11,
12], biochemistry [13] and biology [14]. In fact, topology is a branch of mathematics,
whose concepts exist not only in almost all branches of mathematics, but also in
many real life applications. It should be noted that the generation of topology by
relations and the representation of topological concepts via relations will narrow the
gap between topology and its applications.

The aim of this paper is to study some methods which are used to generate topolo-
gies by relations. We introduce new methods and we study the relationship between
them and the other methods. In addition, we show that the topology generated by
aftersets is the dual to the topology generated by forsets when the relation is pre-
order. Moreover, we obtain a quasi-discrete topology using a symmetric relation,
which is considered as a generalization for the equivalence relation in [8, 9].
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2. The aftersets and the forsets

A relation R from a universe X to a universe X (relation on X) is a subset of X×X,
i.e., R ⊆ X ×X. The formula (x, y) ∈ R is abbreviated as xRy and means that x is
in relation R with y.

Definition 2.1. If R is a relation on X, then the aftersets of x ∈ X is xR where
xR = {y : xRy} and the forsets of x ∈ X is Rx, where Rx = {y : yRx}.

Definition 2.2. [6] If R is a relation on X, then the class S1 ={xR :x∈ X}(resp.S2 =
{Rx : x ∈ X}) is a subbase for the topology τ1(resp.τ2) on X.

We illustrate the last definition by the following example.

Example 2.1. Let X = {a, b, c, d} and R = {(a, a), (a, b), (b, d), (c, d), (d, a)} be a
relation on X, then

S1 = {{a, b}, {d}, {a}},
S2 = {{a, d}, {a}, {b, c}},
β1 = {{a}, {d}, {a, d}, φ, X}, and

β2 = {{a}, {a, d}, {b, c}, φ, X}.

Note that X ∈ β, since by definition X is the empty intersection of members of
S [8]. So that,

τ1 = {φ,X, {a}, {d}, {a, b}, {a, d}, {a, b, d}}
and

τ2 = {φ,X, {a}, {a, d}, {b, c}, {a, b, c}}.

We shall denote the complement of any subset A of X by Ac.

Definition 2.3. If τ is the topology on a finite set X and the class τ c = {Gc : G ∈ τ}
is also the topology on X, then τ c is the dual of τ .

Remark 2.1. Generally for any binary relation R, then τ1 is not the dual of τ2.

Now, we introduce some examples about special cases of the relation R to study
the duality of τ1 and τ2.

Example 2.2. Let X = {a, b, c, d} and R be a reflexive relation,

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, d), (c, a)}, then

τ1 = {φ,X, {a}, {b}, {d}, {a, b}, {b, d}, {a, d}, {a, c}, {a, b, d}, {a, b, c}, {a, c, d}}, and

τ2 = {φ,X, {a}, {c}, {b}, {a, c}, {a, b}, {b, d}, {b, c}, {a, b, d}, {a, b, c}, {b, c, d}}.

Note that τ1 is not the dual of τ2.

Example 2.3. Let X = {a, b, c, d} and R be a symmetric relation,

R = {(a, a), (b, b), (a, b), (b, a), (c, d), (d, c), (a, c), (c, a)}, then

τ1 = τ2 = {φ,X, {a}, {c}, {a, b}, {a, d}, {a, c}, {a, b, d}, {a, b, c}, {a, c, d}}.

Note that τ1 is not the dual of τ2.
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Example 2.4. Let X = {a, b, c, d} and R be a transitive relation,

R = {(a, a), (a, b), (b, a), (b, b), (c, d), (d, a), (c, a), (d, b), (c, b)}, then

τ1 = {φ,X, {a, b}, {a, b, d}} and

τ2 = {φ,X, {c}}.
Note that τ1 is not the dual of τ2.

Lemma 2.1. If R is symmetric, then τ1 = τ2.

Proof. Let R be a symmetric relation, i.e., if (a, b) ∈ R then (b, a) ∈ R. Hence if
b ∈ aR then b ∈ Ra and so Ra = aR for all a ∈ X, then τ1 = τ2.

Definition 2.4. [3] A space is called a quasi-discrete if every open set is closed set
and vice versa.

Remark 2.2. If τ1 = τ2, then τ1 is the dual of τ2 if τ1 and τ2 are quasi-discrete
spaces.

Example 2.5. Let X = {a, b, c, d} and R be a reflexive and transitive relation,

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (a, c), (c, d), (a, d), (b, c), (b, d)}, then

τ1 = {φ,X, {d}, {c, d}}andτ2 = {φ,X, {a, b}, {a, b, c}}.
Note that τ1 is the dual of τ2.

Definition 2.5. The relation R is preorder if and only if R is reflexive and transitive.

Lemma 2.2. If R is a preorder relation, then
(i) A ∈ τ1 if and only if A = ∪x∈AxR.
(ii) A ∈ τ2 if and only if A = ∪x∈ARx.

Proof.
(i) We assume that A ∈ τ1 (i.e., A is τ1-open). If y ∈ A, then by reflexivity

we have y ∈ yR and so y ∈ ∪x∈AxR, therefore A ⊆ ∪x∈AxR. Now, if
y ∈ ∪x∈AxR then there exist x ∈ A such that y ∈ xR. In addition, if z ∈ yR
then by transivity we get z ∈ xR, i.e., yR is the smallest open set contains
y. Thus y ∈ yR ⊆ A ∈ τ1 and hence ∪x∈AxR ⊆ A, therefore A = ∪x∈AxR.
Conversely, we suppose that R is preorder and A = ∪x∈AxR then for every
y ∈ A there is yR ∈ τ1 such that y ∈ yR ⊆ ∪x∈AxR = A, hence y is an
interior point of A, i.e., A is τ1-open.

(ii) The proof is the same for (i).

Proposition 2.1. τ1 is the dual of τ2 if and only if R is a preorder relation.

Proof. Let τ1 be the dual of τ2 (i.e., A ∈ τ1 if Ac ∈ τ2) and R be not preorder (i.e.,
A 6= ∪x∈AxR and Ac 6= ∪x∈AcRx). If y ∈ ∪x∈AxR and y /∈ A, then there is x ∈ A
such that y ∈ xR and y ∈ Ac. Therefore, there is no τ2-open set which contains y
and is contained in Ac (i.e., y is not an interior point of Ac), which is a contradiction
to Ac ∈ τ2. We have another contradiction if we use Ac 6= ∪x∈AcRx, then R is
preorder.
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Conversely, let R be a preorder relation and A ∈ τ1. We will show that Ac ∈ τ2

(i.e., Ac = ∪x∈AcRx). Suppose that Ac 6= ∪x∈AcRx, then there exist y ∈ ∪x∈AcRx
and y /∈ Ac. Hence there is z ∈ Ac such that yRz and y ∈ A. Thus z ∈ yR ⊆
∪x∈AxR = A, which is a contradiction. Therefore, Ac = ∪x∈AcRx and so Ac ∈ τ2,
then τ1 is the dual of τ2.

Definition 2.6. [1] Let R be any binary relation on X, a set 〈p〉R is the intersection
of all aftersets containing p, i.e.,

〈p〉R =

{
∩p∈xR(xR) if ∃x : p ∈ xR,

φ otherwise.

Also, R〈p〉 is the intersection of all forsets containing p, i.e.,

R〈p〉 =

{
∩p∈Rx(Rx) if ∃x : p ∈ Rx,

φ otherwise.

Definition 2.7. Let R be a reflexive relation on X, then the class {〈x〉R : x ∈ X}
is a base for the topology τ3 on X.

The following example is an illustrating for the previous definition.

Example 2.6. Let X = {a, b, c, d} and R be a reflexive relation on X such that

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, d), (c, d)}, then

〈a〉R = {a, b}, 〈b〉R = {b}, 〈c〉R = {c, d}, 〈d〉R = {d}.

The corresponding topology of this relation is

τ3 = {φ,X, {b}, {d}, {a, b}, {c, d}, {b, d}, {a, b, d}, {b, c, d}}.

3. Rough sets in topological spaces

Motivation for rough set theory has come from the need to represent subsets of a
universe in terms of equivalence classes of a partition of that universe. The partition
characterizes a topological space, called approximation space (X, R), where X is a
set called the universe and R is an equivalence relation [10]. In the approximation
space, we consider two operators, the upper and lower approximations of subsets:
Let A ⊆ X.

R(A) = {x ∈ X : [x]R ⊂ A}
R(A) = {x ∈ X : [x]R ∩A 6= φ}

(3.1)

where [x]R is the equivalence class containing x. The reference space in rough
set theory is the approximation space, whose topology generated by the equivalence
classes of R. In this topology, the closure and interior operators are the same of
the upper and lower approximation operators. Moreover, this topology belongs to a
special class known by Clopen topology, in which every open set is closed. Clopen
topology is called the quasi-discrete topology.
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Yao [16] introduced and investigated the notion of generalized approximation
space by using the aftersets concepts as follows:

R(A) = {x ∈ X : xR ⊂ A}
R(A) = {x ∈ X : xR ∩A 6= φ}

(3.2)

Obviously, if R is an equivalence relation, then xR = [x]R. In addition, these
definitions are equivalent to the original Pawlak’s definitions (3.1).

The following theorem states that a reflexive and transitive relation is sufficient
for the approximation operators (3.2) to be interior and closure operators [5].

Theorem 3.1. Suppose R is a reflexive and transitive relation on X. The pair
of lower and upper approximations (3.2) is a pair of interior and closure operators
satisfying Kuratowski axioms (topological space).

Remark 3.1. Suppose R is a reflexive and transitive relation on X. The topology
generated by the lower and upper approximation operators (3.2) is the same of the
topology τ1 generated by the aftersets as a subbase.

The authors in [2] introduced and investigated another notion of generalized
approximation space by using the aftersets concepts as follows:

R(A) = {x ∈ X : 〈x〉R ⊂ A}
R(A) = {x ∈ X : 〈x〉R ∩A 6= φ}.

(3.3)

Obviously, if R is an equivalence relation, then 〈x〉R = [x]R. In addition, these
definitions are equivalent to the original Pawlak’s definitions (3.1).

The following theorem states that a reflexive relation is sufficient for the
approximation operators (3.3) to be interior and closure operators [2].

Theorem 3.2. Suppose R is a reflexive relation on X. The pair of lower and upper
approximations (3.3) is a pair of interior and closure operators satisfying Kuratowski
axioms.

Remark 3.2. Suppose R is a reflexive relation on X. The topology generated by
the lower and upper approximation operators (3.3) is the same of the topology τ3

generated by the base in the definition 2.7.

4. Closure operator

In Section 2, topologies were generated on a set using aftersets (forsets) as a subbase.
The purpose of this section is to introduce topologies by defining closure operator
using binary relations.

Definition 4.1. [3] A closure space is a pair (X, cl), where X is any set, and
cl : P (X) → P (X) is a mapping associating with each subset A ⊆ X a subset
cl(A) ⊆ X, called the closure of A, such that

(i) cl(φ) = φ,
(ii) A ⊆ cl(A),
(iii) cl(A ∪B) = cl(A) ∪ cl(B).
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Definition 4.2. [10] Let R be any binary relation on X, then the relation R gives
rise to a closure operator on X as follows:

cl1(A) = A ∪ {y ∈ X : ∃x ∈ A, yRx}.
Lemma 4.1. Let R be any binary relation on X, then

{y ∈ X : ∃x ∈ A, yRx} = {y ∈ X : yR ∩A 6= φ}.
Proof. Let z ∈ {y ∈ X : ∃x ∈ A, yRx}, then there exist x ∈ A such that zRx, i.e.,
x ∈ zR so that zR ∩A 6= φ. Hence, z ∈ {y ∈ X : yR ∩A 6= φ}.

Conversely, assume that z ∈ {y ∈ X : yR∩A 6= φ}, then there is x ∈ A such that
x ∈ zR, so zRx. Hence, z ∈ {y ∈ X : ∃x ∈ A, yRx}.

Now, from Lemma 4.1 we can write the closure operator in Definition 4.2 as
follows:

cl1(A) = A ∪ {y ∈ X : yR ∩A 6= φ}.
The following result gives an equivalent definition for cl1 by forsets.

Lemma 4.2. Let R be any binary relation on X, then

{y ∈ X : ∃x ∈ A, yRx} = ∪x∈ARx.

Proof. Suppose that z ∈ {y ∈ X : ∃x ∈ A, yRx}, then there exist x ∈ A such that
zRx, i.e., z ∈ Rx, hence z ∈ ∪x∈ARx, so that {y ∈ X : ∃x ∈ A, yRx} ⊆ ∪x∈ARx.

Conversely, assume that z ∈ ∪x∈ARx, then there is x ∈ A such that z ∈ Rx, i.e.,
zRx, and hence z ∈ {y ∈ X : ∃x ∈ A, yRx}, therefore, ∪x∈ARx ⊆ {y ∈ X : ∃x ∈
A, yRx}.

As a result of Lemma 4.2, we can write the closure operator in Definition 4.2 as
follows:

cl1(A) = A ∪ (∪x∈ARx).
On the other hand, we can define another closure operator on X as follows:

Definition 4.3. Let R be any binary relation on X, then the relation R gives rise
to a closure operator on X as follows:

cl2(A) = A ∪ {y ∈ X : ∃x ∈ A, xRy}.
Lemma 4.3. Let R be any binary relation on X, then

{y ∈ X : ∃x ∈ A, xRy} = {y ∈ X : Ry ∩A 6= φ}.
Proof. The proof is the same for Lemma 4.1.

By the following result we can give an equivalent definition to cl2 using aftersets.

Lemma 4.4. Let R be any binary relation on X, then

{y ∈ X : ∃x ∈ A, xRy} = ∪x∈AxR.

Proof. The proof is similar to that of Lemma 4.2.
Now, from Lemma 4.3 and Lemma 4.4 we can write cl2 as follows:

cl2(A) = A ∪ {y ∈ X : Ry ∩A 6= φ} = A ∪ (∪x∈AxR).

It is very well known that, for i ∈ {1, 2, 3}, τ∗i will always denote the topology
generated by the closure cli, i.e., the topology consisting of complements of cli-closed
sets.
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Proposition 4.1. For any binary relation R, τ∗1 is the dual of τ∗2 .

Proof. We want to show that if A ∈ τ∗1 then Ac ∈ τ∗2 , or if cl1(A) = A, then
cl2(Ac) = Ac. We assume that cl1(A) = A, then {y ∈ X : ∃x ∈ A, yRx} ⊆ A. We
will show that {y ∈ X : ∃x ∈ Ac, xRy} ⊆ Ac, i.e., A ∩ {y ∈ X : ∃x ∈ Ac, xRy} = φ.
Now, if A∩{y ∈ X : ∃x ∈ Ac, xRy} 6= φ, then there are z ∈ A and x ∈ Ac such that
xRz. In addition, since cl1(A) = A, we have x ∈ A, which it is a contradiction, so
that z /∈ A and A∩ {y ∈ X : ∃x ∈ Ac, xRy} = φ, i.e., {y ∈ X : ∃x ∈ Ac, xRy} ⊆ Ac.
Therefore, cl2(Ac) = Ac.

Proposition 4.2. If R is transitive the following hold,
(i) cl1(cl1(A)) = cl1(A),
(ii) cl2(cl2(A)) = cl2(A).

Proof.
(i) The proof in [4].
(ii) We want to show that cl2(cl2(A)) ⊆ cl2(A). Suppose that z ∈ cl2(cl2(A)),

then z ∈ cl2(A) or there is y ∈ cl2(A) such that yRz, also there is x ∈
A such that xRy. Hence by transitivity of R, we get xRz, i.e., z ∈ cl2(A).
Thus cl2(cl2(A)) ⊆ cl2(A).

Remark 4.1. If R is a reflexive relation then the following hold,
(i) cl1(A) = ∪x∈ARx,
(ii) cl2(A) = ∪x∈AxR.

Lemma 4.5. Let R be any binary relation then the following hold,
(i) A ∈ τ∗1 if and only if ∪x∈AxR ⊆ A,
(ii) A ∈ τ∗2 if and only if ∪x∈ARx ⊆ A.

Proof.
(i) If A ∈ τ∗1 , then A is τ∗2 -closed, i.e., cl2(A) = A, hence A = A ∪ (∪x∈AxR)

so that ∪x∈AxR ⊆ A. Conversely, we assume that ∪x∈AxR ⊆ A, then
cl2(A) = A, i.e., A is τ∗2 -closed, hence A ∈ τ∗1 .

(ii) The proof is similar to that of (i).

Remark 4.2. Suppose R is a transitive relation on X. The topology τ∗1 generated
by the closure operator in Definition 4.2 is the same of the topology τ1 generated by
the aftersets as a subbase.

On the other hand, we will introduce another closure operator, which is an idem-
potent operator for any binary relation.

Definition 4.4. [1] Let X be any set and R ⊆ X ×X be any binary relation on X,
then the relation R gives rise to a closure operator clR on X as follows:

cl3(A) = A ∪ {x ∈ X : 〈x〉R ∩A 6= φ}.

In the following example we can find the topologies τ∗i for all i ∈ {1, 2, 3} from
the closure operators (cli), respectively, as follows:
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Example 4.1. Let X = {a, b, c, d} and R = {(a, a), (a, b), (b, d), (c, d), (d, a)} be
a binary relation on X, then

aR = {a, b}, bR = {d}, cR = {d}, dR = {a},
Ra = {a, d}, Rb = {a}, Rc = φ,Rd = {b, c}, and

〈a〉R = {a}, 〈b〉R = {a, b}, 〈c〉R = φ, 〈d〉R = {d}.
Hence,

τ∗1 = {φ,X, {a, b, d}},
τ∗2 = {φ,X, {c}}, and

τ∗3 = {φ,X, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, b}, {a, b, c}, {a, c, d}, {a, b, d}}.
Note that, τ∗1 is the dual of τ∗2 .

Lemma 4.6. For any binary relation R, cl3 is idempotent, i.e., cl3(cl3(A)) = cl3(A).

Proof. We want to show that cl3(cl3(A)) ⊆ cl3(A). Suppose y ∈ cl3(cl3(A)). Then
since cl3(cl3(A)) = cl3(A) ∪ x ∈ X : 〈x〉R ∩ cl3(A) 6= φ, we have either

(4.1) y ∈ cl3(A)

or y ∈ x ∈ X : 〈x〉R ∩ cl3(A) 6= φ. In the latter case we have 〈y〉R∩ cl3(A) 6= φ, i.e.,
〈y〉R ∩ (A ∪ {x ∈ X : 〈x〉R ∩ A 6= φ}) 6= φ, and hence (〈y〉R ∩ A) ∪ (〈y〉R ∩ {x ∈
X : 〈x〉R ∩ A 6= φ}) 6= φ. It follows that either 〈y〉R ∩ A 6= φ or 〈y〉R ∩ {x ∈ X :
〈x〉R ∩A 6= φ} 6= φ. In the former case we have

(4.2) y ∈ cl3(A)

and in the latter, there is a z such that z ∈ 〈y〉R and z ∈ {x ∈ X : 〈x〉R ∩ A 6= φ},
i.e., 〈z〉R ∩ A 6= φ; in this case, since z ∈ 〈y〉R, we have 〈z〉R ⊆ 〈y〉R, and hence
〈y〉R ∩A 6= φ, so

(4.3) y ∈ cl3(A)

From (4.1), (4.2) and(4.3), therefore, we have y ∈ cl3(A), so cl3(cl3(A)) ⊆ cl3(A).
Since cl3 is a closure space, the reverse inclusion also hold, so cl3(cl3(A)) = cl3(A).

Remark 4.3. If R is a reflexive relation on X. then the topology τ∗3 generated by
the closure operator in Definition 4.4 is the same of the topology τ3 generated by
the base in Definition 2.7.

Remark 4.4. If R is an equivalence relation on X, then

τ1 = τ2 = τ3 = τ∗1 = τ∗2 = τ∗3 .

5. Interior operator

In the previous section, topologies were generated on a set by defining a closure
operator using binary relation. In this section, we introduce topologies by defining
interior operator using binary relation.

Let R be any binary relation on X, then the relation gives rise to an interior
operator on X (corresponding to cl1) as follows [4].

Int1(A) = {x ∈ A : xR ⊆ A}
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Thus, the Int1(A) consists of those elements of A which are not R-related to any
elements outside A.

The important idea is that, we present another interior operator on X corre-
sponding to cl2 as follows:

Since Int2(A) = (cl2(Ac))c, then

Int2(A) = (Ac ∪ {x ∈ X : Rx ∩Ac 6= φ})c

= A ∩ ({x ∈ X : Rx ∩Ac 6= φ})c

= A ∩ {x ∈ X : Rx ∩Ac = φ}
= A ∩ {x ∈ X : Rx ⊆ A}
= {x ∈ A : Rx ⊆ A}.

Lemma 5.1. If R is a symmetric relation then τ∗1 = τ∗2 .

Proof. Let R be a symmetric relation, i.e., xR = Rx ∀x ∈ X, then cl1(A) = A ∪
(∪x∈ARx) = A ∪ (∪x∈AxR) = cl2(A). Moreover, Int1(A) = {x ∈ A : xR ⊆ A} =
{x ∈ A : Rx ⊆ A} = Int2(A), i.e., τ∗1 = τ∗2 .

Lemma 5.2. If R is a symmetric relation then the following conditions are
equivalent.

(i) A = Int1(A) = Int2(A),
(ii) A = cl1(A) = cl2(A).

Proof. Let A be τ∗1 -open, then ∪x∈AxR ⊆ A. Since R is symmetric, we have
∪x∈ARx ⊆ A and cl1(A) = A ∪ (∪x∈ARx) = A, i.e., A is τ∗1 -closed. Conversely,
let A be τ∗1 -closed, so A = A ∪ (∪x∈ARx), i.e., ∪x∈ARx ⊆ A. Also, since R is
symmetric, we get ∪x∈AxR ⊆ A, therefore, A is τ∗1 -open.

Now, from Definition 2.4 and Lemma 5.2 we have the following remark.

Remark 5.1. If R is a symmetric relation, then (X, cl1) and (X, cl2) are quasi-
discrete space.

Finally, we will introduce another interior operator on X corresponding to cl3 as
follows:

Int3(A) = (Ac ∪ {x ∈ X : 〈x〉R ∩Ac 6= φ})c

= A ∩ ({x ∈ X : 〈x〉R ∩Ac 6= φ})c

= A ∩ {x ∈ X : 〈x〉R ∩Ac = φ}
= A ∩ {x ∈ X : 〈x〉R ⊆ A}
= {x ∈ A : 〈x〉R ⊆ A}.

6. Neighborhood operator

Let cl : P (X) → P (X) be the closure operator. Its conjugate is the interior operator.
The associated neighborhood operator N(x) = {N ⊆ X : x ∈ Int(N)}. It is not
hard to show that closure, interior and neighborhood can be used to define each
other. For instance, we have x ∈ cl(A) iff Ac /∈ N(x).
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Remark 6.1. If we take cl1(A) = A ∪ {y ∈ X : ∃x ∈ A, yRx}, then we can take
the minimal neighborhood of A in the form N1(A) = A ∪ {y ∈ X : ∃x ∈ A, xRy},
also if we take cl2(A) = A ∪ {y ∈ X : ∃x ∈ A, xRy}, then we can take the minimal
neighborhood of A in the form N2(A) = A ∪ {y ∈ X : ∃x ∈ A, yRx}.

Lemma 6.1. [15] Let R be any binary relation on X, then cl(cl(A)) = cl(A) if and
only if A ∈ N(x) ⇔ Int(A) ∈ N(x).

Now, from Proposition 4.2 and Lemma 6.1, we get the following proposition.

Proposition 6.1. In a closure space (X, cl1) (resp.(X, cl2)) if R is a transitive
relation on X, then A ∈ N(x) ⇔ Int1(A)(resp.Int2(A)) ∈ N(x).

Proposition 6.2. In a closure space (X, cl1) (resp.(X, cl2)) if R is a symmetric
relation on X, then cl1(A) (cl2(A)) is the minimal neighborhood of a set A.

Proof. If R be a symmetric relation, then N1(A) = A ∪ {y ∈ X : ∃x ∈ A, xRy} =
A ∪ {y ∈ X : ∃x ∈ A, yRx} = cl1(A). Moreover, we have N2(A) = A ∪ {y ∈ X :
∃x ∈ A, yRx} = A ∪ {y ∈ X : ∃x ∈ A, xRy} = cl2(A).

The important idea is that, we give another definition of the minimal neighbor-
hood of a point x in a closure space (X, cl3) as follows:

N3(x) =

{
〈x〉R if 〈x〉R 6= φ,

{x} if 〈x〉R = φ.

Also, from Lemma 4.6 and Lemma 6.1 we get.

Proposition 6.3. In a closure space (X, cl3) A ∈ N(x) ⇔ Int3(A) ∈ N(x) for any
binary relation R on X.

Lemma 6.2. In a closure space (X, cl3) the open sets are precisely the unions
∪x∈A(N3(x)) for all A ⊆ X.

Proof. Let A be an open set in (X, cl3), then

A = Int3(A) = {x ∈ A : 〈x〉R ⊆ A}.

Hence A is a neighborhood of each of its elements, so for each y ∈ A, we have
N3(y) ⊆ A, then ∪x∈A(N3(x)) ⊆ A. But since y ∈ N3(y) for all y ∈ X, we have

A ⊆ ∪x∈A(N3(x)).

And so A is the union of the minimal neighborhoods of its elements. Conversely,
consider any subset A ⊆ X. We want to show that ∪x∈A(N3(x)) is an open set. We
will show that N3(x) is open. First if 〈x〉R 6= φ, then for any point y ∈ N3(x) = 〈x〉R
we have 〈y〉R ⊆ 〈x〉R, and hence y ∈ Int3(〈x〉R) = Int3(N3(x)), thus N3(x) is open.
Second if 〈x〉R = φ then N3(x) = {x} = {x ∈ {x} : 〈x〉R ⊆ {x}} = Int3({x}), i.e.,
N3(x) = Int3(N3(x)), then N3(x) is an open set.
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